Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

Jakob Nordström

jakobn@mit.edu

Massachusetts Institute of Technology Cambridge, Massachusetts, USA

Barriers in Computational Complexity Center for Computational Intractability, Princeton August 25–29, 2009

Joint work with Eli Ben-Sasson

Executive Summary of Talk

- Resolution: proof system for refuting CNF formulas
- Perhaps the most studied system in proof complexity
- Basis of current state-of-the-art SAT-solvers (e.g. winners in SAT 2008 competition)
- Key resources: time and space
- What are the connections between these resources? Time-space correlations? Trade-offs?
- Study these questions for more general k-DNF resolution proof systems introduced by [Krajíček '01]

Basics Some Previous Work Our Results

Some Notation and Terminology

- Literal *a*: variable *x* or its negation \overline{x}
- Clause $C = a_1 \lor \cdots \lor a_k$: disjunction of literals
- Term $T = a_1 \land \cdots \land a_k$: conjunction of literals
- CNF formula F = C₁ ∧ · · · ∧ C_m: conjunction of clauses k-CNF formula: CNF formula with clauses of size ≤ k
- DNF formula D = T₁ ∨ · · · ∨ T_m: disjunction of terms k-DNF formula: DNF formula with terms of size ≤ k

Basics Some Previous Work Our Results

Example *k*-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Basics Some Previous Work Our Results

Example *k*-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. z

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: xWrite down axiom 3: $\overline{y} \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x Write down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$\begin{array}{c} x \\ \overline{y} \lor z \\ (x \land \overline{y}) \lor z \end{array}$$

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x Write down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$egin{array}{c} x \ \overline{y} ee z \ (x \wedge \overline{y}) ee z \end{array}$$

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x Write down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Erase the line x

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$\overline{y} \lor z$$
$$(x \land \overline{y}) \lor z$$

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x Write down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Erase the line x

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$\frac{\overline{y} \lor z}{(x \land \overline{y}) \lor z}$$

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Erase the line x Erase the line $\overline{y} \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$(x \wedge \overline{y}) \vee z$$

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Erase the line x Erase the line $\overline{y} \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

1. x2. $\overline{x} \lor y$ 3. $\overline{y} \lor z$ 4. \overline{z}

$$(x \land \overline{y}) \lor z$$

$$\overline{x} \lor y$$

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Erase the line x Erase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$\frac{(x \land \overline{y}) \lor z}{\overline{x} \lor y}$$

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Erase the line xErase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$ Infer z from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$(x \wedge \overline{y}) \lor z$$

 $\overline{x} \lor y$
 z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Erase the line xErase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$ Infer z from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$\frac{(x \land \overline{y}) \lor z}{\overline{x} \lor y}$$

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Erase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$ Infer *z* from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$ Erase the line $(x \land \overline{y}) \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

$$\overline{x} \lor y$$

z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Erase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$ Infer *z* from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$ Erase the line $(x \land \overline{y}) \lor z$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 2: $\overline{x} \lor y$ Infer *z* from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$ Erase the line $(x \land \overline{y}) \lor z$ Erase the line $\overline{x} \lor y$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Write down axiom 2: $\overline{x} \lor y$ Infer *z* from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$ Erase the line $(x \land \overline{y}) \lor z$ Erase the line $\overline{x} \lor y$

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

2.
$$\overline{x} \lor y$$

- 3. $\overline{y} \lor z$
- 4. z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Infer z from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$ Erase the line $(x \land \overline{y}) \lor z$ Erase the line $\overline{x} \lor y$ Write down axiom 4: \overline{z}

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Erase the line $(x \land \overline{y}) \lor z$ Erase the line $\overline{x} \lor y$ Write down axiom 4: \overline{z} Infer 0 from \overline{z} and z

Basics Some Previous Work Our Results

Example k-DNF Resolution Refutation (k = 2)

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. Z

Rules:

- Infer new formulas only from formulas currently on board
- Only *k*-DNF formulas can appear on board (for *k* fixed)
- Details about derivation rules won't matter for us

Erase the line $(x \land \overline{y}) \lor z$ Erase the line $\overline{x} \lor y$ Write down axiom 4: \overline{z} Infer 0 from \overline{z} and z

Basics Some Previous Work Our Results

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length # formulas written on blackboard counted with repetitions (Or total # derivation steps)

Space Somewhat less straightforward—several ways of measuring

Formula space:3Total space:6Variable space:3

ResolutionBasicsOutline of ProofsSomeOpen ProblemsOur Re

Basics Some Previous Work Our Results

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

formulas written on blackboard counted with repetitions (Or total # derivation steps)

Space Somewhat less straightforward—several ways of measuring

Formula space:3Total space:6Variable space:3

ResolutionBasicsOutline of ProofsSomeOpen ProblemsOur Re

Basics Some Previous Work Our Results

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

formulas written on blackboard counted with repetitions
(Or total # derivation steps)

Space

Somewhat less straightforward—several ways of measuring

Formula space:	3
Total space:	6
Variable space:	3

Basics Some Previous Work Our Results

Length and Space Bounds for Resolution

Let n = size of formula

Length: at most 2^n Lower bound $\exp(\Omega(n))$ [Urquhart '87, Chvátal & Szemerédi '88]

Formula space (a.k.a. clause space): at most *n* Lower bound $\Omega(n)$ [Torán '99, Alekhnovich et al. '00]

Total space: at most n^2 No better lower bound than $\Omega(n)$?

Variable space: at most *n* Lower bound $\Omega(n)$ [Ben-Sasson & Wigderson '99]

Basics Some Previous Work Our Results

Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban & Torán '99]

So essentially no trade-offs for tree-like resolution

No (nontrivial) length-space correlation for general resolution [Ben-Sasson & Nordström '08]

Nothing known about time-space trade-offs for

- resolution refutations of
- explicit formulas in
- general, unrestricted resolution

(Results in restricted settings in [Ben-Sasson '02, Hertel & Pitassi '07, Nordström '07])

Basics Some Previous Work Our Results

Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban & Torán '99]

So essentially no trade-offs for tree-like resolution

No (nontrivial) length-space correlation for general resolution [Ben-Sasson & Nordström '08]

Nothing known about time-space trade-offs for

- resolution refutations of
- explicit formulas in
- general, unrestricted resolution

(Results in restricted settings in [Ben-Sasson '02, Hertel & Pitassi '07, Nordström '07])

Basics Some Previous Work Our Results

Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban & Torán '99]

So essentially no trade-offs for tree-like resolution

No (nontrivial) length-space correlation for general resolution [Ben-Sasson & Nordström '08]

Nothing known about time-space trade-offs for

- resolution refutations of
- explicit formulas in
- general, unrestricted resolution

(Results in restricted settings in [Ben-Sasson '02, Hertel & Pitassi '07, Nordström '07])

Basics Some Previous Work Our Results

Previous Work on *k*-DNF Resolution ($k \ge 2$)

Length: lower bound $\exp(\Omega(n^{1-o(1)}))$ [Alekhnovich '05] **Formula space:** lower bound $\Omega(n)$ [Esteban et al. '02] (Suppressing dependencies on *k*)

(*k*+1)**-DNF resolution exponentially stronger** than *k*-DNF resolution w.r.t. length [Segerlind et al. '04]

No hierarchy known w.r.t. space Except for tree-like *k*-DNF resolution [Esteban et al. '02 (But tree-like *k*-DNF weaker than standard resolution)

No trade-off results known

Basics Some Previous Work Our Results

Previous Work on *k*-DNF Resolution ($k \ge 2$)

Length: lower bound $\exp(\Omega(n^{1-o(1)}))$ [Alekhnovich '05] **Formula space:** lower bound $\Omega(n)$ [Esteban et al. '02] (Suppressing dependencies on *k*)

(*k*+1)-DNF resolution exponentially stronger than *k*-DNF resolution w.r.t. length [Segerlind et al. '04]

No hierarchy known w.r.t. space Except for tree-like *k*-DNF resolution [Esteban et al. '02] (But tree-like *k*-DNF weaker than standard resolution)

No trade-off results known

Basics Some Previous Work Our Results

Previous Work on *k*-DNF Resolution ($k \ge 2$)

Length: lower bound $\exp(\Omega(n^{1-o(1)}))$ [Alekhnovich '05] **Formula space:** lower bound $\Omega(n)$ [Esteban et al. '02] (Suppressing dependencies on *k*)

(k+1)-DNF resolution exponentially stronger than k-DNF resolution w.r.t. length [Segerlind et al. '04]

No hierarchy known w.r.t. space

Except for tree-like *k*-DNF resolution [Esteban et al. '02] (But tree-like *k*-DNF weaker than standard resolution)

No trade-off results known

Basics Some Previous Work Our Results

New Results 1: Time-Space Trade-offs

We prove a collection of time-space trade-offs

Results hold for

- resolution (essentially tight analysis)
- *k*-DNF resolution, $k \ge 2$ (with slightly worse parameters)

Different trade-offs covering (almost) whole range of space from constant to linear

Simple, explicit formulas

Basics Some Previous Work Our Results

One Example: Robust Trade-offs for Small Space

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space $\leq n^{1/3(k+1)}$ requires superpolynomial length

Basics Some Previous Work Our Results

One Example: Robust Trade-offs for Small Space

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length O(n) and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space $\leq n^{1/3(k+1)}$ requires superpolynomial length

Basics Some Previous Work Our Results

One Example: Robust Trade-offs for Small Space

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length O(n) and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space $\leq n^{1/3(k+1)}$ requires superpolynomial length

Basics Some Previous Work Our Results

One Example: Robust Trade-offs for Small Space

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length O(n) and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space $\leq n^{1/3(k+1)}$ requires superpolynomial length

Basics Some Previous Work Our Results

One Example: Robust Trade-offs for Small Space

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length O(n) and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space $\leq n^{1/3(k+1)}$ requires superpolynomial length

ResolutionBaOutline of ProofsSoOpen ProblemsOutline

Basics Some Previous Work Our Results

Some Quick Technical Remarks

Upper bounds hold for

- total space (# literals)
- standard syntactic derivation rules

Lower bounds hold for

- formula space (# lines)
- semantic derivation rules (exponentially stronger)

Space definition reminder

$$egin{array}{l} x \ \overline{y} \lor z \ (x \land \overline{y}) \lor z \end{array}$$

Formula space:3Total space:6Variable space:3

ResolutionBasicsOutline of ProofsSome PrevioOpen ProblemsOur Results

New Results 2: Space Hierarchy for k-DNF Resolution

We also separate k-DNF resolution from (k+1)-DNF resolution w.r.t. formula space

Theorem

For any constant k there are explicit CNF formulas of size O(n)

- refutable in (k+1)-DNF resolution in formula space O(1) but such that
- any k-DNF resolution refutation requires formula space $\Omega(\sqrt[k+1]{n/\log n})$

Resolution Pebble Games and Pebbling Outline of Proofs Substitution Space Theorem Open Problems Putting the Pieces Together

Rest of This Talk

- Study old combinatorial game from the 1970s
- Prove new theorem about variable substitution and proof space
- Combine the two

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

How to Get a Handle on Time-Space Relations?

Time-space trade-off questions well-studied for pebble games modelling calculations described by DAGs ([Cook & Sethi '76] and many others)

- Time needed for calculation: # pebbling moves
- Space needed for calculation: max # pebbles required

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

# moves	0
Current # pebbles	0
Max # pebbles so far	0

Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them

- ② Can always remove black pebble from vertex
- 3 Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

# moves	1
Current # pebbles	1
Max # pebbles so far	1

Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them

Can always remove black pebble from vertex

- 3 Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

# moves	2
Current # pebbles	2
Max # pebbles so far	2

Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them

Can always remove black pebble from vertex

- 3 Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

# moves	3
Current # pebbles	3
Max # pebbles so far	3

Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them

Can always remove black pebble from vertex

- 3 Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	4
Current # pebbles	2
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	5
Current # pebbles	1
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	6
Current # pebbles	2
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	7
Current # pebbles	3
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	8
Current # pebbles	2
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	8
Current # pebbles	2
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	9
Current # pebbles	3
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	10
Current # pebbles	4
Max # pebbles so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	11
Current # pebbles	3
Max # pebbles so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	12
Current # pebbles	2
Max # pebbles so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

The Black-White Pebble Game

# moves	13
Current # pebbles	1
Max # pebbles so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- ② Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

- sources are true
- truth propagates upwards
- but sink is false

Studied by [Bonet et al. '98, Raz & McKenzie '99, Ben-Sasson & Wigderson '99] and others

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Resolution–Pebbling Correspondence

Observation (Ben-Sasson et al. '00)

Any black-pebbles-only pebbling translates into refutation with

- refutation length ≤ # moves
- total space ≤ # pebbles

Theorem (Ben-Sasson '02)

Any refutation translates into black-white pebbling with

- *# moves* ≤ *refutation length*
- *# pebbles* \leq *variable space*

Unfortunately extremely easy w.r.t. formula space!

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Resolution–Pebbling Correspondence

Observation (Ben-Sasson et al. '00)

Any black-pebbles-only pebbling translates into refutation with

- refutation length ≤ # moves
- total space ≤ # pebbles

Theorem (Ben-Sasson '02)

Any refutation translates into black-white pebbling with

- # moves < refutation length</p>
- *# pebbles* \leq *variable space*

Unfortunately extremely easy w.r.t. formula space!

Jakob Nordström (MIT)

Understanding Space in Proof Complexity

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Resolution–Pebbling Correspondence

Observation (Ben-Sasson et al. '00)

Any black-pebbles-only pebbling translates into refutation with

- refutation length ≤ # moves
- total space ≤ # pebbles

Theorem (Ben-Sasson '02)

Any refutation translates into black-white pebbling with

- # moves < refutation length</p>
- *# pebbles* \leq *variable space*

Unfortunately extremely easy w.r.t. formula space!

Jakob Nordström (MIT)

Resolution Pebble Games and Pebbling Outline of Proofs Substitution Space Theorem Open Problems Putting the Pieces Together

Key Idea: Variable Substitution

Make formula harder by substituting $x_1 \oplus x_2$ for every variable *x*:

 $\overline{x} \lor y$ 1 $\neg (X_1 \oplus X_2) \lor (V_1 \oplus V_2)$ ∜ $(X_1 \vee \overline{X}_2 \vee Y_1 \vee Y_2)$ $\wedge (X_1 \vee \overline{X}_2 \vee \overline{Y}_1 \vee \overline{Y}_2)$ $\wedge (\overline{X}_1 \vee X_2 \vee Y_1 \vee Y_2)$ $\wedge (\overline{x}_1 \vee x_2 \vee \overline{y}_1 \vee \overline{y}_2)$

Resolution Pebble Games and Pebbling Outline of Proofs Substitution Space Theorem Open Problems Putting the Pieces Together

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

x	

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

$\frac{x}{\overline{x}} \lor y$

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

x	
$\overline{x} \lor y$	
У	

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

$$\begin{array}{c} x_1 \lor x_2 \\ \overline{x}_1 \lor \overline{x}_2 \end{array}$$

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

x	
$\overline{x} \lor y$	
У	

$$\begin{array}{c} x_1 \lor x_2 \\ \overline{x}_1 \lor \overline{x}_2 \\ x_1 \lor \overline{x}_2 \lor y_1 \lor y_2 \\ x_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor \overline{y}_2 \\ \overline{x}_1 \lor \overline{x}_2 \lor y_1 \lor y_2 \\ \overline{x}_1 \lor x_2 \lor y_1 \lor y_2 \\ \overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor \overline{y}_2 \end{array}$$

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

x	
$\overline{x} \lor y$	
У	

$$\begin{array}{c} x_1 \lor x_2 \\ \overline{x}_1 \lor \overline{x}_2 \\ x_1 \lor \overline{x}_2 \lor y_1 \lor y_2 \\ x_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor \overline{y}_2 \\ \overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor y_2 \\ \overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor \overline{y}_2 \\ \overline{y}_1 \lor y_2 \\ \overline{y}_1 \lor \overline{y}_2 \end{array}$$

 Resolution
 Pebble Games and Pebbling Contradictions

 Outline of Proofs
 Substitution Space Theorem

 Open Problems
 Putting the Pieces Together

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

Obvious approach for $F[\oplus]$: mimic refutation of F

x	
$\overline{x} \lor y$	
У	

For such refutation of $F[\oplus]$:

- length \geq length for F
- formula space ≥ variable space for F

$$\begin{array}{c} x_1 \lor x_2 \\ \overline{x}_1 \lor \overline{x}_2 \\ x_1 \lor \overline{x}_2 \lor y_1 \lor y_2 \\ x_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor \overline{y}_2 \\ \overline{x}_1 \lor x_2 \lor y_1 \lor y_2 \\ \overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor \overline{y}_2 \\ \overline{y}_1 \lor y_2 \\ \overline{y}_1 \lor \overline{y}_2 \end{array}$$

 Resolution
 Pebble Games and Pebbling Contradictions

 Outline of Proofs
 Substitution Space Theorem

 Open Problems
 Putting the Pieces Together

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

Obvious approach for $F[\oplus]$: mimic refutation of F

x	
$\overline{x} \lor y$	
У	

For such refutation of $F[\oplus]$:

- length \geq length for F
- formula space ≥ variable space for *F*

$$\begin{array}{c} x_1 \lor x_2 \\ \overline{x}_1 \lor \overline{x}_2 \\ x_1 \lor \overline{x}_2 \lor y_1 \lor y_2 \\ x_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor \overline{y}_2 \\ \overline{x}_1 \lor x_2 \lor y_1 \lor y_2 \\ \overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor \overline{y}_2 \\ \overline{y}_1 \lor y_2 \\ \overline{y}_1 \lor \overline{y}_2 \end{array}$$

Prove that this is (sort of) best one can do for $F[\oplus]!$

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula <i>F</i>
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \lor y$ on shadow black- board
For consecutive XOR black- board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Jakob Nordström (MIT)

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over k + 1 variables works against k-DNF resolution

Get our results by

- using known pebbling results from literature of 70s and 80s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over k + 1 variables works against k-DNF resolution

Get our results by

- using known pebbling results from literature of 70s and 80s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

Pebble Games and Pebbling Contradictions Substitution Space Theorem Putting the Pieces Together

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over k + 1 variables works against k-DNF resolution

Get our results by

- using known pebbling results from literature of 70s and 80s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

Stronger Results for *k*-DNF resolution?

Gap of (k+1)st root between upper and lower bounds for k-DNF resolution

Open Question

Can the loss of a (k+1)st root in the k-DNF resolution lower bounds be diminished? Or even eliminated completely?

Conceivable that same bounds as for resolution could hold

However, any improvement beyond *k*th root requires fundamentally different approach [Nordström & Razborov '09]

Stronger Results for *k*-DNF resolution?

Gap of (k+1)st root between upper and lower bounds for k-DNF resolution

Open Question

Can the loss of a (k+1)st root in the k-DNF resolution lower bounds be diminished? Or even eliminated completely?

Conceivable that same bounds as for resolution could hold

However, any improvement beyond *k*th root requires fundamentally different approach [Nordström & Razborov '09]

Stronger Length-Space Trade-offs than from Pebbling?

Open Question

Are there superpolynomial trade-offs for formulas refutable in constant space?

Open Question

Are there formulas with trade-offs in the range space > formula size? Or can every proof be carried out in at most linear space?

Pebbling formulas cannot answer these questions—can impossibly have such strong trade-offs

Summing up

- Strong time-space trade-offs for resolution and k-DNF resolution for wide range of parameters
- Strict space hierarchy for k-DNF resolution
- Many remaining open questions about space in resolution

Thank you for your attention!