Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

Jakob Nordström
jakobn@mit.edu

Massachusetts Institute of Technology Cambridge, Massachusetts, USA

Barriers in Computational Complexity
 Center for Computational Intractability, Princeton August 25-29, 2009

Joint work with Eli Ben-Sasson

Executive Summary of Talk

- Resolution: proof system for refuting CNF formulas
- Perhaps the most studied system in proof complexity
- Basis of current state-of-the-art SAT-solvers (e.g. winners in SAT 2008 competition)
- Key resources: time and space
- What are the connections between these resources? Time-space correlations? Trade-offs?
- Study these questions for more general k-DNF resolution proof systems introduced by [Krajíček '01]

Some Notation and Terminology

- Literal a: variable x or its negation \bar{x}
- Clause $C=a_{1} \vee \cdots \vee a_{k}$: disjunction of literals
- Term $T=a_{1} \wedge \cdots \wedge a_{k}$: conjunction of literals
- CNF formula $F=C_{1} \wedge \cdots \wedge C_{m}$: conjunction of clauses k-CNF formula: CNF formula with clauses of size $\leq k$
- DNF formula $D=T_{1} \vee \cdots \vee T_{m}$: disjunction of terms k-DNF formula: DNF formula with terms of size $\leq k$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

1. x
2. $\bar{x} \vee y$
3. $\bar{y} \vee z$
4. \bar{z}
Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

1. x
2. $\bar{x} \vee y$
3. $\bar{y} \vee z$
4. \bar{z}

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

\square

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

1.	x
2.	$\bar{x} \vee y$
3.	$\bar{y} \vee z$
4. \bar{z}	

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x
Write down axiom 3: $\bar{y} \vee z$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& x \\
& \bar{y} \vee z
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x
Write down axiom 3: $\bar{y} \vee z$
Combine x and $\bar{y} \vee z$ to get $(x \wedge \bar{y}) \vee z$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& x \\
& \bar{y} \vee z \\
& (x \wedge \bar{y}) \vee z
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x
Write down axiom $3: \bar{y} \vee z$
Combine x and $\bar{y} \vee z$ to get $(x \wedge \bar{y}) \vee z$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& x \\
& \bar{y} \vee z \\
& (x \wedge \bar{y}) \vee z
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x
Write down axiom $3: \bar{y} \vee z$
Combine x and $\bar{y} \vee z$ to get $(x \wedge \bar{y}) \vee z$
Erase the line x

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& \bar{y} \vee z \\
& (x \wedge \bar{y}) \vee z
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x
Write down axiom $3: \bar{y} \vee z$
Combine x and $\bar{y} \vee z$ to get $(x \wedge \bar{y}) \vee z$
Erase the line x

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& \bar{y} \vee z \\
& (x \wedge \bar{y}) \vee z
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom $3: \bar{y} \vee z$
Combine x and $\bar{y} \vee z$ to get $(x \wedge \bar{y}) \vee z$
Erase the line x
Erase the line $\bar{y} \vee z$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
(x \wedge \bar{y}) \vee z
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom $3: \bar{y} \vee z$
Combine x and $\bar{y} \vee z$ to get $(x \wedge \bar{y}) \vee z$
Erase the line x
Erase the line $\bar{y} \vee z$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& (x \wedge \bar{y}) \vee z \\
& \bar{x} \vee y
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Combine x and $\bar{y} \vee z$ to get $(x \wedge \bar{y}) \vee z$
Erase the line x
Erase the line $\bar{y} \vee z$
Write down axiom 2: $\bar{x} \vee y$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. }
\end{array}
$$

$$
\begin{aligned}
& (x \wedge \bar{y}) \vee z \\
& \bar{x} \vee y
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line x
Erase the line $\bar{y} \vee z$
Write down axiom 2: $\bar{x} \vee y$
Infer z from

$$
\bar{x} \vee y \text { and }(x \wedge \bar{y}) \vee z
$$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$(x \wedge \bar{y}) \vee z$
$\bar{x} \vee y$
z

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line x
Erase the line $\bar{y} \vee z$
Write down axiom 2: $\bar{x} \vee y$
Infer z from
$\bar{x} \vee y$ and $(x \wedge \bar{y}) \vee z$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& (x \wedge \bar{y}) \vee z \\
& \bar{x} \vee y \\
& z
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line $\bar{y} \vee z$
Write down axiom $2: \bar{x} \vee y$
Infer z from
$\bar{x} \vee y$ and $(x \wedge \bar{y}) \vee z$
Erase the line $(x \wedge \bar{y}) \vee z$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& \bar{x} \vee y \\
& z
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line $\bar{y} \vee z$
Write down axiom $2: \bar{x} \vee y$
Infer z from
$\bar{x} \vee y$ and $(x \wedge \bar{y}) \vee z$
Erase the line $(x \wedge \bar{y}) \vee z$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

$$
\begin{aligned}
& \bar{x} \vee y \\
& z
\end{aligned}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 2: $\bar{x} \vee y$ Infer z from

$$
\bar{x} \vee y \text { and }(x \wedge \bar{y}) \vee z
$$

Erase the line $(x \wedge \bar{y}) \vee z$
Erase the line $\bar{x} \vee y$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

z

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 2: $\bar{x} \vee y$ Infer z from
$\bar{x} \vee y$ and $(x \wedge \bar{y}) \vee z$
Erase the line $(x \wedge \bar{y}) \vee z$
Erase the line $\bar{x} \vee y$

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Infer z from
$\bar{x} \vee y$ and $(x \wedge \bar{y}) \vee z$
Erase the line $(x \wedge \bar{y}) \vee z$
Erase the line $\bar{x} \vee y$
Write down axiom 4: \bar{z}

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

\bar{z}
Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line $(x \wedge \bar{y}) \vee z$
Erase the line $\bar{x} \vee y$
Write down axiom 4: \bar{z}
Infer 0 from
\bar{z} and z

Example k-DNF Resolution Refutation $(k=2)$

Can write down axioms, infer new formulas, and erase used formulas

$$
\begin{array}{ll}
\text { 1. } & x \\
\text { 2. } & \bar{x} \vee y \\
\text { 3. } & \bar{y} \vee z \\
\text { 4. } & \bar{z}
\end{array}
$$

z
 \bar{z}
 0

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line $(x \wedge \bar{y}) \vee z$
Erase the line $\bar{x} \vee y$
Write down axiom 4: \bar{z}
Infer 0 from
\bar{z} and z

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length
 \# formulas written on blackboard counted with repetitions (Or total \# derivation steps)
 Space
 Somewhat less straightforward-several ways of measuring

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

\# formulas written on blackboard counted with repetitions
(Or total \# derivation steps)

Space
 Somewhat less straightforward-several ways of measuring

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

\# formulas written on blackboard counted with repetitions
(Or total \# derivation steps)

Space

Somewhat less straightforward—several ways of measuring

$$
\begin{array}{l|ll}
x & \text { Formula space: } & 3 \\
\bar{y} \vee z & \text { Total space: } & 6 \\
(x \wedge \bar{y}) \vee z & \text { Variable space: } & 3
\end{array}
$$

Length and Space Bounds for Resolution

Let $n=$ size of formula
Length: at most 2^{n}
Lower bound $\exp (\Omega(n))$ [Urquhart '87, Chvátal \& Szemerédi '88]

Formula space (a.k.a. clause space): at most n
Lower bound $\Omega(n)$ [Torán '99, Alekhnovich et al. '00]
Total space: at most n^{2}
No better lower bound than $\Omega(n)!$?
Variable space: at most n
Lower bound $\Omega(n)$ [Ben-Sasson \& Wigderson '99]

Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban \& Torán '99]

So essentially no trade-offs for tree-like resolution

```
No (nontrivial) length-space correlation for general resolution
[Ben-Sasson & Nordström '08]
Nothing knowin about time-space trade-offs for
    - resolution refutations of
    - explicit formulas in
    - general, unrestricted resolution
(Results in restricted settings in [Ben-Sasson '02, Hertel &
Pitassi '07, Nordström '07])
```


Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban \& Torán '99]

So essentially no trade-offs for tree-like resolution
No (nontrivial) length-space correlation for general resolution [Ben-Sasson \& Nordström '08]

```
Nothing known about time-space trade-offs for
    - resolution refutations of
    - explicit formulas in
    - general, unrestricted resolution
(Results in restricted settings in [Ben-Sasson '02, Hertel &
Pitassi '07, Nordström '07])
```


Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban \& Torán '99]

So essentially no trade-offs for tree-like resolution
No (nontrivial) length-space correlation for general resolution [Ben-Sasson \& Nordström '08]

Nothing known about time-space trade-offs for

- resolution refutations of
- explicit formulas in
- general, unrestricted resolution
(Results in restricted settings in [Ben-Sasson '02, Hertel \& Pitassi '07, Nordström '07])

Previous Work on k-DNF Resolution ($k \geq 2$)

Length: lower bound $\exp \left(\Omega\left(n^{1-o(1)}\right)\right)$ [Alekhnovich '05]
Formula space: lower bound $\Omega(n)$ [Esteban et al. '02]
(Suppressing dependencies on k)
> $(k+1)$-DNF resolution exponentially stronger than k-DNF resolution w.r.t. length [Segerlind et al. '04] No hierarchy known w.r.t. space Except for tree-like k-DNF resolution [Esteban et al. '02] (But tree-like k-DNF weaker than standard resolution)

[^0]
Previous Work on k-DNF Resolution ($k \geq 2$)

Length: lower bound $\exp \left(\Omega\left(n^{1-o(1)}\right)\right)$ [Alekhnovich '05]
Formula space: lower bound $\Omega(n)$ [Esteban et al. '02]
(Suppressing dependencies on k)
($k+1$)-DNF resolution exponentially stronger than
k-DNF resolution w.r.t. length [Segerlind et al. '04]
No hierarchy known w.r.t. space
Except for tree-like k-DNF resolution [Esteban et al. '02]
(But tree-like k-DNF weaker than standard resolution)
No trade-off results known

Previous Work on k-DNF Resolution ($k \geq 2$)

Length: lower bound $\exp \left(\Omega\left(n^{1-o(1)}\right)\right)$ [Alekhnovich '05]
Formula space: lower bound $\Omega(n)$ [Esteban et al. '02]
(Suppressing dependencies on k)
($k+1$)-DNF resolution exponentially stronger than
k-DNF resolution w.r.t. length [Segerlind et al. '04]
No hierarchy known w.r.t. space
Except for tree-like k-DNF resolution [Esteban et al. '02]
(But tree-like k-DNF weaker than standard resolution)
No trade-off results known

New Results 1: Time-Space Trade-offs

We prove a collection of time-space trade-offs
Results hold for

- resolution (essentially tight analysis)
- k-DNF resolution, $k \geq 2$ (with slightly worse parameters)

Different trade-offs covering (almost) whole range of space from constant to linear

Simple, explicit formulas

One Example: Robust Trade-offs for Small Space

Theorem

For any ω (1) function and any fixed k there exist explicit CNF formulas of size $\mathcal{O}(n)$

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space $\lesssim \sqrt[3]{n}$ requires superpolynomial length
- any k-DNF resolution refutation in formula space $\lesssim n^{1 / 3(k+1)}$ requires superpolynomial length

One Example: Robust Trade-offs for Small Space

Theorem

For any ω (1) function and any fixed k there exist explicit CNF formulas of size $\mathcal{O}(n)$

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $O(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space $\lesssim \sqrt[3]{n}$ requires superpolynomial length
- any k-DNF resolution refutation in formula space $\lesssim n^{1 / 3(k+1)}$ requires superpolynomial length

One Example: Robust Trade-offs for Small Space

Theorem

For any $\omega(1)$ function and any fixed k there exist explicit CNF formulas of size $\mathcal{O}(n)$

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space $\lesssim \sqrt[3]{n}$ requires superpolynomial length
- anv k-DNF resolution refutation in formula space $\lesssim n^{1 / 3(k+1)}$ requires superpolynomial length

One Example: Robust Trade-offs for Small Space

Theorem

For any $\omega(1)$ function and any fixed k there exist explicit CNF formulas of size $\mathcal{O}(n)$

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space $\lesssim \sqrt[3]{n}$ requires superpolynomial length
- any k-DNF resolution refutation in formula space $\lesssim n^{1 / 3(k+1)}$ requires superpolynomial length

One Example: Robust Trade-offs for Small Space

Theorem

For any $\omega(1)$ function and any fixed k there exist explicit CNF formulas of size $\mathcal{O}(n)$

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space $\lesssim \sqrt[3]{n}$ requires superpolynomial length
- any k-DNF resolution refutation in formula space $\lesssim n^{1 / 3(k+1)}$ requires superpolynomial length

Some Quick Technical Remarks

Upper bounds hold for

- total space (\# literals)
- standard syntactic derivation rules

Lower bounds hold for

- formula space (\# lines)
- semantic derivation rules (exponentially stronger)

Space definition reminder

```
x
y}\vee
(x\wedge\overline{y})\veez
```

Formula space: 3
Total space: 6
Variable space: 3

New Results 2: Space Hierarchy for k-DNF Resolution

We also separate k-DNF resolution from $(k+1)$-DNF resolution w.r.t. formula space

Theorem

For any constant k there are explicit CNF formulas of size $\mathcal{O}(n)$

- refutable in $(k+1)$-DNF resolution in formula space $\mathcal{O}(1)$ but such that
- any k-DNF resolution refutation requires formula space

$$
\Omega(\sqrt[k+1]{n / \log n})
$$

Rest of This Talk

- Study old combinatorial game from the 1970s
- Prove new theorem about variable substitution and proof space
- Combine the two

How to Get a Handle on Time-Space Relations?

Time-space trade-off questions well-studied for pebble games modelling calculations described by DAGs ([Cook \& Sethi '76] and many others)

- Time needed for calculation: \# pebbling moves
- Space needed for calculation: max \# pebbles required

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	0
Current \# pebbles	0
Max \# pebbles so far	0

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate
predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	1
Current \# pebbles	1
Max \# pebbles so far	1

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	2
Current \# pebbles	2
Max \# pebbles so far	2

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	3
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	4
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	5
Current \# pebbles	1
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	6
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	7
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	8
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	8
Current \# pebbles	2
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	9
Current \# pebbles	3
Max \# pebbles so far	3

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	10
Current \# pebbles	4
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	11
Current \# pebbles	3
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	12
Current \# pebbles	2
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

The Black-White Pebble Game

Goal: get single black pebble on sink vertex of G

\# moves	13
Current \# pebbles	1
Max \# pebbles so far	4

(1) Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
(2) Can always remove black pebble from vertex
(3) Can always place white pebble on (empty) vertex
(4) Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

Studied by [Bonet et al. '98, Raz \& McKenzie '99, Ben-Sasson \& Wigderson '99] and others

Resolution-Pebbling Correspondence

Observation (Ben-Sasson et al. '00)

Any black-pebbles-only pebbling translates into refutation with

- refutation length \leq \# moves
- total space \leq \# pebbles

Theorem (Ben-Sasson '02)
 Anv refutation translates into \boldsymbol{k} lack-white pebbling with
 - \# moves \leq refutation length
 - \# pebbles \leq variable space

Unfortunately extremely easy w.r.t. formula space!

Resolution-Pebbling Correspondence

Observation (Ben-Sasson et al. '00)

Any black-pebbles-only pebbling translates into refutation with

- refutation length \leq \# moves
- total space \leq \# pebbles

Theorem (Ben-Sasson '02)

Any refutation translates into black-white pebbling with

- \# moves \leq refutation length
- \# pebbles \leq variable space

Unfortunately extremely easy w.r.t. formula space!

Resolution-Pebbling Correspondence

Observation (Ben-Sasson et al. '00)

Any black-pebbles-only pebbling translates into refutation with

- refutation length \leq \# moves
- total space \leq \# pebbles

Theorem (Ben-Sasson '02)

Any refutation translates into black-white pebbling with

- \# moves \leq refutation length
- \# pebbles \leq variable space

Unfortunately extremely easy w.r.t. formula space!

Key Idea: Variable Substitution

Make formula harder by substituting $x_{1} \oplus x_{2}$ for every variable x :

$$
\begin{gathered}
\bar{x} \vee y \\
\Downarrow \\
\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \\
\Downarrow \\
\left(x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right)
\end{gathered}
$$

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for $F[\oplus]$: mimic refutation of F

\square

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for $F[\oplus]$: mimic refutation of F

\square

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for $F[\oplus]$: mimic refutation of F

\square

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for $F[\oplus]$: mimic refutation of F

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x
Obvious approach for $F[\oplus]$: mimic refutation of F

\square

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x

Obvious approach for $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \bar{x}_{1} \vee \bar{x}_{2} \\
& x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2} \\
& x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& \bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}
\end{aligned}
$$

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with $\mathrm{XOR} x_{1} \oplus x_{2}$ substituted for x

Obvious approach for $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \bar{x}_{1} \vee \bar{x}_{2} \\
& x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2} \\
& x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& \bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& y_{1} \vee y_{2} \\
& \bar{y}_{1} \vee \bar{y}_{2}
\end{aligned}
$$

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_{1} \oplus x_{2}$ substituted for x
Obvious approach for $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x \\
& \bar{x} \vee y \\
& y
\end{aligned}
$$

For such refutation of $F[\oplus]$:

- length \geq length for F
- formula space \geq variable space for F

$$
\begin{aligned}
& x_{1} \vee x_{2} \\
& \bar{x}_{1} \vee \bar{x}_{2} \\
& x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2} \\
& x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& \bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2} \\
& y_{1} \vee y_{2} \\
& \bar{y}_{1} \vee \bar{y}_{2}
\end{aligned}
$$

Key Technical Result: Substitution Space Theorem

Let $F[\oplus]$ denote formula with XOR $x_{1} \oplus x_{2}$ substituted for x
Obvious approach for $F[\oplus]$: mimic refutation of F

$$
\begin{aligned}
& x \\
& \bar{x} \vee y \\
& y
\end{aligned}
$$

For such refutation of $F[\oplus]$:

- length \geq length for F
- formula space \geq variable space for F

Prove that this is (sort of) best one can do for $F[\oplus]$!

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee y$ on shadow blackboard
For consecutive XOR blackboard configurations. . .	can get between corresponding shadow blackboards by legal derivation steps
... (sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation ...
... is at most \# clauses on XOR blackboard	\# variables mentioned on shadow blackboard. . .

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee$ y on shadow blackboard
For consecutive XOR blackboard configurations...	can get between corresponding shadow blackboards by legal derivation steps
... (sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation ...
... is at most \# clauses on XOR blackboard	\# variables mentioned on shadow blackboard. . .

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee y$ on shadow blackboard
For consecutive XOR blackboard configurations. . .	can get between corresponding shadow blackboards by legal derivation steps
... (sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation ...
... is at most \# clauses on XOR blackboard	\# variables mentioned on shadow blackboard. . .

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee y$ on shadow black- board
For consecutive XOR black- board configurations...	can get between correspond- ing shadow blackboards by legal derivation steps
\ldots (sort of) upper-bounded	Length of shadow blackboard derivation ... by XOR derivation length
is at most \# clauses on	$\#$ variables mentioned on shadow blackboard...

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee y$ on shadow black- board
For consecutive XOR black- board configurations...	can get between correspond- ing shadow blackboards by legal derivation steps
\ldots (sort of) upper-bounded	
by XOR derivation length	Length of shadow blackboard derivation ...
is at most \# clauses on	$\#$ variables mentioned on shadow blackboard...

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee y$ on shadow black- board
For consecutive XOR black- board configurations...	can get between correspond- ing shadow blackboards by legal derivation steps
\ldots (sort of) upper-bounded	Length of shadow blackboard derivation ...
by XOR derivation length	

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee y$ on shadow black- board
For consecutive XOR black- board configurations...	can get between correspond- ing shadow blackboards by legal derivation steps
\ldots (sort of) upper-bounded	Length of shadow blackboard derivation ...
by XOR derivation length	is at most \# clauses on
$\#$ variables mentioned on shadow blackboard....	

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee y$ on shadow black- board
For consecutive XOR black- board configurations...	can get between correspond- ing shadow blackboards by legal derivation steps
\ldots (sort of) upper-bounded	Length of shadow blackboard derivation ...
by XOR derivation length	is at most \# clauses on
XOR blackboard	variables mentioned on shadow blackboard...

Sketch of Proof of Substitution Space Theorem

Given refutation of $F[\oplus]$, extract "shadow refutation" of F

XOR formula $F[\oplus]$	Original formula F		
If XOR blackboard implies e.g. $\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \ldots$	write $\bar{x} \vee y$ on shadow black- board		
For consecutive XOR black- board configurations...	can get between correspond- ing shadow blackboards by legal derivation steps		
\ldots (sort of) upper-bounded			
by XOR derivation length			Length of shadow blackboard
:---			
derivation ...			

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over $k+1$ variables works against
k-DNF resolution
Get our results by

- using known pebbling results from literature of 70 s and 80 s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over $k+1$ variables works against k-DNF resolution

Get our results by

- using known pebbling results from literature of 70 s and 80 s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over $k+1$ variables works against k-DNF resolution

Get our results by

- using known pebbling results from literature of 70 s and 80 s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

Stronger Results for k-DNF resolution?

Gap of ($k+1$)st root between upper and lower bounds for k-DNF resolution

Open Question

Can the loss of a $(k+1)$ st root in the k-DNF resolution lower bounds be diminished? Or even eliminated completely?

Conceivable that same bounds as for resolution could hold
However, any improvement beyond k th root requires
fundamentally different approach [Nordström \& Razborov '09]

Stronger Results for k-DNF resolution?

Gap of ($k+1$)st root between upper and lower bounds for k-DNF resolution

Open Question

Can the loss of a $(k+1)$ st root in the k-DNF resolution lower bounds be diminished? Or even eliminated completely?

Conceivable that same bounds as for resolution could hold
However, any improvement beyond k th root requires fundamentally different approach [Nordström \& Razborov '09]

Stronger Length-Space Trade-offs than from Pebbling?

Open Question

Are there superpolynomial trade-offs for formulas refutable in constant space?

Open Question

Are there formulas with trade-offs in the range space $>$ formula size? Or can every proof be carried out in at most linear space?

Pebbling formulas cannot answer these questions-can impossibly have such strong trade-offs

Summing up

- Strong time-space trade-offs for resolution and k-DNF resolution for wide range of parameters
- Strict space hierarchy for k-DNF resolution
- Many remaining open questions about space in resolution

Thank you for your attention!

[^0]: No trade-off results known

