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The Satisfiability Problem (SAT)

(x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z)

Variables should be set to true or false

Constraint (x ∨ y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying this?

Surprisingly rich formalism for expressing many real-world applied problems
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The Unreasonable Effectiveness of SAT Solvers

SAT is NP-complete [Coo71] and so should be exponentially hard

But modern SAT solvers using conflict-driven clause learning
(CDCL) [MS96, BS97] solve instances with millions of variables

Lots of smart engineering to make it fly in practice
[MMZ+01, ES04, PD07, AS09, . . . ]

. . . And a somewhat bewildering alphabet soup of heuristics
(VSIDS, 1UIP, LBD, BCD, BCE, BVA, ELS, FLP, VE, VMTF, . . . )

Want a deeper understanding of how these solvers actually work
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How to Analyse Behaviour of CDCL Solvers?
Applied approach

Instrument solver with combinations of heuristics
Run on SAT competition benchmarks
Few and heterogeneous benchmarks

I Poorly understood properties
I Isolated data points

Some work in [LM02, KSM11, SM11] — hard to draw conclusions

Theoretical approach

CDCL solvers search for proofs in resolution proof system
Relate CDCL performance to proof complexity measures?
Only considers existence of proofs, not algorithmic search
Only asymptotic results (sometimes for gigantic formulas)
Papers [JMNŽ12, MN14] generated more questions than answers. . .
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Why Not Combine Theory and Practice?

Our combined approach

Choose interesting formulas from proof complexity literature
⇒ Well-understood properties
Tune to get easy benchmarks (but potentially tricky)
⇒ Measure CDCL proof search quality
Generate families with scaled instances of “same problem”
⇒ Study not isolated data points but asymptotic behaviour
Extremal benchmarks w.r.t. different properties
⇒ Different benchmarks will “stress-test” different heuristics
Code up instrumented solver with wide selection of heuristics

I More complicated than it sounds — some heuristics tightly integrated
I Run on (essentially full) cross product of heuristics
I Which heuristics are important when?
I How do heuristics interact?
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Our Set-up

Restart Policy

Variable Decisions

Phase Saving Clause Erasure

Clause Assessment
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. . . And the Results. . .
Experiments

1127 instances in 27 formula families
672 solver configurations
More than 500,000 hours (67 years) of computations

Analysis? (Topic for separate talk)

Huge amounts of data. . . How to even get an overview?
How to make sure results are significant?
Solvers deterministic — standard statistic tools don’t seem to apply

Rest of this talk: some example findings

Restarts
Memory management
Branching heuristic
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Restarts

Fast restarts crucial for CDCL solvers in practice
Also appear in proofs that CDCL searches efficiently (kind of) in
resolution [AFT11, PD11]
But do restarts increase theoretical reasoning power? Open. . .
Run experiments on benchmarks where “full power of resolution”
needed [AJPU07] to gather “circumstantial evidence”?
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Memory Management: Time-Space Trade-offs

CDCL solvers very aggressively minimize memory usage
Dramatic time-space trade-offs in theory [BN11, BBI12, BNT13]
Could this happen in practice?

Tseitin formulas on grid graphs (5 rows)
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Memory Management: Clause Assessment

When time to purge database, how to identify useful clauses to keep?
I Activity-based [ES04]
I Literal block distance (LBD) [AS09]
I Random (control)

LBD quite successful, especially when space is getting tight
Activity-based indistinguishable from random (& random OK-ish)
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Branching Heuristics: Importance of Memory Horizon

Branch on variable appearing most often in recent conflicts
+ exponential decay to reward recent conflicts: VSIDS [MMZ+01]

I Low VSIDS factor = short memory
I High VSIDS factor = long memory

Choice high/low depends on instance (but random choice always bad)
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Branching Heuristics: A Particularly Dramatic Example
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Partial ordering principle formulas

What’s going on? We’re not sure. . .
Instances very hard for tree-like resolution (≈ DPLL) [BG01, BW01]
Low VSIDS factor ⇒ search focus locally on latest conflicts
Maybe high VSIDS factor ⇒ closer to DPLL-style search?!
(Consistent with our experiments, but more data & insights needed)
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Take-Away Message
This work
Goal: Not better solvers, but understand how best solvers work
Approach: Harness theory results for empirical study of heuristics
Conclusion: Yes, can get practical insights from theory benchmarks!

Sometimes confirms conventional wisdom — nice to get evidence
Sometimes more surprising results — raise questions for further study

Directions for future research
More in-depth study of intriguing questions raised

Restarts: Only frequency important or also exact timing?
Memory management: Trade-off speed/quality of proof search
Branching: VSIDS factor crucial — how to get it right?
Phase saving: Super-important also for unsatisfiable instances — why?

Analogous study on industrial benchmarks
. . . And maybe better solvers after all, thanks to better understanding

Thank you for your attention!
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[ES04] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’03), Selected
Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages
502–518. Springer, 2004.
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proof complexity measures and practical hardness of SAT. In Proceedings of the
18th International Conference on Principles and Practice of Constraint
Programming (CP ’12), volume 7514 of Lecture Notes in Computer Science, pages
316–331. Springer, October 2012.

[KSM11] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva. Empirical study of the
anatomy of modern SAT solvers. In Proceedings of the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’11), volume
6695 of Lecture Notes in Computer Science, pages 343–356. Springer, June 2011.

[LM02] Inês Lynce and João P. Marques-Silva. Building state-of-the-art SAT solvers. In
Proceedings of the 15th European Conference on Artificial Intelligence (ECAI ’02),
pages 166–170. IOS Press, May 2002.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference (DAC ’01), pages 530–535, June 2001.

Jakob Nordström (KTH) Practical CDCL Insights from Theory SAT Benchmarks IJCAI-ECAI-18 16/13



References IV
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