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. . . And This Is My Research Challenge
(x1,1 ∨ x1,2 ∨ x1,3 ∨ x1,4 ∨ x1,5 ∨ x1,6 ∨ x1,7) ∧ (x2,1 ∨ x2,2 ∨ x2,3 ∨ x2,4 ∨ x2,5 ∨ x2,6 ∨ x2,7) ∧ (x3,1 ∨

x3,2∨x3,3∨x3,4∨x3,5∨x3,6∨x3,7) ∧ (x4,1∨x4,2∨x4,3∨x4,4∨x4,5∨x4,6∨x4,7) ∧ (x5,1∨x5,2∨x5,3∨

x5,4∨x5,5∨x5,6∨x5,7) ∧ (x6,1∨x6,2∨x6,3∨x6,4∨x6,5∨x6,6∨x6,7) ∧ (x7,1∨x7,2∨x7,3∨x7,4∨x7,5∨

x7,6∨x7,7) ∧ (x8,1∨x8,2∨x8,3∨x8,4∨x8,5∨x8,6∨x8,7) ∧ (x1,1∨x2,1) ∧ (x1,1∨x3,1) ∧ (x1,1∨x4,1) ∧

(x1,1∨x5,1) ∧ (x1,1∨x6,1) ∧ (x1,1∨x7,1) ∧ (x1,1∨x8,1) ∧ (x2,1∨x3,1) ∧ (x2,1∨x4,1) ∧ (x2,1∨x5,1) ∧

(x2,1∨x6,1) ∧ (x2,1∨x7,1) ∧ (x2,1∨x8,1) ∧ (x3,1∨x4,1) ∧ (x3,1∨x5,1) ∧ (x3,1∨x6,1) ∧ (x3,1∨x7,1) ∧
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(x1,3∨x5,3) ∧ (x1,3∨x6,3) ∧ (x1,3∨x7,3) ∧ (x1,3∨x8,3) ∧ (x2,3∨x3,3) ∧ (x2,3∨x4,3) ∧ (x2,3∨x5,3) ∧
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(x3,3∨x8,3) ∧ (x4,3∨x5,3) ∧ (x4,3∨x6,3) ∧ (x4,3∨x7,3) ∧ (x4,3∨x8,3) ∧ (x5,3∨x6,3) ∧ (x5,3∨x7,3) ∧

(x5,3∨x8,3) ∧ (x6,3∨x7,3) ∧ (x6,3∨x8,3) ∧ (x7,3∨x8,3) ∧ (x1,4∨x2,4) ∧ (x1,4∨x3,4) ∧ (x1,4∨x4,4) ∧

(x1,4 ∨x5,4) ∧ (x1,4 ∨x6,4) ∧ (x1,4 ∨x7,4) ∧ (x1,4 ∨x8,4) ∧ (x2,4 ∨x3,4) ∧ (x2,4 ∨x4,4) ∧ (x2,4 ∨x5,4)
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Three Problems. . .

Colouring
Does graph G = (V, E) have a
colouring with k colours so that
neighbours have distinct colours? 3-colouring exists but no 2-colouring

Sat
Given propositional logic formula F ,
is there a satisfying assignment?

Colouring: frequency allocation for mobile base stations
Clique: bioinformatics, computational chemistry
Sat: easily models these and many other problems
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. . . That Are Impossible to Solve in Theory. . .

All three problems NP-complete [Coo71, Lev73, Kar72]

Conventional wisdom ⇒ infeasible to solve in practice

Even practically impossible to find approximate solution in any meaningful
sense [Kho01, Zuc07, Hås99, Hås01]

Jakob Nordström (TCS) Beyond SAT SRA ICT TNG May ’18 5/11



. . . But Easy in Practice?!

Sat
Conflict-driven clause learning (CDCL) solvers [BS97, MS99, MMZ+01]
Deal with real-world instances containing millions of variables
Often run in (close to) linear time!

Clique
Algorithms in [Pro12, McC17] often work very well in practice

Colouring
Award-winning sequence of papers [DLMM08, DLMO09, DLMM11]
Relatively simple linear algebra methods
Authors report being unable to find hard instances!
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A Somewhat Sorry State of Affairs. . .

Have exponential hardness results for worst-case running time under
plausible mathematical assumptions

But these worst-case lower bounds don’t seem very relevant for
“real-case” problems and algorithms

For some of these algorithms we can’t even rule out that they would
solve NP-complete problems in linear time (also seems preposterous)

Since we’re not really able to analyse these algorithms, it’s very hard
to understand

I when and why they sometimes fail miserably
I how to improve them
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Long-Term Research Goals

Strengthen the mathematical analysis of algorithmic methods

Construct stronger algorithms for combinatorial problems

Develop a better understanding of real-world efficient computation

Jakob Nordström (TCS) Beyond SAT SRA ICT TNG May ’18 8/11



Mathematical Analysis of Algorithmic Methods

Study methods of reasoning that are powerful enough to capture
state-of-the-art algorithms used in practice

Use mathematical tools to establish theorems abut the power and
limitations of such algorithms and methods

Recent examples:

Lower bound ' nk for algorithms [Pro12, McC17] for k-Clique in
[ABdR+18]
Exponential lower bounds for algebraic algorithms
[DLMM08, DLMO09, DLMM11] for Colouring in [MN15, LN17]

Jakob Nordström (TCS) Beyond SAT SRA ICT TNG May ’18 9/11



Stronger Algorithms for Combinatorial Problems

Use insights into stronger mathemathical methods of reasoning to build
algorithms for Sat and other NP-complete problems

Goal: More efficient algorithms having the potential to go significantly
beyond state of the art

Pseudo-Boolean solver [EN18] performing very well in the
pseudo-Boolean competitions 2015 and 2016 [Pse15, Pse16]
Try to push further to, e.g.,

I Pseudo-Boolean optimization
I Integer linear programming (ILP)
I Mixed integer linear programming (MIP)
I Constraint programming (CP)
I Satisfiability modulo theories (SMT)

Jakob Nordström (TCS) Beyond SAT SRA ICT TNG May ’18 10/11
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Better Understanding of Real-World Efficient Computation
Propose program of “theory-insight-guided empirical research”
(Let’s call it TIGER, somewhat tongue-in-cheek ;-) )

1 Model algorithms as closely as possible and prove rigorous theorems
2 Using these theoretical insights, carefully construct extremal

benchmarks w.r.t. different complexity-theoretic properties
3 Cannot prove anything formally, but theory intuition tells us that

instances are likely to be challenging for different heuristics
4 So run experiments on these benchmarks to shed light on

I what impact each heuristic has on performance
I how this correlates with theoretical properties

5 Since benchmarks are crafted they are also scalable, meaning we can
study how performance scales as the instance size increases

Early successes reported for CDCL solvers [EGG+18] and pseudo-Boolean
solvers [EGNV18, VEG+18]

Thank you for your attention!
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