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A Fundamental Theoretical Problem. . .

Problem

Given a propositional logic formula F , is it true no matter how we
assign values to its variables?

tautology: Fundamental problem in theoretical computer
science ever since Stephen Cook’s NP-completeness paper in 1971

(And significance realized much earlier — cf. Gödel’s letter 1956)

These days recognized as one of the main challenges for all of
mathematics as identified by the Clay Mathematics Institute

Widely believed intractable in worst case — deciding whether this
is so is one of the famous million dollar Millennium Problems
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. . . with Huge Practical Implications

All known algorithms run in exponential time in worst case

But enormous progress on applied computer programs last
10–20 years (with important contributions from Chalmers)

These so-called SAT solvers routinely deployed to solve
large-scale real-world problems with millions of variables

Used in e.g. hardware verification, software testing, software
package management, artificial intelligence, cryptography,
bioinformatics, and more

But we also know small formulas with only about a hundred
variables that trip up even state-of-the-art SAT solvers
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Theoretical Understanding of SAT Solver Performance?

Best known algorithms based on simple DPLL method
(Davis-Putnam-Logemann-Loveland) from early 1960s
extended with conflict-driven clause learning (CDCL)

Can we gain better theoretical understanding of potential and
limitations of CDCL SAT solvers?

Key concerns in SAT solving: time and memory management

What are the connections between these resources?
Are they correlated? Are there trade-offs?

This talk: What can the field of proof complexity say about
these questions?
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

CNF Formulas
DPLL
Resolution

Tautologies and CNF Formulas

Conjunctive normal form (CNF)

ANDs of ORs of variables or negated variables
(or conjunctions of disjunctive clauses over literals)

Example:

(x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z)

Proving that a formula in propositional logic is always satisfied
m

Proving that a CNF formula is never satisfied
I.e., evaluates to false however you set the variables

(Sidenote: Can assume k-CNF — all clauses of constant size ≤ k)
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

CNF Formulas
DPLL
Resolution

A Very Simplified Description of DPLL

Visualize execution of DPLL algorithm as search tree

Branch on variable assignments in internal nodes
Stop in leaves when falsfied clause found

x ∨ y

x ∨ y ∨ z y ∨ z

x ∨ z x ∨ z

0 1

0 10 1

0 1

x

zy

z

Many more ingredients in modern SAT solvers, for instance:

Choice of branching variables crucial
In leaf, compute & add reason for failure (clause learning)
Restart every once in a while (but save computed info)
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

CNF Formulas
DPLL
Resolution

The Resolution Proof System

Resolution rule:
B ∨ x C ∨ x

B ∨ C

Observation

If F is a satisfiable CNF formula and D is derived from clauses
C1, C2 ∈ F by the resolution rule, then F ∧D is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause ⊥
from F by resolution

Proof of unsatisfiability = Refutation of formula
Will use terms “proof” and “refutation” as synonyms
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

CNF Formulas
DPLL
Resolution

DPLL and Resolution

A DPLL execution is essentially a resolution proof

Look at our example again:

x ∨ y

x ∨ y ∨ z y ∨ z

x ∨ z x ∨ z

0 1

0 10 1

0 1

x

zy

z

and apply resolution rule bottom-up

Holds also for clause learning — makes tree into a DAG
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

CNF Formulas
DPLL
Resolution

The Formal Model

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Refutation ends when empty clause ⊥
derived

Can represent refutation as

annotated list or

DAG

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Resolution Size/Length

Let N = size of formula (total # literals)

Size/length = # clauses in refutation

Most fundamental measure in proof complexity

Lower bound on CDCL running time
(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds in e.g. [Urq87, CS88, BW01]
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Resolution Space

Space = max # clauses in memory
when performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for
proof complexity)

Can be measured in different ways —
focus here on most common measure
clause space

Space at step t: # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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7. x Res(1, 6)
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Bounds on Resolution Space

Space always at most N +O(1) [ET01]

Build search tree of depth ≤ N

Derive root clause of one subtree

Keep in memory while doing other subtree; then resolve

# clauses needed in memory scales like tree height

Matching Ω(N) lower bounds in e.g. [ET01, ABRW02, BG03]

Two comments/questions:

Lower bounds hold even for “magic algorithms” making
optimal choices — maybe much stronger in practice?

Linear upper bounds hold for exponential-size proofs — what
about space for reasonably-sized proofs?
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Comparing Size and Space

Some “rescaling” needed to get meaningful comparisons of size
and space

Size exponential in formula size in worst case

Space at most linear

So natural to compare space to logarithm of size
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Size-Space Correlations?

∃ constant space refutation ⇒ ∃ polynomial size refutation [AD03]

What about other direction — does small size imply small space?
No, false in strongest sense possible

Theorem ([BN08])

There are k-CNF formula families of size N

refutable in size O(N)

requiring space Ω(N/ logN)

Optimal separation — given proof size O(N), always possible to
achieve proof space O(N/ logN)
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Size-Space Trade-offs

Can also show collection of size-space trade-off results

Formulas are simple and explicit

Theorem ((informal) [BN11])

There are k-CNF formulas for which

exist resolution refutations in small size

exist resolution refutations in small space

optimization of one measure causes dramatic blow-up for
other measure

So no meaningful simultaneous optimization possible for size and
space in the worst case
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

How to Get a Handle on Time-Space Relations?

Questions about time-space trade-offs fundamental in theoretical
computer science

In particular, well-studied (and well-understood) for pebble games
modelling calculations described by directed acyclic graphs
([CS76] and many others)

Time needed for calculation: # pebbling moves

Space needed for calculation: max # pebbles required
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z

x y

u v w

# moves 0

Current # pebbles 0

Max # pebbles so far 0

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

The Black-White Pebble Game

Goal: get single black pebble on sink vertex z of G

z
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

sources are true

truth propa-
gates upwards

but sink is false

Extensive literature on pebbling from 1970s and 80s

In particular, the kind of time-space separations and trade-offs we
want for resolution are known to hold for pebbling

Hope that pebbling properties of DAGs somehow carry over to
resolution refutations of pebbling contradictions
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

A Problem and a Fix: Variable Substitution

Problem: Pebbling contradictions supereasy (solved by unit
propagation) — no nontrivial lower bounds possible

Fix: Make formula harder by substituting x1 ⊕ x2 for every x
(also works for other Boolean functions with “right” properties):

x ∨ z

⇓
¬(x1 ⊕ x2) ∨ (z1 ⊕ z2)

⇓
(x1 ∨ x2 ∨ z1 ∨ z2)

∧ (x1 ∨ x2 ∨ z1 ∨ z2)

∧ (x1 ∨ x2 ∨ z1 ∨ z2)

∧ (x1 ∨ x2 ∨ z1 ∨ z2)

Now CNF formula inherits pebbling graph properties!
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Trade-offs in the Superlinear Space Regime?

But. . .

Pebbling contradictions always refutable in linear size and
linear space simultaneously

If exists small proof, always possible to find in linear space?

Or are there formulas for which small proofs require
superlinear space?

Theorem (informal [BBI12, BNT13])

For every s ∈ N+ there are k-CNF formulas for which

exist small proofs in size N s+O(1) and space N s+O(1)

exist space-efficient proofs in space O
(
s log2N

)
any proof in space O

(
N s/2

)
requires superpolynomial size
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Tseitin Formulas over Long, Skinny Grids

Take w ×m grid, w = O(logm)

Label vertices 0/1 with total charge odd

Let variables = edges

Write down clauses encoding constraints
“vertex label = parity of incident edges”

Unsatifiable — every edge counted twice, so
total sum can’t be odd

a

b

c

d

e

f

g

(a ∨ d)

∧ (a ∨ d)

∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (a ∨ b ∨ e)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (b ∨ c ∨ f)

∧ (c ∨ g)

∧ (c ∨ g)

...
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Small-Space “Divide-and-Conquer” Proof

Build DPLL search tree querying edges

Identify odd-charge component

Disconnect into two pieces by querying edges; then recurse

Violated vertex found after w logm queries

Height of tree = proof space = w logm
(very space-efficient, but proof size exponential in space)
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Upper and Lower Bounds on Size and Space
Size-Space Trade-offs
Some Proof Ingredients

Small-Size “Dynamic programming” Proof

View constraints as linear equations mod 2

Sum constraints vertex by vertex

Can be done in resolution by completeness
But parity of w + 1 variables ⇒ 2w clauses

Total of mw summations

Small proof size O
(
mw2w

)
= poly(m)

However, space ≈ size — superlinear!
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Algebraic Methods of Reasoning
Geometric Methods of Reasoning

Polynomial Calculus

Translate CNF to polynomials and do algebraic manipulations
(so-called Gröbner basis computations) [CEI96, ABRW02]

Much stronger proof system, but most results we covered for
resolution carry over (proofs are different and harder, though!)

Some current SAT solvers do Gaussian elimination, but this is
only very limited form of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just
that too little work has been done (or both)?

Some shortcut seems to be needed — full Gröbner basis
computation does too much work
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SAT solving and Proof Complexity
Size, Space, and Size-Space Trade-offs in Resolution

Stronger Proof Systems than Resolution

Algebraic Methods of Reasoning
Geometric Methods of Reasoning

Cutting Planes

Translate CNF to linear inequalities over the reals and prove
no integral points in polytope [CCT87]

Again much stronger proof system than resolution

Very little known about size, space, or trade-offs

Some work on pseudo-Boolean SAT solvers using (subset of)
cutting planes

Seems hard to make competitive with CDCL on CNFs —
one key problem is to recover cardinality constraints

But if cardinality constraints can be detected, solvers can do
really well (at least on combinatorial benchmarks) [BBLM14]
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Summing up

Overview of results on size-space trade-offs in proof complexity
(more details in survey [Nor13])

Resolution fairly well understood
Most results in this talk carry over to polynomial calculus
(algebraic reasoning)
Cutting planes (geometric/pseudo-Boolean methods) very
much less understood — several longstanding open questions

Two open questions:

Do these time-space trade-offs actually show up in SAT
solving practice? (Under investigation. . . )
How can we build efficient SAT solvers based on stronger
proof systems than resolution?

Thank you for your attention!
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