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The Success Story of Combinatorial Solving and Optimization

Rich field of mathematics and computer science
Impact in other areas of science and also industry, e.g.:

airline scheduling
hardware verification
donor-recipients matching for kidney transplants [MO12, BvdKM+21]

Computationally very challenging problems (NP-complete or worse)
Lots of effort last couple of decades spent on developing sophisticated so-called
combinatorial solvers that often work surprisingly well in practice

Boolean satisfiability (SAT) solving [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]
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The Dirty Little Secret. . .

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22]

Even worse: No way of knowing for sure when errors happen

Solvers even get feasibility of solutions wrong (though this should be
straightforward!)

But how to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large
errors if solver used as subroutine)
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What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct
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Proof Logging with Certifying Solvers: Workflow

Checker

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Proof Logging Wishlist

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?
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This Talk

Proof logging for combinatorial optimization is possible!

Only need propositional logic

Represent constraints as 0–1 integer linear inequalities

Formalize reasoning using extended resolution [Tse68] and cutting planes [CCT87]
proof systems

Add well-chosen strengthening rules [Goc22, GN21, BGMN22]

Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Making constructive use of computational complexity theory!
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Outline of This Talk

1 Combinatorial Optimization and Proof Logging
Combinatorial Solving and Optimization
Proofs
Proof Logging

2 Proof Logging for Boolean Satisfiability (SAT) Solving
Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

3 Beyond SAT
Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 8/46



Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Combinatorial Problems (1/2)

Boolean satisfiability (SAT)
Decide if exists satisfying assignment to conjunctive normal form (CNF) formula

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

SAT-based optimization (MaxSAT)
Minimize 0–1 linear expression

p + q + 2r + 3u + 5w

subject to constraints in a CNF formula
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Combinatorial Problems (2/2)

Mixed integer linear programming (MIP)
Minimize

∑
i wixi subject to Ax ≥ b

Variables xi Boolean, integral, or real-valued

Constraint programming (CP)
Also non-Boolean variables
More expressive constraints (e.g., all-different)

Satisfiability modulo theories (SMT)
Propositional logic formula with variables express statements in theories, e.g.:

uninterpreted functions
linear arithmetic
arrays
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Computational Complexity of Combinatorial Problems

These problems are NP-complete [Coo71, Lev73] or worse

Believed to require exponential time in the worst case [IP01, CIP09]

Proving such lower bounds is the goal of computational complexity theory [GW08]

Has not stopped practitioners from solving problems very efficiently in practice
(often, not always)
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

What Is a Proof? (From a Computational Perspective)
Claim: “N is the product of two primes” (think N = 25957, say)
What is an acceptable proof of such a claim?

“Left to the listener. (Just factor and check yourself!)”
No! Not known how to factor large integers efficiently
Much of modern crypto rests on assumption that this is hard [RSA78]
25957 ≡ 1 (mod 2) 25957 ≡ 19 (mod 99) 25957 ≡ 202 (mod 255)
25957 ≡ 1 (mod 3) 25957 ≡ 0 (mod 101) 25957 ≡ 0 (mod 257)
25957 ≡ 2 (mod 5) 25957 ≡ 1 (mod 103) 25957 ≡ 57 (mod 259)...

...
...

OK, but maybe even a bit of overkill
“25957 = 101 · 257; check yourself that these are primes.”
Concise! Primality easy to check [Mil76, Rab80, AKS04]

Key demand: Proofs should be short but efficiently verifiable
Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 12/46
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Proof System

Proof system for formal language L [CR79] of “true claims”:

Deterministic algorithm P (x, π) that runs in time polynomial in |x| and |π| such that
for all x ∈ L there exists a string π (a proof) such that P (x, π) = 1
for all x ̸∈ L it holds for all strings π that P (x, π) = 0

Proof π usually sequence of lines, each line following from previous lines
Think of P as “proof checker”

Note that proof π can be very large compared to x
Only have to achieve polynomial running time in |x| + |π|
Goal of proof complexity: establish lower bounds on proof size
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

Proof Logging with Certifying Solvers: Practical Requirements

Proof

Input Answer
Solver

Checker
✓/✗

Proof logging should
work for existing algorithms
incur minimal overhead
only use what solver “already knows”

Proof checking should
scale linearly with solver running time
not require knowledge of inner workings of solver
be very easy (so that proof checker can be trusted, or even formally verified)

Fully automated process — no proof assistants
Higher-order logics too complicated and/or too slow(?)
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

The Sales Pitch for Proof Logging

1 Certifies correctness of solver output
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Helps with debugging during development [EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability by third parties
7 Serves as stepping stone towards explainability
8 Can validate computer-generated proofs in mathematics [HK17]
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Combinatorial Solving and Optimization
Proofs
Proof Logging

The Proof Logging Story So Far

Huge success for Boolean satisfiability (SAT) solving
Proof formats such as

DRAT [HHW13a, HHW13b, WHH14]
GRIT [CMS17]
LRAT [CHH+17]

Compulsory DRAT proof logging in main track of SAT competition

But has remained out of reach for stronger combinatorial solving paradigms

And, in fact, even for advanced SAT solving techniques such as
cardinality detection
parity reasoning
symmetry breaking
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

The Boolean Satisfiability (SAT) Problem
Variable x: takes value true (=1) or false (=0)
Literal ℓ: variable x or its negation x

Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)
Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:
conjunction of clauses

The SAT problem
Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Proofs for SAT

For satisfiable instances: just specify a satisfying assignment

For unsatisfiability: a sequence of clauses
Each clause follows “obviously” from everything we know so far
Final clause is empty, meaning contradiction (written ⊥)
Means original formula must be inconsistent
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

What Is Obvious? Unit Propagation

Unit propagation
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except ℓ
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Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x
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Reverse Unit Propagation (RUP)

To make this into a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,
then unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and this condition is easy to verify efficiently

Backtrack clauses from DPLL solver generate RUP proofs
True also for learned clauses in modern conflict-driven clause learning (CDCL)
SAT solvers [MS96, BS97, MMZ+01]
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Writing Proofs in the DRAT Format

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)
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Formula in DIMACS
p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0
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DPLL Proof in RUP
x ∨ y
x ∨ y
x
x
⊥
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6 7 0
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6 0
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More Ingredients in Proof Logging for SAT

Fact
RUP proofs are shorthand for so-called resolution proofs

See [BN21] for more on this and connections to SAT solving

But RUP and resolution aren’t enough for preprocessing, inprocessing, and some other
kinds of reasoning
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Extension Variables

Suppose SAT solver preprocessor wants to introduce new, fresh variable a encoding

a ↔ (x ∧ y)

Extended resolution: allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be fine, so long as a doesn’t appear anywhere previously

Fact
Extended resolution (RUP + definition of new variables) is essentially equivalent to the
DRAT proof logging system
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Why Aren’t We Done?

Practical limitations of SAT proof logging technology:
Difficulties dealing with stronger reasoning efficiently
Clausal proofs can’t easily reflect what other algorithms do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
Can support proof logging for

Graph reasoning without knowing what a graph is
Constraint programming without knowing, e.g., what an integer variable is
Advanced SAT techniques so far beyond reach for efficient DRAT proof logging
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Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)

Jakob Nordström (UCPH & LU) Leveraging Complexity Theory for Correct Combinatorial Optimization ASL 2023 26/46



Combinatorial Optimization and Proof Logging
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Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Proof System [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈

A
c

⌉
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Cutting Planes Toy Example

w + 2x + y ≥ 2

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Boolean Satisfiability (SAT)
Unit Propagation, DPLL, and CDCL
Pseudo-Boolean-Reasoning

Pseudo-Boolean Proofs

For satisfiable instances: just specify a satisfying assignment

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of)
OPB format [RM16]

Each constraint follows “obviously” from what is known so far
Either implicitly, by (generalization of) RUP. . .
Or by an explicit cutting planes derivation. . .
Or by (generalization of) extension rule

Final constraint is 0 ≥ 1
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Proof Logging for Graph Solving and Constraint Programming
Pseudo-Boolean proof logging can also certify reasoning in

graph solving for clique, subgraph isomorphism, and maximum common
connected subgraph [GMN20, GMM+20] without knowing anything about

vertices
edges
neighbours

constraint programming [EGMN20, GMN22] without knowing anything about
non-Boolean variables
arrays
tables

Caveat: Need input pre-translated into 0–1 integer linear program
Such translations should be formally verified (work in progress)
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use extension rule to introduce new variables

a≥k ⇔
∑

i 2i · ai ≥ k k · a≥k +
∑

i 2i · ai ≥ k(∑
i 2i − k + 1

)
· a≥k +

∑
i 2i · ai ≥

∑
i 2i − k + 1

a=k ⇔ (a≥k ∧ a≥k+1) 2 · a=k + a≥k + a≥k+1 ≥ 2
a=k + a≥k + a≥k+1 ≥ 1

(with definitions represented as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging
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Combinatorial Optimization and Proof Logging
Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }
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Constraint Programming
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Symmetry Handling

All-Different Propagator
V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1
X ∈ { 2 3 } x=2 + x=3 ≥ 1
Y ∈ { 1 3 } y=1 + y=3 ≥ 1
Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1
→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1
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Other Constraint Programming Reasoning

Efficient proof logging support for
Table constraints
Arrays
Problem reformulations
Backtracking during search
Et cetera. . .

Not at all trivial to implement
Lots of work left to get to full-fledged constraint programming solver
But so far everything has been possible to do [EGMN20, GMN22]
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Actual Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F iff there is a substitution ω (mapping variables to
truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

Witness ω should be specified, and implication be efficiently verifiable (which is the
case, e.g., if all constraints in (F ∧ C)↾ω are RUP)
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Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive
2a + x + y ≥ 2 a + x + y ≥ 1

using condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾ω

Choose ω = {a 7→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾ω

Choose ω = {a 7→ 1} — F untouched; new constraint satisfied
¬(a + x + y ≥ 1) forces x 7→ 1 and y 7→ 1, hence 2a + x + y ≥ 2 remains satisfied
after forcing a to be true
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Optimization Problems

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)
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Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f
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Redundance and Dominance Rules

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f
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Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D
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(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D
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Proof Logging for Boolean Satisfiability (SAT) Solving

Beyond SAT

Constraint Programming
Strengthening Rules and Optimization
Symmetry Handling

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof
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Beyond SAT
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The Challenge of Symmetries

Symmetries can be crucial for optimization problems [AW13, GSVW14]
Show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Adding rules for symmetric reasoning as in [TD20] breaks extension rule
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Viewing Symmetry as an Optimization Problem

Deal with symmetries by switching focus to optimization

Invent objective function
∑n

i=1 2i · xi) corresponding to lexicographic order

Now dominance-based strengthening = symmetry breaking!
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Beyond SAT
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Symmetry Elimination Example: Crystal Maze Puzzle

Human modellers might add:
A < G (mirror vertically)
A < B (mirror horizontally)
A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without repetition; adjacent
circles cannot have consecutive numbers

Can derive these constraints inside the proof rather than adding to input
Witness ω: symmetry
Order: Lexicographic (A, B, . . . , H)
No group theory required!
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Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in
[GMNO22, VDB22, BBN+23])
General constraint programming (work in [EGMN20, GMN22])
Mixed integer linear programming (work in [CGS17, EG21])

Logic and formal verification
Formally verified proof checking
Formally verified problem encoding/translation
Higher-order logic for more efficient handling of repetitive proof fragments?
SMT proof logging using stronger logics?

And more. . .
Lots of challenging problems and interesting ideas!
We’re hiring! Talk to me to join the proof logging revolution!
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Summing up
Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like a
promising approach

Requires powerful but simple proof systems — need for “computationally efficient
logic”

Cutting planes with strengthening rules operating on 0–1 linear inequalities seems
to hit a sweet spot

Potential for stronger logics and formal verification methods?

Thank you for your attention!
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[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale.
Metamorphic testing of constraint solvers. In Proceedings of the 24th International Conference
on Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes
in Computer Science, pages 727–736. Springer, August 2018.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781–793, September 2004.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
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