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Introduction Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]∗
Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19]

Software testing doesn’t suffice to resolve this problem

Formal verification techniques cannot deal with level of complexity of
modern solvers

∗See end of slides for all references with bibliographic details
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Introduction Proof Logging for Combinatorial Solving

Certified Results with Proof Logging
Solution: Design certifying algorithms [ABM+11, MMNS11] that

not only solve problem but also
do proof logging to certify that result is correct

Checker

Input Result
Solver

Workflow:
1 Run solver on problem input
2 Get as output not only result but also proof
3 Feed input + result + proof to proof checker
4 Verify that proof checker says result is correct
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Introduction SAT Proof Logging Challenges

Yet Another SAT Success Story(?)
Many proof logging formats for SAT solving using CNF clausal format:

DRAT [HHW13a, HHW13b, WHH14]
GRIT [CMS17]
LRAT [CHH+17]
. . .

Well established — required in main track of SAT competitions
Crucial for unsatisfiable formulas

But efficient proof logging has remained out of reach for stronger
paradigms

And, in fact, even for some advanced SAT solving techniques:
cardinality reasoning
Gaussian elimination
symmetry handling
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Introduction Contribution of This Work

Our Work: Efficient Proof Logging for Symmetry Breaking

Paper Certified Symmetry and Dominance Breaking for Combinatorial
Optimisation at AAAI ’22 [BGMN22]:

Implementation in proof checker VeriPB [Ver]

First general & efficient proof logging method for symmetry breaking

Supports also pseudo-Boolean reasoning and Gaussian elimination

Based on 0-1 integer linear constraints instead of clauses

Uses cutting planes method [CCT87] with additional rules
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Introduction Contribution of This Work

Outline of Presentation

What I hope to cover in the rest of this presentation:

Basics of proof logging with 0-1 linear constraints

New rule for symmetry and dominance breaking

Application to symmetry breaking for SAT solving
(also other applications, but focus here on SAT)

Some future research directions

Caveat: Only exact problems in this talk but:
This is already very challenging
Ideas seem likely to generalize
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Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Constraints

0-1 Integer Linear (a.k.a. Pseudo-Boolean) Constraints

Pseudo-Boolean (PB) constraints are 0-1 integer linear constraints

C
.=
∑
i

ai`i ≥ A

ai, A ∈ Z

literals `i: xi or xi (where xi + xi = 1)

variables xi take values 0 = false or 1 = true

Negation of constraint

¬C .=
∑
i

ai`i ≤ A− 1

Pseudo-Boolean formulas F .=
∧m
i=1Ci are conjunctions of

pseudo-Boolean constraints (a.k.a. 0-1 integer linear programs)
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Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Constraints

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21
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Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Proof Logging for SAT with Pseudo-Boolean Reasoning

View clauses as pseudo-Boolean constraints

Operate on constraints with cutting planes rules

Prove unsatisfiability by deriving 0 ≥ 1

Fact: Fully sufficient for proof logging for so-called conflict-driven
clause learning [BS97, MS99, MMZ+01]

Also need extension rule (analogue of RAT [JHB12] used in SAT
proof logging) to deal with, e.g., preprocessing/presolving

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 10/21
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Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding redundant constraints

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω
(mapping variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C

Witness ω should be specified and implication efficiently verifiable by
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Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

The Power of Proof Logging with Extended Cutting Planes

0-1 linear inequalities convenient to capture SAT reasoning (with clauses)

And yields efficient proof logging for wider range of problems/algorithms:
Pre- and inprocessing [GN21] (since redundance rule subsumes RAT)
pseudo-Boolean reasoning (by design)
Gaussian elimination [GN21]
subgraph problems [GMN20, GMM+20]
solving pseudo-Boolean formulas via translation to CNF [GMNO22]
(basic) constraint programming [EGMN20, GMN22]
This talk: extend to symmetry and dominance breaking [BGMN22]

Zoom tutorial on all of these developments Mon Nov 28 at 14:00 CET
Combinatorial Solving with Provably Correct Results
See http://www.jakobnordstrom.se/miao-seminars
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Symmetry and Dominance Dealing with Symmetries

The Challenge of Symmetries

(Syntactic) symmetry: substitution σ preserving F (F�σ
.= F )

Show up in some hard SAT benchmarks
Can play crucial role in CP and MIP problems [AW13, GSVW14]

Symmetry breaking in SAT
Add constraints filtering out symmetric solutions [ASM06, DBBD16]

Symmetric learning in SAT
Allow to add all symmetric versions of learned constraint [DBB17]

Not supported by standard SAT proof logging!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 13/21



Symmetry and Dominance Dealing with Symmetries

The Challenge of Symmetries

(Syntactic) symmetry: substitution σ preserving F (F�σ
.= F )

Show up in some hard SAT benchmarks
Can play crucial role in CP and MIP problems [AW13, GSVW14]

Symmetry breaking in SAT
Add constraints filtering out symmetric solutions [ASM06, DBBD16]

Symmetric learning in SAT
Allow to add all symmetric versions of learned constraint [DBB17]

Not supported by standard SAT proof logging!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 13/21



Symmetry and Dominance Dealing with Symmetries

The Challenge of Symmetries

(Syntactic) symmetry: substitution σ preserving F (F�σ
.= F )

Show up in some hard SAT benchmarks
Can play crucial role in CP and MIP problems [AW13, GSVW14]

Symmetry breaking in SAT
Add constraints filtering out symmetric solutions [ASM06, DBBD16]

Symmetric learning in SAT
Allow to add all symmetric versions of learned constraint [DBB17]

Not supported by standard SAT proof logging!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 13/21



Symmetry and Dominance Dealing with Symmetries

Optimisation Problems

Deal with symmetry breaking by switching focus to optimisation
(which the title of the talk kind of promised anyway)

Pseudo-Boolean optimisation
Minimize f =

∑
iwi`i (for wi ∈ N+) subject to constraints in F

Proof of optimality:
F satisfied by α
F ∧

(∑
iwi`i <

∑
iwi · α(`i)

)
is infeasible[

Note that
∑
iwi`i<

∑
iwi · α(`i) means

∑
iwi`i≤ −1 +

∑
iwi · α(`i)

]
Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like

∑n
i=1 2n−i · xi minimized by lexicographic order)
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Symmetry and Dominance Proof System for Optimisation

Proof Logging for Optimisation Problems

How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must
hold for any satisfying assignment

2 Once solution α has been found, allow constraint∑
iwi`i <

∑
iwi · α(`i) to force search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f
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Symmetry and Dominance Proof System for Optimisation

Redundance and Dominance Rules

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Applying ω should strictly decrease f
If so, don’t need to show that C�ω implied!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 16/21



Symmetry and Dominance Proof System for Optimisation

Redundance and Dominance Rules

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Applying ω should strictly decrease f
If so, don’t need to show that C�ω implied!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 16/21



Symmetry and Dominance Proof System for Optimisation

Redundance and Dominance Rules

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Applying ω should strictly decrease f
If so, don’t need to show that C�ω implied!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 16/21



Symmetry and Dominance Proof System for Optimisation

Redundance and Dominance Rules

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Applying ω should strictly decrease f
If so, don’t need to show that C�ω implied!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 16/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C
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Applications Symmetry Breaking for SAT Solving

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing f .=
∑n
i=1 2n−i · xi

(searching lexicographically smallest assignment satisfying formula)
2 Derive pseudo-Boolean lex-leader constraint

Cσ
.= f ≤ f�σ
.=

n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB constraint
(in same spirit as PB-to-CNF translation in [GMNO22])

y0 yj ∨ σ(xj) ∨ xj
yj−1 ∨ xj ∨ σ(xj) yj ∨ yj−1 ∨ xj
yj ∨ yj−1 yj ∨ yj−1 ∨ σ(xj)
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Applications Symmetry Breaking for SAT Solving

Experimental Evaluation

Evaluated on SAT competition benchmarks
BreakID [DBBD16, Bre] used to find and break symmetries
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Proof logging overhead negligible
Verification at most 20 times slower than solving for 95% of instances
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Further Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress)

Proof logging for combinatorial optimization
Symmetric learning and recycling (substitution) of subproofs
Maximum satisfiability (MaxSAT) solving (work in progress [VDB22])

Pseudo-Boolean optimization
Mixed integer linear programming (work on SCIP in [CGS17, EG21])

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution! ,
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Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily
addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness
seems like most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to
hit a sweet spot between simplicity and expressivity

This work: Efficient proof logging for symmetry and dominance
breaking using cutting planes proof system with extensions

Thank you for your attention!
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