
Certified Symmetry and Dominance Breaking
for Combinatorial Optimisation

Jakob Nordström

University of Copenhagen
and Lund University

Swedish Operations Research Conference
Stockholm, Sweden
October 24, 2022

Joint work with Bart Bogaerts, Stephan Gocht, and Ciaran McCreesh

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 1/21



Introduction Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]∗
Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19]

Software testing doesn’t suffice to resolve this problem

Formal verification techniques cannot deal with level of complexity of
modern solvers

∗See end of slides for all references with bibliographic details
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 2/21



Introduction Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]∗
Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19]

Software testing doesn’t suffice to resolve this problem

Formal verification techniques cannot deal with level of complexity of
modern solvers

∗See end of slides for all references with bibliographic details
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 2/21



Introduction Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]∗
Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19]

Software testing doesn’t suffice to resolve this problem

Formal verification techniques cannot deal with level of complexity of
modern solvers

∗See end of slides for all references with bibliographic details
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 2/21



Introduction Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]∗
Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19]

Software testing doesn’t suffice to resolve this problem

Formal verification techniques cannot deal with level of complexity of
modern solvers

∗See end of slides for all references with bibliographic details
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 2/21



Introduction Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for
Boolean satisfiability (SAT) solving [BHvMW21]∗
Constraint programming (CP) [RvBW06]
Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19]

Software testing doesn’t suffice to resolve this problem

Formal verification techniques cannot deal with level of complexity of
modern solvers

∗See end of slides for all references with bibliographic details
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 2/21



Introduction Proof Logging for Combinatorial Solving

Certified Results with Proof Logging
Solution: Design certifying algorithms [ABM+11, MMNS11] that

not only solve problem but also
do proof logging to certify that result is correct

Checker

Input Result
Solver

Workflow:
1 Run solver on problem input
2 Get as output not only result but also proof
3 Feed input + result + proof to proof checker
4 Verify that proof checker says result is correct

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 3/21



Introduction Proof Logging for Combinatorial Solving

Certified Results with Proof Logging
Solution: Design certifying algorithms [ABM+11, MMNS11] that

not only solve problem but also
do proof logging to certify that result is correct

Checker

Input Result
Solver

Workflow:
1 Run solver on problem input
2 Get as output not only result but also proof
3 Feed input + result + proof to proof checker
4 Verify that proof checker says result is correct

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 3/21



Introduction Proof Logging for Combinatorial Solving

Certified Results with Proof Logging
Solution: Design certifying algorithms [ABM+11, MMNS11] that

not only solve problem but also
do proof logging to certify that result is correct

Checker
Proof

Input Result
Solver

Workflow:
1 Run solver on problem input
2 Get as output not only result but also proof
3 Feed input + result + proof to proof checker
4 Verify that proof checker says result is correct

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 3/21



Introduction Proof Logging for Combinatorial Solving

Certified Results with Proof Logging
Solution: Design certifying algorithms [ABM+11, MMNS11] that

not only solve problem but also
do proof logging to certify that result is correct

Proof

Input Result
Solver

Checker

Workflow:
1 Run solver on problem input
2 Get as output not only result but also proof
3 Feed input + result + proof to proof checker
4 Verify that proof checker says result is correct

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 3/21



Introduction Proof Logging for Combinatorial Solving

Certified Results with Proof Logging
Solution: Design certifying algorithms [ABM+11, MMNS11] that

not only solve problem but also
do proof logging to certify that result is correct

Proof

Input Result
Solver

Checker
X/7

Workflow:
1 Run solver on problem input
2 Get as output not only result but also proof
3 Feed input + result + proof to proof checker
4 Verify that proof checker says result is correct

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 3/21



Introduction SAT Proof Logging Challenges

Yet Another SAT Success Story(?)
Many proof logging formats for SAT solving using CNF clausal format:

DRAT [HHW13a, HHW13b, WHH14]
GRIT [CMS17]
LRAT [CHH+17]
. . .

Well established — required in main track of SAT competitions
Crucial for unsatisfiable formulas

But efficient proof logging has remained out of reach for stronger
paradigms

And, in fact, even for some advanced SAT solving techniques:
cardinality reasoning
Gaussian elimination
symmetry handling

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 4/21



Introduction SAT Proof Logging Challenges

Yet Another SAT Success Story(?)
Many proof logging formats for SAT solving using CNF clausal format:

DRAT [HHW13a, HHW13b, WHH14]
GRIT [CMS17]
LRAT [CHH+17]
. . .

Well established — required in main track of SAT competitions
Crucial for unsatisfiable formulas

But efficient proof logging has remained out of reach for stronger
paradigms

And, in fact, even for some advanced SAT solving techniques:
cardinality reasoning
Gaussian elimination
symmetry handling

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 4/21



Introduction SAT Proof Logging Challenges

Yet Another SAT Success Story(?)
Many proof logging formats for SAT solving using CNF clausal format:

DRAT [HHW13a, HHW13b, WHH14]
GRIT [CMS17]
LRAT [CHH+17]
. . .

Well established — required in main track of SAT competitions
Crucial for unsatisfiable formulas

But efficient proof logging has remained out of reach for stronger
paradigms

And, in fact, even for some advanced SAT solving techniques:
cardinality reasoning
Gaussian elimination
symmetry handling

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 4/21



Introduction Contribution of This Work

Our Work: Efficient Proof Logging for Symmetry Breaking

Paper Certified Symmetry and Dominance Breaking for Combinatorial
Optimisation at AAAI ’22 [BGMN22]:

Implementation in proof checker VeriPB [Ver]

First general & efficient proof logging method for symmetry breaking

Supports also pseudo-Boolean reasoning and Gaussian elimination

Based on 0-1 integer linear constraints instead of clauses

Uses cutting planes method [CCT87] with additional rules

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 5/21



Introduction Contribution of This Work

Our Work: Efficient Proof Logging for Symmetry Breaking

Paper Certified Symmetry and Dominance Breaking for Combinatorial
Optimisation at AAAI ’22 [BGMN22]:

Implementation in proof checker VeriPB [Ver]

First general & efficient proof logging method for symmetry breaking

Supports also pseudo-Boolean reasoning and Gaussian elimination

Based on 0-1 integer linear constraints instead of clauses

Uses cutting planes method [CCT87] with additional rules

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 5/21



Introduction Contribution of This Work

Our Work: Efficient Proof Logging for Symmetry Breaking

Paper Certified Symmetry and Dominance Breaking for Combinatorial
Optimisation at AAAI ’22 [BGMN22]:

Implementation in proof checker VeriPB [Ver]

First general & efficient proof logging method for symmetry breaking

Supports also pseudo-Boolean reasoning and Gaussian elimination

Based on 0-1 integer linear constraints instead of clauses

Uses cutting planes method [CCT87] with additional rules

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 5/21



Introduction Contribution of This Work

Our Work: Efficient Proof Logging for Symmetry Breaking

Paper Certified Symmetry and Dominance Breaking for Combinatorial
Optimisation at AAAI ’22 [BGMN22]:

Implementation in proof checker VeriPB [Ver]

First general & efficient proof logging method for symmetry breaking

Supports also pseudo-Boolean reasoning and Gaussian elimination

Based on 0-1 integer linear constraints instead of clauses

Uses cutting planes method [CCT87] with additional rules

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 5/21



Introduction Contribution of This Work

Our Work: Efficient Proof Logging for Symmetry Breaking

Paper Certified Symmetry and Dominance Breaking for Combinatorial
Optimisation at AAAI ’22 [BGMN22]:

Implementation in proof checker VeriPB [Ver]

First general & efficient proof logging method for symmetry breaking

Supports also pseudo-Boolean reasoning and Gaussian elimination

Based on 0-1 integer linear constraints instead of clauses

Uses cutting planes method [CCT87] with additional rules

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 5/21



Introduction Contribution of This Work

Outline of Presentation

What I hope to cover in the rest of this presentation:

Basics of proof logging with 0-1 linear constraints

New rule for symmetry and dominance breaking

Application to symmetry breaking for SAT solving
(also other applications, but focus here on SAT)

Some future research directions

Caveat: Only exact problems in this talk but:
This is already very challenging
Ideas seem likely to generalize

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 6/21



Introduction Contribution of This Work

Outline of Presentation

What I hope to cover in the rest of this presentation:

Basics of proof logging with 0-1 linear constraints

New rule for symmetry and dominance breaking

Application to symmetry breaking for SAT solving
(also other applications, but focus here on SAT)

Some future research directions

Caveat: Only exact problems in this talk but:
This is already very challenging
Ideas seem likely to generalize

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 6/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Constraints

0-1 Integer Linear (a.k.a. Pseudo-Boolean) Constraints

Pseudo-Boolean (PB) constraints are 0-1 integer linear constraints

C
.=
∑
i

ai`i ≥ A

ai, A ∈ Z

literals `i: xi or xi (where xi + xi = 1)

variables xi take values 0 = false or 1 = true

Negation of constraint

¬C .=
∑
i

ai`i ≤ A− 1

Pseudo-Boolean formulas F .=
∧m
i=1Ci are conjunctions of

pseudo-Boolean constraints (a.k.a. 0-1 integer linear programs)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 7/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Constraints

0-1 Integer Linear (a.k.a. Pseudo-Boolean) Constraints

Pseudo-Boolean (PB) constraints are 0-1 integer linear constraints

C
.=
∑
i

ai`i ≥ A

ai, A ∈ Z

literals `i: xi or xi (where xi + xi = 1)

variables xi take values 0 = false or 1 = true

Negation of constraint

¬C .=
∑
i

ai`i ≤ A− 1

Pseudo-Boolean formulas F .=
∧m
i=1Ci are conjunctions of

pseudo-Boolean constraints (a.k.a. 0-1 integer linear programs)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 7/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Constraints

0-1 Integer Linear (a.k.a. Pseudo-Boolean) Constraints

Pseudo-Boolean (PB) constraints are 0-1 integer linear constraints

C
.=
∑
i

ai`i ≥ A

ai, A ∈ Z

literals `i: xi or xi (where xi + xi = 1)

variables xi take values 0 = false or 1 = true

Negation of constraint

¬C .=
∑
i

ai`i ≤ A− 1

Pseudo-Boolean formulas F .=
∧m
i=1Ci are conjunctions of

pseudo-Boolean constraints (a.k.a. 0-1 integer linear programs)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 7/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Constraints

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 8/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Constraints

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 8/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Constraints

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 8/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
(2x+ 4y + 2z + w) + 2 · (2x+ y + w) ≥ 5 + 2 · 2

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
6x+ 6y + 2z + 3w ≥ 9

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
6x+ 6y + 2z + 3w ≥ 9 z ≥ 0

Lin comb

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
6x+ 6y + 2z + 3w ≥ 9 z ≥ 0

Lin comb
6x+ 6y + 2z + 3w + 2 · z ≥ 9 + 2 · 0

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
6x+ 6y + 2z + 3w ≥ 9 z ≥ 0

Lin comb
6x+ 6y + 3w + 2 ≥ 9

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
6x+ 6y + 2z + 3w ≥ 9 z ≥ 0

Lin comb
6x+ 6y + 3w ≥ 7

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
6x+ 6y + 2z + 3w ≥ 9 z ≥ 0

Lin comb
6x+ 6y + 3w ≥ 7

Div
2x+ 2y + w ≥ 21

3

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
6x+ 6y + 2z + 3w ≥ 9 z ≥ 0

Lin comb
6x+ 6y + 3w ≥ 7

Div
2x+ 2y + w ≥ 3

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ∈ N]

Division
∑
i cai`i ≥ A∑

i ai`i ≥ dA/ce
[c ∈ N+]

Toy example:
2x+ 4y + 2z + w ≥ 5 2x+ y + w ≥ 2

Lin comb
6x+ 6y + 2z + 3w ≥ 9 z ≥ 0

Lin comb
6x+ 6y + 3w ≥ 7

Div
2x+ 2y + w ≥ 3

(See [BN21] for more details about cutting planes)
Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 9/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Proof Logging for SAT with Pseudo-Boolean Reasoning

View clauses as pseudo-Boolean constraints

Operate on constraints with cutting planes rules

Prove unsatisfiability by deriving 0 ≥ 1

Fact: Fully sufficient for proof logging for so-called conflict-driven
clause learning [BS97, MS99, MMZ+01]

Also need extension rule (analogue of RAT [JHB12] used in SAT
proof logging) to deal with, e.g., preprocessing/presolving

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 10/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Proof Logging for SAT with Pseudo-Boolean Reasoning

View clauses as pseudo-Boolean constraints

Operate on constraints with cutting planes rules

Prove unsatisfiability by deriving 0 ≥ 1

Fact: Fully sufficient for proof logging for so-called conflict-driven
clause learning [BS97, MS99, MMZ+01]

Also need extension rule (analogue of RAT [JHB12] used in SAT
proof logging) to deal with, e.g., preprocessing/presolving

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 10/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Proof Logging for SAT with Pseudo-Boolean Reasoning

View clauses as pseudo-Boolean constraints

Operate on constraints with cutting planes rules

Prove unsatisfiability by deriving 0 ≥ 1

Fact: Fully sufficient for proof logging for so-called conflict-driven
clause learning [BS97, MS99, MMZ+01]

Also need extension rule (analogue of RAT [JHB12] used in SAT
proof logging) to deal with, e.g., preprocessing/presolving

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 10/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Proof Logging for SAT with Pseudo-Boolean Reasoning

View clauses as pseudo-Boolean constraints

Operate on constraints with cutting planes rules

Prove unsatisfiability by deriving 0 ≥ 1

Fact: Fully sufficient for proof logging for so-called conflict-driven
clause learning [BS97, MS99, MMZ+01]

Also need extension rule (analogue of RAT [JHB12] used in SAT
proof logging) to deal with, e.g., preprocessing/presolving

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 10/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Pseudo-Boolean Reasoning

Proof Logging for SAT with Pseudo-Boolean Reasoning

View clauses as pseudo-Boolean constraints

Operate on constraints with cutting planes rules

Prove unsatisfiability by deriving 0 ≥ 1

Fact: Fully sufficient for proof logging for so-called conflict-driven
clause learning [BS97, MS99, MMZ+01]

Also need extension rule (analogue of RAT [JHB12] used in SAT
proof logging) to deal with, e.g., preprocessing/presolving

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 10/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding redundant constraints

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω
(mapping variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C

Witness ω should be specified and implication efficiently verifiable by
very simple checks (technical details omitted)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 11/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding redundant constraints

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω
(mapping variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C

Witness ω should be specified and implication efficiently verifiable by
very simple checks (technical details omitted)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 11/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding redundant constraints

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω
(mapping variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C

Witness ω should be specified and implication efficiently verifiable by
very simple checks (technical details omitted)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 11/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

Extension Rule: Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding redundant constraints

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω
(mapping variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C

Witness ω should be specified and implication efficiently verifiable by
very simple checks (technical details omitted)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 11/21



Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

The Power of Proof Logging with Extended Cutting Planes

0-1 linear inequalities convenient to capture SAT reasoning (with clauses)

And yields efficient proof logging for wider range of problems/algorithms:
Pre- and inprocessing [GN21] (since redundance rule subsumes RAT)
pseudo-Boolean reasoning (by design)
Gaussian elimination [GN21]
subgraph problems [GMN20, GMM+20]
solving pseudo-Boolean formulas via translation to CNF [GMNO22]
(basic) constraint programming [EGMN20, GMN22]
This talk: extend to symmetry and dominance breaking [BGMN22]

Zoom tutorial on all of these developments Mon Nov 28 at 14:00 CET
Combinatorial Solving with Provably Correct Results
See http://www.jakobnordstrom.se/miao-seminars

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 12/21

http://www.jakobnordstrom.se/miao-seminars


Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

The Power of Proof Logging with Extended Cutting Planes

0-1 linear inequalities convenient to capture SAT reasoning (with clauses)

And yields efficient proof logging for wider range of problems/algorithms:
Pre- and inprocessing [GN21] (since redundance rule subsumes RAT)
pseudo-Boolean reasoning (by design)
Gaussian elimination [GN21]
subgraph problems [GMN20, GMM+20]
solving pseudo-Boolean formulas via translation to CNF [GMNO22]
(basic) constraint programming [EGMN20, GMN22]
This talk: extend to symmetry and dominance breaking [BGMN22]

Zoom tutorial on all of these developments Mon Nov 28 at 14:00 CET
Combinatorial Solving with Provably Correct Results
See http://www.jakobnordstrom.se/miao-seminars

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 12/21

http://www.jakobnordstrom.se/miao-seminars


Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

The Power of Proof Logging with Extended Cutting Planes

0-1 linear inequalities convenient to capture SAT reasoning (with clauses)

And yields efficient proof logging for wider range of problems/algorithms:
Pre- and inprocessing [GN21] (since redundance rule subsumes RAT)
pseudo-Boolean reasoning (by design)
Gaussian elimination [GN21]
subgraph problems [GMN20, GMM+20]
solving pseudo-Boolean formulas via translation to CNF [GMNO22]
(basic) constraint programming [EGMN20, GMN22]
This talk: extend to symmetry and dominance breaking [BGMN22]

Zoom tutorial on all of these developments Mon Nov 28 at 14:00 CET
Combinatorial Solving with Provably Correct Results
See http://www.jakobnordstrom.se/miao-seminars

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 12/21

http://www.jakobnordstrom.se/miao-seminars


Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

The Power of Proof Logging with Extended Cutting Planes

0-1 linear inequalities convenient to capture SAT reasoning (with clauses)

And yields efficient proof logging for wider range of problems/algorithms:
Pre- and inprocessing [GN21] (since redundance rule subsumes RAT)
pseudo-Boolean reasoning (by design)
Gaussian elimination [GN21]
subgraph problems [GMN20, GMM+20]
solving pseudo-Boolean formulas via translation to CNF [GMNO22]
(basic) constraint programming [EGMN20, GMN22]
This talk: extend to symmetry and dominance breaking [BGMN22]

Zoom tutorial on all of these developments Mon Nov 28 at 14:00 CET
Combinatorial Solving with Provably Correct Results
See http://www.jakobnordstrom.se/miao-seminars

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 12/21

http://www.jakobnordstrom.se/miao-seminars


Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

The Power of Proof Logging with Extended Cutting Planes

0-1 linear inequalities convenient to capture SAT reasoning (with clauses)

And yields efficient proof logging for wider range of problems/algorithms:
Pre- and inprocessing [GN21] (since redundance rule subsumes RAT)
pseudo-Boolean reasoning (by design)
Gaussian elimination [GN21]
subgraph problems [GMN20, GMM+20]
solving pseudo-Boolean formulas via translation to CNF [GMNO22]
(basic) constraint programming [EGMN20, GMN22]
This talk: extend to symmetry and dominance breaking [BGMN22]

Zoom tutorial on all of these developments Mon Nov 28 at 14:00 CET
Combinatorial Solving with Provably Correct Results
See http://www.jakobnordstrom.se/miao-seminars

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 12/21

http://www.jakobnordstrom.se/miao-seminars


Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

The Power of Proof Logging with Extended Cutting Planes

0-1 linear inequalities convenient to capture SAT reasoning (with clauses)

And yields efficient proof logging for wider range of problems/algorithms:
Pre- and inprocessing [GN21] (since redundance rule subsumes RAT)
pseudo-Boolean reasoning (by design)
Gaussian elimination [GN21]
subgraph problems [GMN20, GMM+20]
solving pseudo-Boolean formulas via translation to CNF [GMNO22]
(basic) constraint programming [EGMN20, GMN22]
This talk: extend to symmetry and dominance breaking [BGMN22]

Zoom tutorial on all of these developments Mon Nov 28 at 14:00 CET
Combinatorial Solving with Provably Correct Results
See http://www.jakobnordstrom.se/miao-seminars

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 12/21

http://www.jakobnordstrom.se/miao-seminars


Pseudo-Boolean Reasoning with 0 -1 Linear Constraints Extended Cutting Planes

The Power of Proof Logging with Extended Cutting Planes

0-1 linear inequalities convenient to capture SAT reasoning (with clauses)

And yields efficient proof logging for wider range of problems/algorithms:
Pre- and inprocessing [GN21] (since redundance rule subsumes RAT)
pseudo-Boolean reasoning (by design)
Gaussian elimination [GN21]
subgraph problems [GMN20, GMM+20]
solving pseudo-Boolean formulas via translation to CNF [GMNO22]
(basic) constraint programming [EGMN20, GMN22]
This talk: extend to symmetry and dominance breaking [BGMN22]

Zoom tutorial on all of these developments Mon Nov 28 at 14:00 CET
Combinatorial Solving with Provably Correct Results
See http://www.jakobnordstrom.se/miao-seminars

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 12/21

http://www.jakobnordstrom.se/miao-seminars


Symmetry and Dominance Dealing with Symmetries

The Challenge of Symmetries

(Syntactic) symmetry: substitution σ preserving F (F�σ
.= F )

Show up in some hard SAT benchmarks
Can play crucial role in CP and MIP problems [AW13, GSVW14]

Symmetry breaking in SAT
Add constraints filtering out symmetric solutions [ASM06, DBBD16]

Symmetric learning in SAT
Allow to add all symmetric versions of learned constraint [DBB17]

Not supported by standard SAT proof logging!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 13/21



Symmetry and Dominance Dealing with Symmetries

The Challenge of Symmetries

(Syntactic) symmetry: substitution σ preserving F (F�σ
.= F )

Show up in some hard SAT benchmarks
Can play crucial role in CP and MIP problems [AW13, GSVW14]

Symmetry breaking in SAT
Add constraints filtering out symmetric solutions [ASM06, DBBD16]

Symmetric learning in SAT
Allow to add all symmetric versions of learned constraint [DBB17]

Not supported by standard SAT proof logging!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 13/21



Symmetry and Dominance Dealing with Symmetries

The Challenge of Symmetries

(Syntactic) symmetry: substitution σ preserving F (F�σ
.= F )

Show up in some hard SAT benchmarks
Can play crucial role in CP and MIP problems [AW13, GSVW14]

Symmetry breaking in SAT
Add constraints filtering out symmetric solutions [ASM06, DBBD16]

Symmetric learning in SAT
Allow to add all symmetric versions of learned constraint [DBB17]

Not supported by standard SAT proof logging!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 13/21



Symmetry and Dominance Dealing with Symmetries

Optimisation Problems

Deal with symmetry breaking by switching focus to optimisation
(which the title of the talk kind of promised anyway)

Pseudo-Boolean optimisation
Minimize f =

∑
iwi`i (for wi ∈ N+) subject to constraints in F

Proof of optimality:
F satisfied by α
F ∧

(∑
iwi`i <

∑
iwi · α(`i)

)
is infeasible[

Note that
∑
iwi`i<

∑
iwi · α(`i) means

∑
iwi`i≤ −1 +

∑
iwi · α(`i)

]
Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like

∑n
i=1 2n−i · xi minimized by lexicographic order)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 14/21



Symmetry and Dominance Dealing with Symmetries

Optimisation Problems

Deal with symmetry breaking by switching focus to optimisation
(which the title of the talk kind of promised anyway)

Pseudo-Boolean optimisation
Minimize f =

∑
iwi`i (for wi ∈ N+) subject to constraints in F

Proof of optimality:
F satisfied by α
F ∧

(∑
iwi`i <

∑
iwi · α(`i)

)
is infeasible[

Note that
∑
iwi`i<

∑
iwi · α(`i) means

∑
iwi`i≤ −1 +

∑
iwi · α(`i)

]
Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like

∑n
i=1 2n−i · xi minimized by lexicographic order)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 14/21



Symmetry and Dominance Dealing with Symmetries

Optimisation Problems

Deal with symmetry breaking by switching focus to optimisation
(which the title of the talk kind of promised anyway)

Pseudo-Boolean optimisation
Minimize f =

∑
iwi`i (for wi ∈ N+) subject to constraints in F

Proof of optimality:
F satisfied by α
F ∧

(∑
iwi`i <

∑
iwi · α(`i)

)
is infeasible[

Note that
∑
iwi`i<

∑
iwi · α(`i) means

∑
iwi`i≤ −1 +

∑
iwi · α(`i)

]
Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like

∑n
i=1 2n−i · xi minimized by lexicographic order)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 14/21



Symmetry and Dominance Dealing with Symmetries

Optimisation Problems

Deal with symmetry breaking by switching focus to optimisation
(which the title of the talk kind of promised anyway)

Pseudo-Boolean optimisation
Minimize f =

∑
iwi`i (for wi ∈ N+) subject to constraints in F

Proof of optimality:
F satisfied by α
F ∧

(∑
iwi`i <

∑
iwi · α(`i)

)
is infeasible[

Note that
∑
iwi`i<

∑
iwi · α(`i) means

∑
iwi`i≤ −1 +

∑
iwi · α(`i)

]
Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like

∑n
i=1 2n−i · xi minimized by lexicographic order)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 14/21



Symmetry and Dominance Dealing with Symmetries

Optimisation Problems

Deal with symmetry breaking by switching focus to optimisation
(which the title of the talk kind of promised anyway)

Pseudo-Boolean optimisation
Minimize f =

∑
iwi`i (for wi ∈ N+) subject to constraints in F

Proof of optimality:
F satisfied by α
F ∧

(∑
iwi`i <

∑
iwi · α(`i)

)
is infeasible[

Note that
∑
iwi`i<

∑
iwi · α(`i) means

∑
iwi`i≤ −1 +

∑
iwi · α(`i)

]
Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like

∑n
i=1 2n−i · xi minimized by lexicographic order)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 14/21



Symmetry and Dominance Proof System for Optimisation

Proof Logging for Optimisation Problems

How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must
hold for any satisfying assignment

2 Once solution α has been found, allow constraint∑
iwi`i <

∑
iwi · α(`i) to force search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 15/21



Symmetry and Dominance Proof System for Optimisation

Proof Logging for Optimisation Problems

How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must
hold for any satisfying assignment

2 Once solution α has been found, allow constraint∑
iwi`i <

∑
iwi · α(`i) to force search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 15/21



Symmetry and Dominance Proof System for Optimisation

Proof Logging for Optimisation Problems

How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must
hold for any satisfying assignment

2 Once solution α has been found, allow constraint∑
iwi`i <

∑
iwi · α(`i) to force search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 15/21



Symmetry and Dominance Proof System for Optimisation

Proof Logging for Optimisation Problems

How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must
hold for any satisfying assignment

2 Once solution α has been found, allow constraint∑
iwi`i <

∑
iwi · α(`i) to force search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 15/21



Symmetry and Dominance Proof System for Optimisation

Proof Logging for Optimisation Problems

How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must
hold for any satisfying assignment

2 Once solution α has been found, allow constraint∑
iwi`i <

∑
iwi · α(`i) to force search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 15/21



Symmetry and Dominance Proof System for Optimisation

Redundance and Dominance Rules

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Applying ω should strictly decrease f
If so, don’t need to show that C�ω implied!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 16/21



Symmetry and Dominance Proof System for Optimisation

Redundance and Dominance Rules

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Applying ω should strictly decrease f
If so, don’t need to show that C�ω implied!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 16/21



Symmetry and Dominance Proof System for Optimisation

Redundance and Dominance Rules

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Applying ω should strictly decrease f
If so, don’t need to show that C�ω implied!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 16/21



Symmetry and Dominance Proof System for Optimisation

Redundance and Dominance Rules

Redundance-based strengthening, optimisation version
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)�ω ∧ f�ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Applying ω should strictly decrease f
If so, don’t need to show that C�ω implied!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 16/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Symmetry and Dominance Proof System for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= F�ω ∧ f�ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and

f
(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ C

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 17/21



Applications Symmetry Breaking for SAT Solving

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing f .=
∑n
i=1 2n−i · xi

(searching lexicographically smallest assignment satisfying formula)
2 Derive pseudo-Boolean lex-leader constraint

Cσ
.= f ≤ f�σ
.=

n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB constraint
(in same spirit as PB-to-CNF translation in [GMNO22])

y0 yj ∨ σ(xj) ∨ xj
yj−1 ∨ xj ∨ σ(xj) yj ∨ yj−1 ∨ xj
yj ∨ yj−1 yj ∨ yj−1 ∨ σ(xj)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 18/21



Applications Symmetry Breaking for SAT Solving

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing f .=
∑n
i=1 2n−i · xi

(searching lexicographically smallest assignment satisfying formula)
2 Derive pseudo-Boolean lex-leader constraint

Cσ
.= f ≤ f�σ
.=

n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB constraint
(in same spirit as PB-to-CNF translation in [GMNO22])

y0 yj ∨ σ(xj) ∨ xj
yj−1 ∨ xj ∨ σ(xj) yj ∨ yj−1 ∨ xj
yj ∨ yj−1 yj ∨ yj−1 ∨ σ(xj)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 18/21



Applications Symmetry Breaking for SAT Solving

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing f .=
∑n
i=1 2n−i · xi

(searching lexicographically smallest assignment satisfying formula)
2 Derive pseudo-Boolean lex-leader constraint

Cσ
.= f ≤ f�σ
.=

n∑
i=1

2n−i · (σ(xi)− xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB constraint
(in same spirit as PB-to-CNF translation in [GMNO22])

y0 yj ∨ σ(xj) ∨ xj
yj−1 ∨ xj ∨ σ(xj) yj ∨ yj−1 ∨ xj
yj ∨ yj−1 yj ∨ yj−1 ∨ σ(xj)

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 18/21



Applications Symmetry Breaking for SAT Solving

Experimental Evaluation

Evaluated on SAT competition benchmarks
BreakID [DBBD16, Bre] used to find and break symmetries

1

10

100

1000

10000

1 10 100 1000 10000
BreakID + proof logging (time in s)

B
re

ak
ID

 (
tim

e 
in

 s
)

1MB

1GB

proof size

1

10

100

1000

10000

1 10 100 1000 10000
VeriPB (verification time in s)

B
re

ak
ID

 +
 p

ro
of

 lo
gg

in
g 

(t
im

e 
in

 s
)

Requires Breaking no unsolved yes

Proof logging overhead negligible
Verification at most 20 times slower than solving for 95% of instances

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 19/21



Further Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress)

Proof logging for combinatorial optimization
Symmetric learning and recycling (substitution) of subproofs
Maximum satisfiability (MaxSAT) solving (work in progress [VDB22])

Pseudo-Boolean optimization
Mixed integer linear programming (work on SCIP in [CGS17, EG21])

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution! ,

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 20/21



Further Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress)

Proof logging for combinatorial optimization
Symmetric learning and recycling (substitution) of subproofs
Maximum satisfiability (MaxSAT) solving (work in progress [VDB22])

Pseudo-Boolean optimization
Mixed integer linear programming (work on SCIP in [CGS17, EG21])

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution! ,

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 20/21



Further Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress)

Proof logging for combinatorial optimization
Symmetric learning and recycling (substitution) of subproofs
Maximum satisfiability (MaxSAT) solving (work in progress [VDB22])

Pseudo-Boolean optimization
Mixed integer linear programming (work on SCIP in [CGS17, EG21])

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution! ,

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 20/21



Further Challenges

Future Research Directions

Performance and reliability of pseudo-Boolean proof logging
Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress)

Proof logging for combinatorial optimization
Symmetric learning and recycling (substitution) of subproofs
Maximum satisfiability (MaxSAT) solving (work in progress [VDB22])

Pseudo-Boolean optimization
Mixed integer linear programming (work on SCIP in [CGS17, EG21])

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution! ,

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 20/21



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily
addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness
seems like most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to
hit a sweet spot between simplicity and expressivity

This work: Efficient proof logging for symmetry and dominance
breaking using cutting planes proof system with extensions

Thank you for your attention!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 21/21



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily
addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness
seems like most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to
hit a sweet spot between simplicity and expressivity

This work: Efficient proof logging for symmetry and dominance
breaking using cutting planes proof system with extensions

Thank you for your attention!

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 21/21



References I

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal
Schweitzer. An introduction to certifying algorithms. it - Information Technology
Methoden und innovative Anwendungen der Informatik und Informationstechnik,
53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter
Nightingale. Metamorphic testing of constraint solvers. In Proceedings of the 24th
International Conference on Principles and Practice of Constraint Programming
(CP ’18), volume 11008 of Lecture Notes in Computer Science, pages 727–736.
Springer, August 2018.

[ASM06] Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry
breaking for Boolean satisfiability. IEEE Transactions on Computers,
55(5):549–558, May 2006. Preliminary version in IJCAI ’03.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming:
Analyzing 12 years of progress. In Michael Jünger and Gerhard Reinelt, editors,
Facets of Combinatorial Optimization, pages 449–481. Springer, 2013.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 22/21



References II

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified
symmetry and dominance breaking for combinatorial optimisation. In Proceedings
of the 36th AAAI Conference on Artificial Intelligence (AAAI ’22), pages
3698–3707, February 2022.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2nd edition, February 2021.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and
debugging of SAT and QBF solvers. In Proceedings of the 13th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’10), volume
6175 of Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In
Biere et al. [BHvMW21], chapter 7, pages 233–350.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer
programming—A look back from the other side of the tipping point. Annals of
Operations Research, 149(1):37–41, February 2007.

[Bre] Breakid. https://bitbucket.org/krr/breakid.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 23/21

https://bitbucket.org/krr/breakid


References III

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and
extended resolution. In Proceedings of the 22nd International Conference on
Theory and Applications of Satisfiability Testing (SAT ’19), volume 11628 of
Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of
cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer
programming results. In Proceedings of the 19th International Conference on
Integer Programming and Combinatorial Optimization (IPCO ’17), volume 10328
of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and
Peter Schneider-Kamp. Efficient certified RAT verification. In Proceedings of the
26th International Conference on Automated Deduction (CADE-26), volume
10395 of Lecture Notes in Computer Science, pages 220–236. Springer, August
2017.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 24/21



References IV

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid
branch-and-bound approach for exact rational mixed-integer programming.
Mathematical Programming Computation, 5(3):305–344, September 2013.

[CMS17] Lúıs Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient
certified resolution proof checking. In Proceedings of the 23rd International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’17), volume 10205 of Lecture Notes in Computer Science, pages
118–135. Springer, April 2017.

[DBB17] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation
learning: Effective dynamic symmetry handling for SAT. In Proceedings of the
20th International Conference on Theory and Applications of Satisfiability Testing
(SAT ’17), volume 10491 of Lecture Notes in Computer Science, pages 83–100.
Springer, August 2017.

[DBBD16] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved
static symmetry breaking for SAT. In Proceedings of the 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’16), volume
9710 of Lecture Notes in Computer Science, pages 104–122. Springer, July 2016.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 25/21



References V

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational
mixed integer programming. In Proceedings of the 22nd International Conference
on Integer Programming and Combinatorial Optimization (IPCO ’21), volume
12707 of Lecture Notes in Computer Science, pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all
differences using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI ’20), pages 1486–1494, February 2020.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick
Prosser, and James Trimble. Certifying solvers for clique and maximum common
(connected) subgraph problems. In Proceedings of the 26th International
Conference on Principles and Practice of Constraint Programming (CP ’20),
volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism
meets cutting planes: Solving with certified solutions. In Proceedings of the 29th
International Joint Conference on Artificial Intelligence (IJCAI ’20), pages
1134–1140, July 2020.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 26/21



References VI

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint
programming solver. In Proceedings of the 28th International Conference on
Principles and Practice of Constraint Programming (CP ’22), volume 235 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18,
August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified
CNF translations for pseudo-Boolean solving. In Proceedings of the 25th
International Conference on Theory and Applications of Satisfiability Testing
(SAT ’22), volume 236 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using
pseudo-Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint
programming. Presentation at KTH Royal Institute of Technology. Slides available
at
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf,
February 2019.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 27/21

https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf


References VII

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing
of constraints. In Proceedings of the 25th International Conference on Principles
and Practice of Constraint Programming (CP ’19), volume 11802 of Lecture
Notes in Computer Science, pages 565–582. Springer, October 2019.

[GSVW14] Maria Garcia de la Banda, Peter J. Stuckey, Pascal Van Hentenryck, and Mark
Wallace. The future of optimization technology. Constraints, 19(2):126–138, April
2014.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while
checking clausal proofs. In Proceedings of the 13th International Conference on
Formal Methods in Computer-Aided Design (FMCAD ’13), pages 181–188,
October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying
refutations with extended resolution. In Proceedings of the 24th International
Conference on Automated Deduction (CADE-24), volume 7898 of Lecture Notes
in Computer Science, pages 345–359. Springer, June 2013.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 28/21



References VIII

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In
Proceedings of the 6th International Joint Conference on Automated Reasoning
(IJCAR ’12), volume 7364 of Lecture Notes in Computer Science, pages 355–370.
Springer, June 2012.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer.
Certifying algorithms. Computer Science Review, 5(2):119–161, May 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the
38th Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999. Preliminary version in ICCAD ’96.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of
Constraint Programming, volume 2 of Foundations of Artificial Intelligence.
Elsevier, 2006.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 29/21



References IX

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified
MaxSAT solver. In Proceedings of the 16th International Conference on Logic
Programming and Non-monotonic Reasoning (LPNMR ’22), volume 13416 of
Lecture Notes in Computer Science, pages 429–442. Springer, September 2022.

[Ver] VeriPB: Verifier for pseudo-Boolean proofs.
https://gitlab.com/MIAOresearch/software/VeriPB.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim:
Efficient checking and trimming using expressive clausal proofs. In Proceedings of
the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
422–429. Springer, July 2014.

Jakob Nordström (UCPH & LU) Certified Symmetry and Dominance Breaking SOAK ’22 30/21

https://gitlab.com/MIAOresearch/software/VeriPB

	Introduction
	Proof Logging for Combinatorial Solving
	SAT Proof Logging Challenges
	Contribution of This Work

	Pseudo-Boolean Reasoning with 0 -1 Linear Constraints 
	Pseudo-Boolean Constraints
	Pseudo-Boolean Reasoning
	Extended Cutting Planes

	Symmetry and Dominance 
	Dealing with Symmetries
	Proof System for Optimisation

	Applications
	Symmetry Breaking for SAT Solving

	Further Challenges
	Conclusion
	Appendix

