LICS 2021 "Inspirational Lecture": Pseudo-Boolean Solving

Jakob Nordström
University of Copenhagen and Lund University

January 18, 2022

Pseudo-Boolean?

Pseudo-Boolean (PB) function: $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
Studied since 1960s in operations research and 0-1 integer linear programming [BH02]

Such a function f can always be represented as polynomial
Restriction for this lecture: f represented as linear form
Many problems expressible as optimizing value of linear pseudo-Boolean function under linear pseudo-Boolean constraints

Pseudo-Boolean vs. SAT

- PB format richer than conjunctive normal form (CNF)

Compare

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

and

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{5} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
\wedge & \left(x_{2} \vee x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

Pseudo-Boolean vs. SAT

- PB format richer than conjunctive normal form (CNF)

Compare

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

and

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{5} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
\wedge & \left(x_{2} \vee x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

- And pseudo-Boolean reasoning exponentially stronger than conflict-driven clause learning (CDCL)

Pseudo-Boolean vs. SAT

- PB format richer than conjunctive normal form (CNF)

Compare

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

and

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{5} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
\wedge & \left(x_{2} \vee x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

- And pseudo-Boolean reasoning exponentially stronger than conflict-driven clause learning (CDCL)
- Yet close enough to SAT to benefit from SAT solving advances

Pseudo-Boolean vs. SAT

- PB format richer than conjunctive normal form (CNF)

Compare

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

and

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{5} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
\wedge & \left(x_{1} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
\wedge & \left(x_{2} \vee x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

- And pseudo-Boolean reasoning exponentially stronger than conflict-driven clause learning (CDCL)
- Yet close enough to SAT to benefit from SAT solving advances
- Also possible synergies with 0-1 integer linear programming (ILP)

Outline of Lecture

(1) Preliminaries

- Pseudo-Boolean Constraints
- Pseudo-Boolean Solving and Optimization
(2) Conflict-Driven Pseudo-Boolean Solving
- The Conflict-Driven Paradigm
- Pseudo-Boolean Reasoning Using Saturation
- Pseudo-Boolean Reasoning Using Division
(3) Going Beyond the State of the Art?
- Other Pseudo-Boolean Reasoning Rules
- Challenges
- Some Further References

Pseudo-Boolean Constraints and Normalized Form

For us, pseudo-Boolean constraints are always 0-1 integer linear constraints

$$
\sum_{i} a_{i} \ell_{i} \bowtie A
$$

- $\bowtie \in\{\geq, \leq,=,>,<\}$
- $a_{i}, A \in \mathbb{Z}$
- literals $\ell_{i}: x_{i}$ or \bar{x}_{i} (where $x_{i}+\bar{x}_{i}=1$)
- variables x_{i} take values $0=$ false or $1=$ true

Pseudo-Boolean Constraints and Normalized Form

For us, pseudo-Boolean constraints are always 0-1 integer linear constraints

$$
\sum_{i} a_{i} \ell_{i} \bowtie A
$$

- $\bowtie \in\{\geq, \leq,=,>,<\}$
- $a_{i}, A \in \mathbb{Z}$
- literals $\ell_{i}: x_{i}$ or \bar{x}_{i} (where $x_{i}+\bar{x}_{i}=1$)
- variables x_{i} take values $0=$ false or $1=$ true

Convenient to use normalized form [Bar95] (without loss of generality)

$$
\sum_{i} a_{i} \ell_{i} \geq A
$$

- constraint always greater-than-or-equal
- $a_{i}, A \in \mathbb{N}$
- $A=\operatorname{deg}\left(\sum_{i} a_{i} \ell_{i} \geq A\right)$ referred to as degree (of falsity)

Some Types of Pseudo-Boolean Constraints

(1) Clauses are pseudo-Boolean constraints

$$
x \vee \bar{y} \vee z \quad \Leftrightarrow \quad x+\bar{y}+z \geq 1
$$

Some Types of Pseudo-Boolean Constraints

(1) Clauses are pseudo-Boolean constraints

$$
x \vee \bar{y} \vee z \quad \Leftrightarrow \quad x+\bar{y}+z \geq 1
$$

(2) Cardinality constraints

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

Some Types of Pseudo-Boolean Constraints

(1) Clauses are pseudo-Boolean constraints

$$
x \vee \bar{y} \vee z \quad \Leftrightarrow \quad x+\bar{y}+z \geq 1
$$

(2) Cardinality constraints

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

(3) General constraints

$$
x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} \geq 7
$$

Conversion to Normalized Form: Example

Normalized form used for convenience and without loss of generality

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5}<0
$$

Conversion to Normalized Form: Example

Normalized form used for convenience and without loss of generality

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5}<0
$$

(1) Make inequality non-strict

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5} \leq-1
$$

Conversion to Normalized Form: Example

Normalized form used for convenience and without loss of generality

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5}<0
$$

(1) Make inequality non-strict

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5} \leq-1
$$

(2) Multiply by -1 to get greater-than-or-equal

$$
x_{1}-2 x_{2}+3 x_{3}-4 x_{4}+5 x_{5} \geq 1
$$

Conversion to Normalized Form: Example

Normalized form used for convenience and without loss of generality

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5}<0
$$

(1) Make inequality non-strict

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5} \leq-1
$$

(2) Multiply by -1 to get greater-than-or-equal

$$
x_{1}-2 x_{2}+3 x_{3}-4 x_{4}+5 x_{5} \geq 1
$$

(3) Replace $-\ell$ by $-(1-\bar{\ell})$ [where we define $\overline{\bar{x}} \doteq x$]

$$
\begin{aligned}
x_{1}-2\left(1-\bar{x}_{2}\right)+3 x_{3}-4\left(1-\bar{x}_{4}\right)+5 x_{5} & \geq 1 \\
x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} & \geq 7
\end{aligned}
$$

Conversion to Normalized Form: Example

Normalized form used for convenience and without loss of generality

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5}<0
$$

(1) Make inequality non-strict

$$
-x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-5 x_{5} \leq-1
$$

(2) Multiply by -1 to get greater-than-or-equal

$$
x_{1}-2 x_{2}+3 x_{3}-4 x_{4}+5 x_{5} \geq 1
$$

(3) Replace $-\ell$ by $-(1-\bar{\ell})$ [where we define $\overline{\bar{x}} \doteq x$]

$$
\begin{aligned}
x_{1}-2\left(1-\bar{x}_{2}\right)+3 x_{3}-4\left(1-\bar{x}_{4}\right)+5 x_{5} & \geq 1 \\
x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} & \geq 7
\end{aligned}
$$

(9) Replace " $=$ " by two inequalities " \geq " and " \leq "

Formulas, Decision Problems, and Optimization Problems

Pseudo-Boolean (PB) formula

Conjunction of pseudo-Boolean constraints
$F \doteq C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$

Formulas, Decision Problems, and Optimization Problems

Pseudo-Boolean (PB) formula
Conjunction of pseudo-Boolean constraints
$F \doteq C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$

Pseudo-Boolean Solving (PBS)

Decide whether F is satisfiable/feasible

Formulas, Decision Problems, and Optimization Problems

Pseudo-Boolean (PB) formula

Conjunction of pseudo-Boolean constraints
$F \doteq C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$

Pseudo-Boolean Solving (PBS)

Decide whether F is satisfiable/feasible

Pseudo-Boolean Optimization (PBO)

Find satisfying assignment to F minimizing objective function $\sum_{i} w_{i} \ell_{i}$ (Maximization: minimize $-\sum_{i} w_{i} \ell_{i}$)

Formulas, Decision Problems, and Optimization Problems

Pseudo-Boolean (PB) formula

Conjunction of pseudo-Boolean constraints
$F \doteq C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$

Pseudo-Boolean Solving (PBS)

Decide whether F is satisfiable/feasible

Pseudo-Boolean Optimization (PBO)

Find satisfying assignment to F minimizing objective function $\sum_{i} w_{i} \ell_{i}$ (Maximization: minimize $-\sum_{i} w_{i} \ell_{i}$)

This lecture:

- Focus on pseudo-Boolean solving
- But not hard to extend to (simple) optimization algorithm

Some Problems Expressed as PBO (1/2)

Input:

- undirected graph $G=(V, E)$
- weight function $w: V \rightarrow \mathbb{N}^{+}$

Some Problems Expressed as PBO (1/2)

Input:

- undirected graph $G=(V, E)$
- weight function $w: V \rightarrow \mathbb{N}^{+}$

Weighted maximum clique

$$
\begin{aligned}
& \min -\sum_{v \in V} w(v) \cdot x_{v} \\
& \bar{x}_{u}+\bar{x}_{v} \geq 1
\end{aligned} \quad(u, v) \notin E
$$

Some Problems Expressed as PBO (1/2)

Input:

- undirected graph $G=(V, E)$
- weight function $w: V \rightarrow \mathbb{N}^{+}$

Weighted maximum clique

$$
\begin{aligned}
& \min -\sum_{v \in V} w(v) \cdot x_{v} \\
& \bar{x}_{u}+\bar{x}_{v} \geq 1
\end{aligned} \quad(u, v) \notin E
$$

Weighted minimum vertex cover

$$
\begin{aligned}
& \min \sum_{v \in V} w(v) \cdot x_{v} \\
& x_{u}+x_{v} \geq 1
\end{aligned} \quad(u, v) \in E
$$

Some Problems Expressed as PBO (2/2)

Input:

- sets $S_{1}, \ldots, S_{m} \subseteq \mathcal{U}$
- weight function $w: \mathcal{U} \rightarrow \mathbb{N}^{+}$

Some Problems Expressed as PBO (2/2)

Input:

- sets $S_{1}, \ldots, S_{m} \subseteq \mathcal{U}$
- weight function $w: \mathcal{U} \rightarrow \mathbb{N}^{+}$

Weighted minimum hitting set
Find $H \subseteq \mathcal{U}$ such that

- $H \cap S_{i} \neq \emptyset$ for all $i \in[m] \quad$ (H is a hitting set)
- $\sum_{h \in H} w(h)$ is minimal

Some Problems Expressed as PBO (2/2)

Input:

- sets $S_{1}, \ldots, S_{m} \subseteq \mathcal{U}$
- weight function $w: \mathcal{U} \rightarrow \mathbb{N}^{+}$

Weighted minimum hitting set
Find $H \subseteq \mathcal{U}$ such that

- $H \cap S_{i} \neq \emptyset$ for all $i \in[m] \quad$ (H is a hitting set)
- $\sum_{h \in H} w(h)$ is minimal

$$
\begin{array}{ll}
\min \sum_{e \in \mathcal{U}} w(e) \cdot x_{e} \\
\sum_{e \in S_{i}} x_{e} \geq 1
\end{array} \quad i \in[m]
$$

Some Problems Expressed as PBO (2/2)

Input:

- sets $S_{1}, \ldots, S_{m} \subseteq \mathcal{U}$
- weight function $w: \mathcal{U} \rightarrow \mathbb{N}^{+}$

Weighted minimum hitting set
Find $H \subseteq \mathcal{U}$ such that

- $H \cap S_{i} \neq \emptyset$ for all $i \in[m] \quad$ (H is a hitting set)
- $\sum_{h \in H} w(h)$ is minimal

$$
\begin{array}{ll}
\min \sum_{e \in \mathcal{U}} w(e) \cdot x_{e} \\
\sum_{e \in S_{i}} x_{e} \geq 1
\end{array} \quad i \in[m]
$$

Note: In all of these examples, the problem is to

- optimize a linear function
- subject to a CNF formula (all constraints are clausal)

Already expressive framework!

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]

- Assign values to variables (in some smart way)
- Backtrack when conflict with falsified clause

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]

- Assign values to variables (in some smart way)
- Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS99, $\mathrm{MMZ}^{+} 01$]

- Analyse conflicts in more detail - add new clauses to formula
- More efficient backtracking
- Also let conflicts guide other heuristics

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]

- Assign values to variables (in some smart way)
- Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS99, $\mathrm{MMZ}^{+} 01$]

- Analyse conflicts in more detail - add new clauses to formula
- More efficient backtracking
- Also let conflicts guide other heuristics

CDCL Main Loop Pseudocode

$\operatorname{CDCL}(F)$

$1 \mathcal{D} \leftarrow F$; // initialize clause database to contain formula
$2 \rho \leftarrow \emptyset$; // initialize assignment trail to empty
3 forever do
4 if ρ falsifies some clause $C \in \mathcal{D}$ then
$A \leftarrow \operatorname{analyzeConflict}(\mathcal{D}, \rho, C)$;
if $A=\perp$ then output UNSATISFIABLE and exit;
else
add A to \mathcal{D} and backjump by shrinking ρ;
else if exists clause $C \in \mathcal{D}$ unit propagating x to $b \in\{0,1\}$ under ρ then add propagated assignment $x \stackrel{D}{=} b$ to ρ;
else if time to restart then $\rho \leftarrow \emptyset$; else if time for clause database reduction then erase (roughly) half of learned clauses in $\mathcal{D} \backslash F$ from \mathcal{D}
else if all variables assigned then output SATISFIABLE and exit; else
use decision scheme to choose assignment $x \stackrel{\text { d }}{=} b$ to add to ρ;

CDCL Main Loop Pseudocode

$\operatorname{CDCL}(F)$

$1 \mathcal{D} \leftarrow F$; // initialize clause database to contain formula
$2 \rho \leftarrow \emptyset$; // initialize assignment trail to empty
3 forever do
4 if ρ falsifies some clause $C \in \mathcal{D}$ then
5 $A \leftarrow \operatorname{analyzeConflict}(\mathcal{D}, \rho, C)$;
if $A=\perp$ then output UNSATISFIABLE and exit; else
add A to \mathcal{D} and backjump by shrinking ρ;
else if exists clause $C \in \mathcal{D}$ unit propagating x to $b \in\{0,1\}$ under ρ then add propagated assignment $x \stackrel{D}{=} b$ to ρ;
else if time to restart then $\rho \leftarrow \emptyset$; else if time for clause database reduction then
else if all variables assigned then output SATISFIABLE and exit; else
L use decision scheme to choose assignment $x \stackrel{d}{=} b$ to add to ρ;

Conflict Analysis Pseudocode

analyzeConflict($\left.\mathcal{D}, \rho, C_{\text {confi }}\right)$

$1 C_{\text {learn }} \leftarrow C_{\text {conff }}$;
2 while $C_{\text {learn }}$ not UIP clause and $C_{\text {learn }} \neq \perp$ do
$3 \quad \ell \leftarrow$ literal assigned last on trail ρ;
4
5
if ℓ propagated and $\bar{\ell}$ occurs in $C_{\text {learn }}$ then
$C_{\text {reason }} \leftarrow$ reason $(\ell, \rho, \mathcal{D})$;
$C_{\text {learn }} \leftarrow \operatorname{resolve}\left(C_{\text {learn }}, C_{\text {reason }}\right)$;
$\rho \leftarrow \rho \backslash\{\ell\} ;$
8 return $C_{\text {learn }}$;

SAT-Based Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses

- Lazy approach: learn clauses from PB constraints
- Sat4J [LP10] (one of versions in library)

SAT-Based Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses

- Lazy approach: learn clauses from PB constraints
- SAT4J [LP10] (one of versions in library)
- Eager approach: re-encode to clauses and run CDCL
- MiniSat+ [ES06]
- Open-WBO [MML14]
- NAPS [SN15]

SAT-Based Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses

- Lazy approach: learn clauses from PB constraints
- Sat4J [LP10] (one of versions in library)
- Eager approach: re-encode to clauses and run CDCL
- MiniSat+ [ES06]
- Open-WBO [MML14]
- NAPS [SN15]

Native reasoning with pseudo-Boolean constraints

- PRS [DG02]
- Galena [CK05]
- Pueblo [SS06]
- Sat4j [LP10]
- RoundingSat [EN18]

SAT-Based Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses

- Lazy approach: learn clauses from PB constraints
- Sat4J [LP10] (one of versions in library)
- Eager approach: re-encode to clauses and run CDCL
- MiniSat+ [ES06]
- Open-WBO [MML14]
- NAPS [SN15]

Native reasoning with pseudo-Boolean constraints

- PRS [DG02]
- Galena [CK05]
- Pueblo [SS06]
- Sat4j [LP10]
- RoundingSat [EN18]

"Native" Pseudo-Boolean Conflict-Driven Search

Want to do "same thing" as in conflict-driven clause learning (CDCL) SAT solving but with pseudo-Boolean constraints without re-encoding

"Native" Pseudo-Boolean Conflict-Driven Search

Want to do "same thing" as in conflict-driven clause learning (CDCL) SAT solving but with pseudo-Boolean constraints without re-encoding

- Variable assignments
(1) Always propagate forced assignment if possible
(2) Otherwise make assignment using decision heuristic

"Native" Pseudo-Boolean Conflict-Driven Search

Want to do "same thing" as in conflict-driven clause learning (CDCL) SAT solving but with pseudo-Boolean constraints without re-encoding

- Variable assignments
(1) Always propagate forced assignment if possible
(2) Otherwise make assignment using decision heuristic
- At conflict
(1) Do conflict analysis to derive new constraint
(2) Add new constraint to constraint database
(3) Backjump by rolling back decisions so that learned constraint propagates asserting literal (flipping it to opposite value)

Propagation, Conflict, and Slack

Let ρ current assignment of solver (a.k.a. trail)
Represent as $\rho=\{$ (ordered) set of literals assigned true $\}$

Propagation, Conflict, and Slack

Let ρ current assignment of solver (a.k.a. trail)
Represent as $\rho=\{$ (ordered) set of literals assigned true $\}$
Slack measures how far ρ is from falsifying $\sum_{i} a_{i} \ell_{i} \geq A$

$$
\operatorname{slack}\left(\sum_{i} a_{i} \ell_{i} \geq A ; \rho\right)=\sum_{\ell_{i} \text { not falsified by } \rho} a_{i}-A
$$

Propagation, Conflict, and Slack

Let ρ current assignment of solver (a.k.a. trail)
Represent as $\rho=\{$ (ordered) set of literals assigned true $\}$
Slack measures how far ρ is from falsifying $\sum_{i} a_{i} \ell_{i} \geq A$

$$
\operatorname{slack}\left(\sum_{i} a_{i} \ell_{i} \geq A ; \rho\right)=\sum_{\ell_{i} \text { not falsified by } \rho} a_{i}-A
$$

Consider $C \doteq x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} \geq 7$

ρ	$\operatorname{slack}(C ; \rho)$	comment

Propagation, Conflict, and Slack

Let ρ current assignment of solver (a.k.a. trail)
Represent as $\rho=\{$ (ordered) set of literals assigned true $\}$
Slack measures how far ρ is from falsifying $\sum_{i} a_{i} \ell_{i} \geq A$

$$
\operatorname{slack}\left(\sum_{i} a_{i} \ell_{i} \geq A ; \rho\right)=\sum_{\ell_{i} \text { not falsified by } \rho} a_{i}-A
$$

Consider $C \doteq x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} \geq 7$

Propagation, Conflict, and Slack

Let ρ current assignment of solver (a.k.a. trail)
Represent as $\rho=\{$ (ordered) set of literals assigned true $\}$
Slack measures how far ρ is from falsifying $\sum_{i} a_{i} \ell_{i} \geq A$

$$
\operatorname{slack}\left(\sum_{i} a_{i} \ell_{i} \geq A ; \rho\right)=\sum_{\ell_{i} \text { not falsified by } \rho} a_{i}-A
$$

Consider $C \doteq x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} \geq 7$

ρ	$\operatorname{slack}(C ; \rho)$	comment
$\}$	8	
$\left\{\bar{x}_{5}\right\}$	3	propagates \bar{x}_{4} (coefficient > slack)

Propagation, Conflict, and Slack

Let ρ current assignment of solver (a.k.a. trail)
Represent as $\rho=\{$ (ordered) set of literals assigned true $\}$
Slack measures how far ρ is from falsifying $\sum_{i} a_{i} \ell_{i} \geq A$

$$
\operatorname{slack}\left(\sum_{i} a_{i} \ell_{i} \geq A ; \rho\right)=\sum_{\ell_{i} \text { not falsified by } \rho} a_{i}-A
$$

Consider $C \doteq x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} \geq 7$

ρ	slack $(C ; \rho)$	comment
$\}$	8	
$\left\{\bar{x}_{5}\right\}$	3	propagates \bar{x}_{4} (coefficient > slack)
$\left\{\bar{x}_{5}, \bar{x}_{4}\right\}$	3	propagation doesn't change slack

Propagation, Conflict, and Slack

Let ρ current assignment of solver (a.k.a. trail)
Represent as $\rho=\{$ (ordered) set of literals assigned true $\}$
Slack measures how far ρ is from falsifying $\sum_{i} a_{i} \ell_{i} \geq A$

$$
\operatorname{slack}\left(\sum_{i} a_{i} \ell_{i} \geq A ; \rho\right)=\sum_{\ell_{i} \text { not falsified by } \rho} a_{i}-A
$$

Consider $C \doteq x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} \geq 7$

ρ	$\operatorname{slack}(C ; \rho)$	comment
$\}$	8	
$\left\{\bar{x}_{5}\right\}$	3	propagates \bar{x}_{4} (coefficient > slack)
$\left\{\bar{x}_{5}, \bar{x}_{4}\right\}$	3	propagation doesn't change slack
$\left\{\bar{x}_{5}, \bar{x}_{4}, \bar{x}_{3}, x_{2}\right\}$	-2	conflict (slack <0)

Propagation, Conflict, and Slack

Let ρ current assignment of solver (a.k.a. trail)
Represent as $\rho=\{$ (ordered) set of literals assigned true $\}$
Slack measures how far ρ is from falsifying $\sum_{i} a_{i} \ell_{i} \geq A$

$$
\operatorname{slack}\left(\sum_{i} a_{i} \ell_{i} \geq A ; \rho\right)=\sum_{\ell_{i} \text { not falsified by } \rho} a_{i}-A
$$

Consider $C \doteq x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} \geq 7$

ρ	slack $(C ; \rho)$	comment
$\}$	8	
$\left\{\bar{x}_{5}\right\}$	3	propagates \bar{x}_{4} (coefficient > slack)
$\left\{\bar{x}_{5}, \bar{x}_{4}\right\}$	3	propagation doesn't change slack
$\left\{\bar{x}_{5}, \bar{x}_{4}, \bar{x}_{3}, x_{2}\right\}$	-2	conflict (slack <0)

Note: constraint can be conflicting though not all variables assigned

Conflict Analysis Invariant

Consider example CDCL conflict analysis from SAT solving lecture

$$
(p \vee \bar{u}) \wedge(q \vee r) \wedge(\bar{r} \vee w) \wedge(u \vee x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z}) \wedge(\bar{p} \vee \bar{u})
$$

Conflict Analysis Invariant

Consider example CDCL conflict analysis from SAT solving lecture $(p \vee \bar{u}) \wedge(q \vee r) \wedge(\bar{r} \vee w) \wedge(u \vee x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z}) \wedge(\bar{p} \vee \bar{u})$

Conflict Analysis Invariant

Consider example CDCL conflict analysis from SAT solving lecture $(p \vee \bar{u}) \wedge(q \vee r) \wedge(\bar{r} \vee w) \wedge(u \vee x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z}) \wedge(\bar{p} \vee \bar{u})$
$r \stackrel{q \vee r}{=} 1$
।------

$x \stackrel{\mathrm{~d}}{=} 0$
$-\bar{u} \vee \bar{\vee}-\bar{\vee} \bar{y}-$

'y =-1।

- - -----
$z \stackrel{x \vee \overline{\bar{y}} \vee z}{=} 1$

Assignment "left on trail" always falsifies derived clause
${ }^{--} \overline{\bar{y}} \vee \bar{z}^{--} \quad \bar{y} \vee \bar{z}$ falsified by
$\bar{y} \vee \bar{z}$ falsified by

$$
\text { trail } \rho=\{\bar{p}, \bar{u}, \bar{q}, r, w, \bar{x}, y, z\}
$$

Conflict Analysis Invariant

Consider example CDCL conflict analysis from SAT solving lecture $(p \vee \bar{u}) \wedge(q \vee r) \wedge(\bar{r} \vee w) \wedge(u \vee x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z}) \wedge(\bar{p} \vee \bar{u})$

$$
\begin{aligned}
& x \vee \bar{y} \text { falsified by } \\
& \text { trail }^{\prime} \rho^{\prime}=\{\bar{p}, \bar{u}, \bar{q}, r, w, \bar{x}, y\} \\
& \bar{y} \vee \bar{z} \text { falsified by } \\
& \text { trail } \rho=\{\bar{p}, \bar{u}, \bar{q}, r, w, \bar{x}, y, z\}
\end{aligned}
$$

Conflict Analysis Invariant

Consider example CDCL conflict analysis from SAT solving lecture $(p \vee \bar{u}) \wedge(q \vee r) \wedge(\bar{r} \vee w) \wedge(u \vee x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z}) \wedge(\bar{p} \vee \bar{u})$

$p \stackrel{\text { d }}{=} 0$
$u \stackrel{p \vee \bar{u}}{=} 0$
$q \stackrel{\text { d }}{=} 0$

qVr
$r \stackrel{q \vee r}{=} 1$
เー-------」
$\left\llcorner_{-}^{\underline{w}} \stackrel{\bar{r} \vee w}{=}-1\right.$

$x \stackrel{\mathrm{~d}}{=} 0$
$-\bar{u} \overline{-x} \bar{\vee} \bar{y}-$

$z^{x \vee \underline{y} \vee} 1$
$1^{--} \overline{\bar{y}} \vee \bar{z}^{-}$
ᄂ _ _ \perp_{-}_

Assignment "left on trail" always falsifies derived clause

Conflict Analysis Invariant

Consider example CDCL conflict analysis from SAT solving lecture $(p \vee \bar{u}) \wedge(q \vee r) \wedge(\bar{r} \vee w) \wedge(u \vee x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z}) \wedge(\bar{p} \vee \bar{u})$

$p \stackrel{\text { d }}{=} 0$
$u^{p \vee \bar{u}}=0$
$q \stackrel{\text { d }}{=} 0$

$r \stackrel{q \vee r}{=} 1$
$\llcorner-\quad \underset{-}{ }=$
${ }^{-} \bar{r} \vee w_{1}$

$x \stackrel{\mathrm{~d}}{=} 0$
$-\bar{u} \vee \stackrel{-}{\underline{\vee} \vee} \bar{y}-$

। $\bar{x} \vee \bar{y} \vee \bar{z}-$

ᄂ _ _ $\perp_{\text {_ }}$ ।

Assignment "left on trail" always falsifies derived clause
\Rightarrow derived clause
"explains" conflict

Conflict Analysis Invariant

Consider example CDCL conflict analysis from SAT solving lecture $(p \vee \bar{u}) \wedge(q \vee r) \wedge(\bar{r} \vee w) \wedge(u \vee x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z}) \wedge(\bar{p} \vee \bar{u})$

$p \stackrel{\text { d }}{=} 0$
$u^{p \vee \bar{u}}=0$
$q \stackrel{\text { d }}{=} 0$

$r \stackrel{q \vee r}{=} 1$ ட-_=-_-
$\mathfrak{w}_{-}^{\bar{r} \vee w}=$

$x \stackrel{\mathrm{~d}}{=} 0$
$-\bar{u} \overline{\mathrm{v}} \overline{\mathrm{v}} \bar{y}-1$
y

$y^{u \vee x \vee y}=$

$i^{-} \overline{\bar{y}}, \bar{z}$
$L_{-}+\frac{1}{-}$

Assignment "left on trail" always falsifies derived clause
\Rightarrow derived clause "explains" conflict

Terminate analysis when explanation "looks nice"

Conflict Analysis Invariant

Consider example CDCL conflict analysis from SAT solving lecture $(p \vee \bar{u}) \wedge(q \vee r) \wedge(\bar{r} \vee w) \wedge(u \vee x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z}) \wedge(\bar{p} \vee \bar{u})$

$p \stackrel{\text { d }}{=} 0$
$u \stackrel{p \vee \bar{u}}{=} 0$
$q \stackrel{\text { d }}{=} 0$

$r \stackrel{q \vee r}{=} 1$

$\left\llcorner\underline{w}_{-}^{\bar{r} \bigvee w}=1\right.$

$u \vee x$ falsified by
trail $\rho^{\prime \prime}=\{\bar{p}, \bar{u}, \bar{q}, r, w, \bar{x}\}$
$x \vee \bar{y}$ falsified by
trail $\rho^{\prime}=\{\bar{p}, \bar{u}, \bar{q}, r, w, \bar{x}, y\}$
$\bar{y} \vee \bar{z}$ falsified by trail $\rho=\{\bar{p}, \bar{u}, \bar{q}, r, w, \bar{x}, y, z\}$

Assignment "left on trail" always falsifies derived clause
\Rightarrow derived clause
"explains" conflict
Terminate analysis when explanation "looks nice"

Namely: after backjump, some variable guaranteed to flip

Generalized Resolution

Can mimic resolution step

$$
\frac{x \vee \bar{y} \vee z \quad \bar{y} \vee \bar{z}}{x \vee \bar{y}}
$$

Generalized Resolution

Can mimic resolution step

$$
\frac{x \vee \bar{y} \vee z \quad \bar{y} \vee \bar{z}}{x \vee \bar{y}}
$$

by adding clauses as pseudo-Boolean constraints

$$
\frac{x+\bar{y}+z \geq 1 \quad \bar{y}+\bar{z} \geq 1}{x+2 \bar{y} \geq 1}
$$

(Recall $z+\bar{z}=1$)

Generalized Resolution

Can mimic resolution step

$$
\frac{x \vee \bar{y} \vee z \quad \bar{y} \vee \bar{z}}{x \vee \bar{y}}
$$

by adding clauses as pseudo-Boolean constraints

$$
\frac{x+\bar{y}+z \geq 1 \quad \bar{y}+\bar{z} \geq 1}{x+2 \bar{y} \geq 1}
$$

(Recall $z+\bar{z}=1$)

Generalized resolution rule (from [Hoo88, Hoo92])
Positive linear combination so that some variable cancels

$$
\frac{a_{1} x_{1}+\sum_{i \geq 2} a_{i} \ell_{i} \geq A \quad b_{1} \bar{x}_{1}+\sum_{i \geq 2} b_{i} \ell_{i} \geq B}{\sum_{i \geq 2}\left(\frac{c}{a_{1}} a_{i}+\frac{c}{b_{1}} b_{i}\right) \ell_{i} \geq \frac{c}{a_{1}} A+\frac{c}{b_{1}} B-c}\left[c=\operatorname{lcm}\left(a_{1}, b_{1}\right)\right]
$$

Saturation

Actually, not quite the right constraint in mimicking of resolution

$$
\frac{x+\bar{y}+z \geq 1 \quad \bar{y}+\bar{z} \geq 1}{x+2 \bar{y} \geq 1}
$$

Saturation

Actually, not quite the right constraint in mimicking of resolution

$$
\frac{x+\bar{y}+z \geq 1 \quad \bar{y}+\bar{z} \geq 1}{x+2 \bar{y} \geq 1}
$$

But clearly valid to conclude

$$
\frac{x+2 \bar{y} \geq 1}{x+\bar{y} \geq 1}
$$

Saturation

Actually, not quite the right constraint in mimicking of resolution

$$
\frac{x+\bar{y}+z \geq 1 \quad \bar{y}+\bar{z} \geq 1}{x+2 \bar{y} \geq 1}
$$

But clearly valid to conclude

$$
\frac{x+2 \bar{y} \geq 1}{x+\bar{y} \geq 1}
$$

Saturation rule

$$
\frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i} \min \left\{a_{i}, A\right\} \cdot \ell_{i} \geq A}
$$

Sound over integers, not over reals (need such rules for SAT solving)

Saturation

Actually, not quite the right constraint in mimicking of resolution

$$
\frac{x+\bar{y}+z \geq 1 \quad \bar{y}+\bar{z} \geq 1}{x+2 \bar{y} \geq 1}
$$

But clearly valid to conclude

$$
\frac{x+2 \bar{y} \geq 1}{x+\bar{y} \geq 1}
$$

Saturation rule

$$
\frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i} \min \left\{a_{i}, A\right\} \cdot \ell_{i} \geq A}
$$

Sound over integers, not over reals (need such rules for SAT solving)
[Generalized resolution as defined in [Hoo88, Hoo92] includes fix above, but convenient here to make the two separate steps explicit]

Analyze Conflict with Generalized Resolution + Saturation!

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Analyze Conflict with Generalized Resolution + Saturation!

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2} (Note: same constraint can propagate several times!)

Analyze Conflict with Generalized Resolution + Saturation!

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\mathrm{~d}}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2} (Note: same constraint can propagate several times!)

- Resolve reason $\left(x_{3}, \rho\right)=C_{1}$ with C_{2} over x_{3} to get resolve $\left(C_{1}, C_{2}, x_{3}\right)$

$$
\frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \quad 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3}{x_{4} \geq 1}
$$

Analyze Conflict with Generalized Resolution + Saturation!

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2} (Note: same constraint can propagate several times!)

- Resolve reason $\left(x_{3}, \rho\right)=C_{1}$ with C_{2} over x_{3} to get resolve $\left(C_{1}, C_{2}, x_{3}\right)$

$$
\frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \quad 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3}{x_{4} \geq 1}
$$

- Applying saturate $\left(x_{4} \geq 1\right)$ does nothing

Analyze Conflict with Generalized Resolution + Saturation!

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2} (Note: same constraint can propagate several times!)

- Resolve reason $\left(x_{3}, \rho\right)=C_{1}$ with C_{2} over x_{3} to get resolve $\left(C_{1}, C_{2}, x_{3}\right)$

$$
\frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \quad 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3}{x_{4} \geq 1}
$$

- Applying saturate $\left(x_{4} \geq 1\right)$ does nothing
- Non-negative slack w.r.t. $\rho^{\prime}=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1\right\}$ - not conflicting!

What Went Wrong? And What to Do About It?

Accident report

- Generalized resolution sound over the reals
- Given $\rho^{\prime}=\left\{x_{1}=0, x_{2}=1\right\}$, over the reals have
- $C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4$ propagates $x_{3} \geq \frac{1}{2}$
- $C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3$ satisfied by $x_{3} \leq \frac{1}{2}$
- So after resolving away x_{3} no conflict left!

What Went Wrong? And What to Do About It?

Accident report

- Generalized resolution sound over the reals
- Given $\rho^{\prime}=\left\{x_{1}=0, x_{2}=1\right\}$, over the reals have
- $C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4$ propagates $x_{3} \geq \frac{1}{2}$
- $C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3$ satisfied by $x_{3} \leq \frac{1}{2}$
- So after resolving away x_{3} no conflict left!

Remedial action

- Strengthen propagation to $x_{3} \geq 1$ also over the reals
- I.e., want reason C with $\operatorname{slack}\left(C ; \rho^{\prime}\right)=0$
- Fix (non-obvious): Apply weakening

$$
\text { weaken }\left(\sum_{i} a_{i} \ell_{i} \geq A, \ell_{j}\right) \doteq \sum_{i \neq j} a_{i} \ell_{i} \geq A-a_{j}
$$

to reason constraint and then saturate

- Approach in [CK05] (goes back to observations in [Wil76])

Try to Reduce the Reason Constraint

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}
Let's try to
(1) Weaken reason on non-falsified literal (but not last propagated)
(2) Saturate weakened constraint
(3) Resolve with conflicting constraint over propagated literal

Try to Reduce the Reason Constraint

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}
Let's try to
(1) Weaken reason on non-falsified literal (but not last propagated)
(3) Saturate weakened constraint

- Resolve with conflicting constraint over propagated literal

$$
\begin{aligned}
& \text { weaken } x_{2} \frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4}{2 x_{1}+2 x_{3}+x_{4} \geq 2} \\
& \quad \text { saturate } \frac{2 x_{1}}{2 x_{1}+2 x_{3}+x_{4} \geq 2} \quad 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3 \\
& \text { resolve } x_{3} \frac{\bar{x}_{2}+x_{4} \geq 1}{}
\end{aligned}
$$

Try to Reduce the Reason Constraint

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}
Let's try to
(1) Weaken reason on non-falsified literal (but not last propagated)
(3) Saturate weakened constraint

- Resolve with conflicting constraint over propagated literal

$$
\begin{aligned}
& \text { weaken } x_{2} \frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4}{2 x_{1}+2 x_{3}+x_{4} \geq 2} \\
& \qquad \text { saturate } \frac{2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3}{2 x_{1}+2 x_{3}+x_{4} \geq 2} \\
& \text { resolve } x_{3} \frac{2 \bar{x}_{2}+x_{4} \geq 1}{}
\end{aligned}
$$

Bummer! Still non-negative slack - not conflicting

Try Again to Reduce the Reason Constraint. . .

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\mathrm{~d}}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}

Try Again to Reduce the Reason Constraint. . .

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}

$$
\begin{aligned}
& \text { weaken }\left\{x_{2}, x_{4}\right\} \begin{array}{l}
\frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4}{2 x_{1}+2 x_{3} \geq 1} \\
\\
\text { saturate } \frac{x_{1}}{x_{1}+x_{3} \geq 1} \\
\text { resolve } x_{3} \frac{2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3}{}
\end{array}>2 \bar{x}_{2} \geq 1
\end{aligned}
$$

Try Again to Reduce the Reason Constraint. . .

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}
weaken $\left\{x_{2}, x_{4}\right\} \frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4}{2 x_{1}+2 x_{3} \geq 1}$

$$
\begin{aligned}
& \text { saturate } \frac{2 x_{1}+2 x_{3} \geq 1}{x_{1}+x_{3} \geq 1} \\
& \text { resolve } x_{3} \frac{2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3}{2 \bar{x}_{2} \geq 1}
\end{aligned}
$$

Negative slack - conflicting!

Try Again to Reduce the Reason Constraint. . .

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}
weaken $\left\{x_{2}, x_{4}\right\} \frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4}{2 x_{1}+2 x_{3} \geq 1}$

$$
\begin{aligned}
& \text { saturate } \frac{2 x_{1}+2 x_{3} \geq 1}{x_{1}+x_{3} \geq 1} \\
& \text { resolve } x_{3} \frac{2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3}{2 \bar{x}_{2} \geq 1}
\end{aligned}
$$

Negative slack - conflicting!
Backjump propagates to conflict without solver making any decisions
Done! Next conflict analysis will derive contradiction
(Or, in practice, terminate immediately at conflict without decisions)

Reason Reduction Using Saturation [CK05]

reduceSat $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

1 while $\operatorname{slack}\left(\right.$ resolve $\left.\left(C_{\text {learn }}, C_{\text {reason }}, \ell\right) ; \rho\right) \geq 0$ do
$2 \quad \ell^{\prime} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ not falsified by ρ;
$3 \quad C_{\text {reason }} \leftarrow \operatorname{saturate}\left(\right.$ weaken $\left.\left(C_{\text {reason }}, \ell^{\prime}\right)\right)$;
4 return $C_{\text {reason }}$;

Reason Reduction Using Saturation [CK05]

reduceSat $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

1 while $\operatorname{slack}\left(\right.$ resolve $\left.\left(C_{\text {learn }}, C_{\text {reason }}, \ell\right) ; \rho\right) \geq 0$ do
$2 \quad \ell^{\prime} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ not falsified by ρ;
$3 \quad C_{\text {reason }} \leftarrow \operatorname{saturate}\left(\right.$ weaken $\left.\left(C_{\text {reason }}, \ell^{\prime}\right)\right)$;
4 return $C_{\text {reason }}$;

Why does this work?

- Slack is subadditive

$$
\operatorname{slack}(c \cdot C+d \cdot D ; \rho) \leq c \cdot \operatorname{slack}(C ; \rho)+d \cdot \operatorname{slack}(D ; \rho)
$$

Reason Reduction Using Saturation [CK05]

reduceSat $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

1 while $\operatorname{slack}\left(\right.$ resolve $\left.\left(C_{\text {learn }}, C_{\text {reason }}, \ell\right) ; \rho\right) \geq 0$ do
$2 \quad \ell^{\prime} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ not falsified by ρ;
$3 \quad C_{\text {reason }} \leftarrow$ saturate $\left(\right.$ weaken $\left.\left(C_{\text {reason }}, \ell^{\prime}\right)\right)$;
4 return $C_{\text {reason }}$;

Why does this work?

- Slack is subadditive

$$
\operatorname{slack}(c \cdot C+d \cdot D ; \rho) \leq c \cdot \operatorname{slack}(C ; \rho)+d \cdot \operatorname{slack}(D ; \rho)
$$

- By invariant have $\operatorname{slack}\left(C_{\text {learn }} ; \rho\right)<0$

Reason Reduction Using Saturation [CK05]

reduceSat $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

1 while $\operatorname{slack}\left(\right.$ resolve $\left.\left(C_{\text {learn }}, C_{\text {reason }}, \ell\right) ; \rho\right) \geq 0$ do
$2 \quad \ell^{\prime} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ not falsified by ρ;
$3 \quad C_{\text {reason }} \leftarrow$ saturate $\left(\right.$ weaken $\left.\left(C_{\text {reason }}, \ell^{\prime}\right)\right)$;
4 return $C_{\text {reason }}$;

Why does this work?

- Slack is subadditive

$$
\operatorname{slack}(c \cdot C+d \cdot D ; \rho) \leq c \cdot \operatorname{slack}(C ; \rho)+d \cdot \operatorname{slack}(D ; \rho)
$$

- By invariant have $\operatorname{slack}\left(C_{\text {learn }} ; \rho\right)<0$
- Weakening leaves $\operatorname{slack}\left(C_{\text {reason }} ; \rho\right)$ unchanged

Reason Reduction Using Saturation [CK05]

reduceSat $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

1 while $\operatorname{slack}\left(\right.$ resolve $\left.\left(C_{\text {learn }}, C_{\text {reason }}, \ell\right) ; \rho\right) \geq 0$ do
$2 \quad \ell^{\prime} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ not falsified by ρ;
$3 \quad C_{\text {reason }} \leftarrow$ saturate $\left(\right.$ weaken $\left.\left(C_{\text {reason }}, \ell^{\prime}\right)\right)$;
4 return $C_{\text {reason }}$;

Why does this work?

- Slack is subadditive

$$
\operatorname{slack}(c \cdot C+d \cdot D ; \rho) \leq c \cdot \operatorname{slack}(C ; \rho)+d \cdot \operatorname{slack}(D ; \rho)
$$

- By invariant have $\operatorname{slack}\left(C_{\text {learn }} ; \rho\right)<0$
- Weakening leaves $\operatorname{slack}\left(C_{\text {reason }} ; \rho\right)$ unchanged
- Saturation decreases slack - hit 0 when max \#literals weakened

Pseudo-Boolean Conflict Analysis Pseudocode

```
analyzePBconflict(\mathcal{D},\rho,\mp@subsup{C}{\mathrm{ confl }}{})
```

$1 C_{\text {learn }} \leftarrow C_{\text {confl }}$;
2 while $C_{\text {learn }}$ not asserting and $C_{\text {learn }} \neq \perp$ do
$3 \quad \ell \leftarrow$ literal assigned last on trail ρ;
if ℓ propagated and $\bar{\ell}$ occurs in $C_{\text {learn }}$ then
$C_{\text {reason }} \leftarrow$ reason $(\ell, \rho, \mathcal{D})$;
$C_{\text {reason }} \leftarrow$ reduceSat $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$;
$C_{\text {learn }} \leftarrow$ resolve $\left(C_{\text {learn }}, C_{\text {reason }}, \ell\right)$;
$C_{\text {learn }} \leftarrow$ saturate $\left(C_{\text {learn }}\right)$;
$\rho \leftarrow \rho \backslash\{\ell\} ;$
10 return $C_{\text {learn }}$;

Reduction of reason new compared to CDCL - otherwise the same Essentially conflict analysis used in SAT4J [LP10]

Some Problems Compared to CDCL

- Compared to clauses harder to detect propagation for constraints like

$$
\sum_{i=1}^{n} x_{i} \geq n-1
$$

Some Problems Compared to CDCL

- Compared to clauses harder to detect propagation for constraints like

$$
\sum_{i=1}^{n} x_{i} \geq n-1
$$

- Generalized resolution for general pseudo-Boolean constraints \Rightarrow lots of lcm computations \Rightarrow coefficient sizes can explode (expensive arithmetic)

Some Problems Compared to CDCL

- Compared to clauses harder to detect propagation for constraints like

$$
\sum_{i=1}^{n} x_{i} \geq n-1
$$

- Generalized resolution for general pseudo-Boolean constraints \Rightarrow lots of lcm computations \Rightarrow coefficient sizes can explode (expensive arithmetic)
- For CNF inputs, degenerates to resolution! \Rightarrow CDCL but with super-expensive data structures

The Cutting Planes Proof System

Cutting planes as defined in theory literature [CCT87] doesn't use saturation but instead division (a.k.a. Chvátal-Gomory cut)

$$
\text { Literal axioms } \overline{\ell_{i} \geq 0}
$$

Linear combination $\frac{\sum_{i} a_{i} \ell_{i} \geq A \quad \sum_{i} b_{i} \ell_{i} \geq B}{\sum_{i}\left(c_{A} a_{i}+c_{B} b_{i}\right) \ell_{i} \geq c_{A} A+c_{B} B}$
Division $\frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i}\left\lceil a_{i} / c\right\rceil \ell_{i} \geq\lceil A / c\rceil}$

The Cutting Planes Proof System

Cutting planes as defined in theory literature [CCT87] doesn't use saturation but instead division (a.k.a. Chvátal-Gomory cut)

$$
\text { Literal axioms } \overline{\ell_{i} \geq 0}
$$

Linear combination $\frac{\sum_{i} a_{i} \ell_{i} \geq A \quad \sum_{i} b_{i} \ell_{i} \geq B}{\sum_{i}\left(c_{A} a_{i}+c_{B} b_{i}\right) \ell_{i} \geq c_{A} A+c_{B} B}$
Division $\frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i}\left\lceil a_{i} / c\right\rceil \ell_{i} \geq\lceil A / c\rceil}$

- Cutting planes with division implicationally complete
- Cutting planes with saturation is not $\left[\mathrm{VEG}^{+} 18\right]$
- Can division yield stronger conflict analysis?

The Cutting Planes Proof System

Cutting planes as defined in theory literature [CCT87] doesn't use saturation but instead division (a.k.a. Chvátal-Gomory cut)

$$
\text { Literal axioms } \overline{\ell_{i} \geq 0}
$$

Linear combination $\frac{\sum_{i} a_{i} \ell_{i} \geq A \quad \sum_{i} b_{i} \ell_{i} \geq B}{\sum_{i}\left(c_{A} a_{i}+c_{B} b_{i}\right) \ell_{i} \geq c_{A} A+c_{B} B}$

$$
\text { Division } \frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i}\left\lceil a_{i} / c\right\rceil \ell_{i} \geq\lceil A / c\rceil}
$$

- Cutting planes with division implicationally complete
- Cutting planes with saturation is not $\left[\mathrm{VEG}^{+} 18\right]$
- Can division yield stronger conflict analysis? (Used for integer linear programming in CutSat [JdM13])

Using Division to Reduce the Reason

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}

Using Division to Reduce the Reason

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}
(1) Weaken reason on non-falsified literal(s) with coefficient not divisible by propagating literal coefficient
(2) Divide weakened constraint by propagating literal coefficient
(3) Resolve with conflicting constraint over propagated literal

Using Division to Reduce the Reason

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}
(1) Weaken reason on non-falsified literal(s) with coefficient not divisible by propagating literal coefficient
(2) Divide weakened constraint by propagating literal coefficient
(3) Resolve with conflicting constraint over propagated literal
weaken $x_{4} \frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4}{2 x_{1}+2 x_{2}+2 x_{3} \geq 3}$
divide by $22 x_{1}+2 x_{2}+2 x_{3} \geq 3$

$$
\text { resolve } x_{3} \frac{x_{1}+x_{2}+x_{3} \geq 2}{} \quad 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
$$

Using Division to Reduce the Reason

$$
\begin{aligned}
& C_{1} \doteq 2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4 \\
& C_{2} \doteq 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
\end{aligned}
$$

Trail $\rho=\left\{x_{1} \stackrel{\text { d }}{=} 0, x_{2} \stackrel{C_{1}}{=} 1, x_{3} \stackrel{C_{1}}{=} 1\right\} \Rightarrow$ Conflict with C_{2}
(1) Weaken reason on non-falsified literal(s) with coefficient not divisible by propagating literal coefficient
(2) Divide weakened constraint by propagating literal coefficient
(3) Resolve with conflicting constraint over propagated literal
weaken $x_{4} \frac{2 x_{1}+2 x_{2}+2 x_{3}+x_{4} \geq 4}{2 x_{1}+2 x_{2}+2 x_{3} \geq 3}$
divide by $2 \frac{2 x_{1}+2 x_{2}+2 x_{3} \geq 3}{x_{1}+x_{2}+x_{3} \geq 2}$

$$
\text { resolve } x_{3} \frac{x_{1}+x_{2}+x_{3} \geq 2}{} \quad 2 \bar{x}_{1}+2 \bar{x}_{2}+2 \bar{x}_{3} \geq 3
$$

Terminate immediately!

Reason Reduction Using Division [EN18]

reduceDiv $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

$1 c \leftarrow \operatorname{coeff}\left(C_{\text {reason }}, \ell\right)$;
2 while $\operatorname{slack}\left(\right.$ resolve $\left(C_{\text {learn }}\right.$, divide $\left.\left.\left(C_{\text {reason }}, c\right), \ell\right) ; \rho\right) \geq 0$ do
$3 \quad \ell_{j} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ such that $\bar{\ell}_{j} \notin \rho$ and $c \nmid \operatorname{coeff}\left(C, \ell_{j}\right)$;
$4 \quad C_{\text {reason }} \leftarrow$ weaken $\left(C_{\text {reason }}, \ell_{j}\right)$;
5 return divide $\left(C_{\text {reason }}, c\right)$;

Reason Reduction Using Division [EN18]

reduceDiv $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

$1 c \leftarrow \operatorname{coeff}\left(C_{\text {reason }}, \ell\right)$;
2 while slack(resolve $\left(C_{\text {learn }}\right.$, divide $\left.\left.\left(C_{\text {reason }}, c\right), \ell\right) ; \rho\right) \geq 0$ do
$3 \quad \ell_{j} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ such that $\bar{\ell}_{j} \notin \rho$ and $c \nmid \operatorname{coeff}\left(C, \ell_{j}\right)$;
$4 \quad C_{\text {reason }} \leftarrow$ weaken $\left(C_{\text {reason }}, \ell_{j}\right)$;
5 return divide $\left(C_{\text {reason }}, c\right)$;

So now why does this work?

- Sufficient to get reason with slack 0 since
(1) $\operatorname{slack}\left(C_{\text {learn }} ; \rho\right)<0$
(2) slack is subadditive

Reason Reduction Using Division [EN18]

reduceDiv $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

$1 c \leftarrow \operatorname{coeff}\left(C_{\text {reason }}, \ell\right)$;
2 while slack(resolve $\left(C_{\text {learn }}\right.$, divide $\left.\left.\left(C_{\text {reason }}, c\right), \ell\right) ; \rho\right) \geq 0$ do
$3 \mid \quad \ell_{j} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ such that $\bar{\ell}_{j} \notin \rho$ and $c \nmid \operatorname{coeff}\left(C, \ell_{j}\right)$;
$4 \quad C_{\text {reason }} \leftarrow$ weaken $\left(C_{\text {reason }}, \ell_{j}\right)$;
5 return divide $\left(C_{\text {reason }}, c\right)$;

So now why does this work?

- Sufficient to get reason with slack 0 since
(1) $\operatorname{slack}\left(C_{\text {learn }} ; \rho\right)<0$
(2) slack is subadditive
- Slack same after weakening \Rightarrow always $0 \leq \operatorname{slack}\left(C_{\text {reason }} ; \rho\right)<c$

Reason Reduction Using Division [EN18]

reduceDiv $\left(C_{\text {reason }}, C_{\text {learn }}, \ell, \rho\right)$

$1 c \leftarrow \operatorname{coeff}\left(C_{\text {reason }}, \ell\right)$;
2 while slack (resolve $\left(C_{\text {learn }}\right.$, divide $\left.\left.\left(C_{\text {reason }}, c\right), \ell\right) ; \rho\right) \geq 0$ do
$3 \mid \quad \ell_{j} \leftarrow$ literal in $C_{\text {reason }} \backslash\{\ell\}$ such that $\bar{\ell}_{j} \notin \rho$ and $c \nmid \operatorname{coeff}\left(C, \ell_{j}\right)$;
$4 \quad C_{\text {reason }} \leftarrow$ weaken $\left(C_{\text {reason }}, \ell_{j}\right)$;
5 return divide $\left(C_{\text {reason }}, c\right)$;

So now why does this work?

- Sufficient to get reason with slack 0 since
(1) $\operatorname{slack}\left(C_{\text {learn }} ; \rho\right)<0$
(2) slack is subadditive
- Slack same after weakening \Rightarrow always $0 \leq \operatorname{slack}\left(C_{\text {reason }} ; \rho\right)<c$
- After max \#weakenings have $0 \leq \operatorname{slack}\left(\operatorname{divide}\left(C_{\text {reason }}, c\right) ; \rho\right)<1$

Division vs. Saturation

- Higher conflict speed when PB reasoning doesn't help [EN18]
- Seems to perform better when PB reasoning crucial [EGNV18]
- Keeps coefficients small - can (often) do fixed-precision arithmetic
- But Sat4j still better for some circuit verification problems [LBD $\left.{ }^{+} 20\right]$
- And still equally hard to detect propagation
- Also, still degenerates to resolution for CNF inputs
- Sometimes very poor performance even on infeasible 0-1 LPs!

Other PB Rules I: Cardinality Constraint Reduction

Given PB constraint

$$
3 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 4
$$

can compute least \#literals that have to be true

Other PB Rules I: Cardinality Constraint Reduction

Given PB constraint

$$
3 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 4
$$

can compute least \#literals that have to be true

$$
x_{1}+x_{2}+x_{3}+x_{4} \geq 2
$$

Other PB Rules I: Cardinality Constraint Reduction

Given PB constraint

$$
3 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 4
$$

can compute least \#literals that have to be true

$$
x_{1}+x_{2}+x_{3}+x_{4} \geq 2
$$

Galena [CK05] learns only cardinality constraints - easier to deal with

Other PB Rules I: Cardinality Constraint Reduction

Given PB constraint

$$
3 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 4
$$

can compute least \#literals that have to be true

$$
x_{1}+x_{2}+x_{3}+x_{4} \geq 2
$$

Galena [CK05] learns only cardinality constraints - easier to deal with

Cardinality constraint reduction rule

$$
\frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i: a_{i}>0} \ell_{i} \geq T} T=\min \left\{|I|: I \subseteq[n], \sum_{i \in I} a_{i} \geq A\right\}
$$

Can be simulated with weakening + division

Other PB Rules II: Strengthening

Strengthening by example:

- Set $x=0$ and propagate on constraints

$$
x+y \geq 1 \quad x+z \geq 1 \quad y+z \geq 1
$$

Other PB Rules II: Strengthening

Strengthening by example:

- Set $x=0$ and propagate on constraints

$$
x+y \geq 1 \quad x+z \geq 1 \quad y+z \geq 1
$$

- $y \stackrel{x+y \geq 1}{=} 1$ and $z \stackrel{x+z \geq 1}{=} 1 \Rightarrow y+z \geq 1$ oversatisfied by margin 1

Other PB Rules II: Strengthening

Strengthening by example:

- Set $x=0$ and propagate on constraints

$$
x+y \geq 1 \quad x+z \geq 1 \quad y+z \geq 1
$$

- $y \stackrel{x+y \geq 1}{=} 1$ and $z \stackrel{x+z \geq 1}{=} 1 \Rightarrow y+z \geq 1$ oversatisfied by margin 1
- Hence, can deduce constraint $x+y+z \geq 2$

Other PB Rules II: Strengthening

Strengthening by example:

- Set $x=0$ and propagate on constraints

$$
x+y \geq 1 \quad x+z \geq 1 \quad y+z \geq 1
$$

- $y \stackrel{x+y \geq 1}{=} 1$ and $z \stackrel{x+z \geq 1}{=} 1 \Rightarrow y+z \geq 1$ oversatisfied by margin 1
- Hence, can deduce constraint $x+y+z \geq 2$

Strengthening rule (imported by [DG02] from operations research)

- Suppose $\ell=0 \Rightarrow \sum_{i} a_{i} \ell_{i} \geq A$ oversatisfied by amount K
- Then can deduce $K \ell+\sum_{i} a_{i} \ell_{i} \geq A+K$

Other PB Rules II: Strengthening

Strengthening by example:

- Set $x=0$ and propagate on constraints

$$
x+y \geq 1 \quad x+z \geq 1 \quad y+z \geq 1
$$

- $y \stackrel{x+y \geq 1}{=} 1$ and $z \stackrel{x+z \geq 1}{=} 1 \Rightarrow y+z \geq 1$ oversatisfied by margin 1
- Hence, can deduce constraint $x+y+z \geq 2$

Strengthening rule (imported by [DG02] from operations research)

- Suppose $\ell=0 \Rightarrow \sum_{i} a_{i} \ell_{i} \geq A$ oversatisfied by amount K
- Then can deduce $K \ell+\sum_{i} a_{i} \ell_{i} \geq A+K$

In theory, can recover from bad encodings (e.g., CNF)
In practice, seems inefficient and hard to get to work...

Other PB Rules III: "Fusion Resolution"

Suppose have constraints

$$
2 x+3 y+2 z+w \geq 3 \quad 2 \bar{x}+3 y+2 z+w \geq 3
$$

Other PB Rules III: "Fusion Resolution"

Suppose have constraints

$$
2 x+3 y+2 z+w \geq 3 \quad 2 \bar{x}+3 y+2 z+w \geq 3
$$

Then by eyeballing can conclude

$$
3 y+2 z+w \geq 3
$$

Other PB Rules III: "Fusion Resolution"

Suppose have constraints

$$
2 x+3 y+2 z+w \geq 3 \quad 2 \bar{x}+3 y+2 z+w \geq 3
$$

Then by eyeballing can conclude

$$
3 y+2 z+w \geq 3
$$

But only get from resolution

$$
6 y+4 z+2 w \geq 4
$$

Other PB Rules III: "Fusion Resolution"

Suppose have constraints

$$
2 x+3 y+2 z+w \geq 3 \quad 2 \bar{x}+3 y+2 z+w \geq 3
$$

Then by eyeballing can conclude

$$
3 y+2 z+w \geq 3
$$

But only get from resolution + saturation

$$
4 y+4 z+2 w \geq 4
$$

Other PB Rules III: "Fusion Resolution"

Suppose have constraints

$$
2 x+3 y+2 z+w \geq 3 \quad 2 \bar{x}+3 y+2 z+w \geq 3
$$

Then by eyeballing can conclude

$$
3 y+2 z+w \geq 3
$$

But only get from resolution + saturation + division

$$
2 y+2 z+w \geq 2
$$

Other PB Rules III: "Fusion Resolution"

Suppose have constraints

$$
2 x+3 y+2 z+w \geq 3 \quad 2 \bar{x}+3 y+2 z+w \geq 3
$$

Then by eyeballing can conclude

$$
3 y+2 z+w \geq 3
$$

But only get from resolution + saturation + division

$$
2 y+2 z+w \geq 2
$$

"Fusion resolution" [Goc17]

$$
\frac{a \ell+\sum_{i} b_{i} \ell_{i} \geq B \quad a \bar{\ell}+\sum_{i} b_{i} \ell_{i} \geq B^{\prime}}{\sum_{i} b_{i} \ell_{i} \geq \min \left\{B, B^{\prime}\right\}}
$$

No obvious way for cutting planes to immediately derive this Shows up in some tricky benchmarks in [EGNV18]

Some PB Solving Challenges I: Input Format

(1) CNF: PB solvers degenerate to CDCL for CNF inputs - how to harness power of cutting planes in this setting?

- Cardinality constraint detection proposed as preprocessing [BLLM14] or inprocessing [EN20]
- Not yet competitive in practice

Some PB Solving Challenges I: Input Format

(1) CNF: PB solvers degenerate to CDCL for CNF inputs - how to harness power of cutting planes in this setting?

- Cardinality constraint detection proposed as preprocessing [BLLM14] or inprocessing [EN20]
- Not yet competitive in practice
(2) Linear programming: Sometimes very poor performance even on infeasible 0-1 LPs!
- Unclear why - very easy for cutting planes in theory
- Work on addressing this in [DGN21]

Some PB Solving Challenges I: Input Format

(1) CNF: PB solvers degenerate to CDCL for CNF inputs - how to harness power of cutting planes in this setting?

- Cardinality constraint detection proposed as preprocessing [BLLM14] or inprocessing [EN20]
- Not yet competitive in practice
(2) Linear programming: Sometimes very poor performance even on infeasible 0-1 LPs!
- Unclear why - very easy for cutting planes in theory
- Work on addressing this in [DGN21]
(3) Preprocessing/presolving: Important in SAT solving and integer linear programming, but not done in PB solvers - why?
- Follow up on preliminary work on PB preprocessing in [MLM09]?
- Use presolver PaPILO [PaP] from mixed integer linear programming (MIP) solver SCIP [SCI]?

Some PB Solving Challenges II: Conflict Analysis

(1) Many more degrees of freedom than in CDCL, e.g.:

- Choice of Boolean rule (division, saturation, or combination?)
- Learn general PB constraints or more limited form?
- How far to backjump when learned constraint is asserting at several levels?
- How large precision to use in integer arithmetic?

Some PB Solving Challenges II: Conflict Analysis

(1) Many more degrees of freedom than in CDCL, e.g.:

- Choice of Boolean rule (division, saturation, or combination?)
- Learn general PB constraints or more limited form?
- How far to backjump when learned constraint is asserting at several levels?
- How large precision to use in integer arithmetic?
(2) How to assess quality of learned constraints?

Some PB Solving Challenges II: Conflict Analysis

(1) Many more degrees of freedom than in CDCL, e.g.:

- Choice of Boolean rule (division, saturation, or combination?)
- Learn general PB constraints or more limited form?
- How far to backjump when learned constraint is asserting at several levels?
- How large precision to use in integer arithmetic?
(2) How to assess quality of learned constraints?
(3) Theoretical potential \& limitations poorly understood [VEG ${ }^{+}$18]
- Separations in deductive power between different methods of pseudo-Boolean reasoning?
- In particular, is division-based reasoning stronger than saturation-based reasoning? [GNY19]

Some References for Further Reading (and Watching)

Handbook of Satisfiability [BHvMW21]

- Chapter 7: Proof Complexity and SAT Solving
- Chapter 23: MaxSAT, Hard and Soft Constraints
- Chapter 24: Maximum Satisfiability
- Chapter 28: Pseudo-Boolean and Cardinality Constraints

Video tutorials on pseudo-Boolean solving

From the Satisfiability: Theory, Practice, and
 Beyond program at UC Berkeley in spring 2021 https://tinyurl.com/PBSATtutorial

Summing up

- Pseudo-Boolean framework expressive and powerful
- Can be approached using successful conflict-driven paradigm from SAT solving
- In theory, potential for exponential increase in performance
- In practice, some highly nontrivial challenges regarding
- Algorithm design
- Efficient implementation
- Theoretical understanding
- But maybe also quite a bit of low-hanging fruit?
- And in any case lots of fun questions to work on! © (Potentially also for BSc or MSc thesis projects)

Summing up

- Pseudo-Boolean framework expressive and powerful
- Can be approached using successful conflict-driven paradigm from SAT solving
- In theory, potential for exponential increase in performance
- In practice, some highly nontrivial challenges regarding
- Algorithm design
- Efficient implementation
- Theoretical understanding
- But maybe also quite a bit of low-hanging fruit?
- And in any case lots of fun questions to work on! © (Potentially also for BSc or MSc thesis projects)

Thank you for your attention!

References I

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, January 1995.
[BH02] Endre Boros and Peter L. Hammer. Pseudo-Boolean optimization. Discrete Applied Mathematics, 123(1-3):155-225, November 2002.
[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.
[BLLM14] Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey. Detecting cardinality constraints in CNF. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 285-301. Springer, July 2014.
[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25-38, November 1987.

References II

[CK05] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(3):305-317, March 2005. Preliminary version in DAC '03.
[DG02] Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-Boolean satisfiability solver. In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI '02), pages 635-640, July 2002.
[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer linear programming with pseudo-Boolean conflict-driven search. Constraints, January 2021. Preliminary version in CPAIOR '20.
[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving. Communications of the ACM, 5(7):394-397, July 1962.
[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM, 7(3):201-215, 1960.

References III

[EGNV18] Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using combinatorial benchmarks to probe the reasoning power of pseudo-Boolean solvers. In Proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing (SAT '18), volume 10929 of Lecture Notes in Computer Science, pages 75-93. Springer, July 2018.
[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI '18), pages 1291-1299, July 2018.
[EN20] Jan Elffers and Jakob Nordström. A cardinal improvement to pseudo-Boolean solving. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI '20), pages 1495-1503, February 2020.
[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, March 2006.

References IV

[GNY19] Stephan Gocht, Jakob Nordström, and Amir Yehudayoff. On division versus saturation in pseudo-Boolean solving. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI '19), pages 1711-1718, August 2019.
[Goc17] Stephan Gocht. Personal communication, 2017.
[Hoo88] John N. Hooker. Generalized resolution and cutting planes. Annals of Operations Research, 12(1):217-239, December 1988.
[Hoo92] John N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of Mathematics and Artificial Intelligence, 6(1):271-286, March 1992.
[JdM13] Dejan Jovanovic and Leonardo de Moura. Cutting to the chase solving linear integer arithmetic. Journal of Automated Reasoning, 51(1):79-108, June 2013. Preliminary version in CADE-23.
$\left[\mathrm{LBD}^{+} 20\right]$ Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers, and Jakob Nordström. Verifying properties of bit-vector multiplication using cutting planes reasoning. In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design (FMCAD '20), pages 194-204, September 2020.

References V

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation, 7:59-64, July 2010.
[MLM09] Ruben Martins, Inês Lynce, and Vasco M. Manquinho. Preprocessing in pseudo-Boolean optimization: An experimental evaluation. In Proceedings of the 8th International Workshop on Constraint Modelling and Reformulation (ModRef '09), pages 87-101, September 2009. Available at https:
//www-users.cs.york.ac.uk/~frisch/ModRef/09/proceedings.pdf.
[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 438-445. Springer, July 2014.
[MMZ ${ }^{+}$01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC '01), pages 530-535, June 2001.

References VI

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers, 48(5):506-521, May 1999. Preliminary version in ICCAD '96.
[PaP] PaPILO - parallel presolve for integer and linear optimization. https://github.com/lgottwald/PaPILO.
[SCI] SCIP: Solving constraint integer programs. http://scip.zib.de/.
[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in band form and related techniques for PB-solvers. IEICE Transactions on Information and Systems, 98-D(6):1121-1127, June 2015.
[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):165-189, March 2006. Preliminary version in DATE '05.

References VII

[VEG ${ }^{+}$18] Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström. In between resolution and cutting planes: A study of proof systems for pseudo-Boolean SAT solving. In Proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing (SAT '18), volume 10929 of Lecture Notes in Computer Science, pages 292-310. Springer, July 2018.
[Wil76] H. P. Williams. Fourier-Motzkin elimination extension to integer programming problems. Journal of Combinatorial Theory, Series A, 21(1):118-123, July 1976.

