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Proof complexity:  Study of succinct, polynomial-time 
verifiable certificates for unsatisfiable CNF formulas

Generally believed impossible to provide certificates 
of length at most polynomial in formula size

If proven, would imply coNP ≠ NP and hence P ≠ NP

Still very distant goal...
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More recent motivation for proof complexity:
Applied SAT solving

A SAT solver looks for satisfying assignments of a CNF

When CNF formula is unsatisfiable, solver implicitly 
searches for certificate/proof of unsatisfiability

using some method of reasoning (i.e., a proof system)

Proof complexity: study of potential and limitations
 of methods of reasoning used by SAT solvers
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Expressiveness: stronger proof system ⇒ shorter proofs

Simplicity: weaker proof system ⇒ simpler search space 

                                                    ⇒ better heuristics

Suitable proof systems for SAT solving?
Trade-off between:
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Resolution proof system

• Simple enough to allow efficient proof search 

• Powerful enough to be useful in practice

• Davis-Putnam-Logemann-Loveland (DPLL) algorithm

• CDCL SAT solvers (Conflict-Driven Clause Learning)

• Algorithms in Tarjan (1972),  Tarjan & Trojanowski 
(1977),  Jian (1986),  and Shindo & Tomita (1990) for 
finding independent sets can be simulated in 
resolution (see Chvátal, 1977)

• McDiarmid (1984) proof system for colourability
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Resolution rule: 
A _ x B _ ¬x

A _B

Initial clauses: Ci

F =
m̂

i=1

CiShow unsatisfiable

Goal: Derive empty clause ⊥

Definition of resolution
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width lower bounds

proof size lower bounds proof space lower bounds
[Ben-Sasson & Wigderson ’99]

[Bonet & Galesi ’99]
[Atserias & Dalmau ‘03]

[Ben-Sasson & Nordström ‘08]

SPACE:    # clauses in memory during verification

SIZE:        # clauses in resolution proof

WIDTH:  # literals in largest clause in proof 
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Small width implies small size

But all known (natural) formulas with proof width < √|Vars| 
in fact have linear proof size measured in size of formula

 Resolution proof in width ≤ w must have size ≤ |Vars|O(w)

Proof: Just count total # distinct clauses
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Small width implies small size

But all known (natural) formulas with proof width < √|Vars| 
in fact have linear proof size measured in size of formula

 Resolution proof in width ≤ w must have size ≤ |Vars|O(w)

Proof: Just count total # distinct clauses
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Small width makes CDCL run fast

Theorem [Atserias, Fichte, Thurley ’09]

If there exists a width-w proof, then w.h.p. the formula is 
solved in time |Vars|O(w) by CDCL (with enough randomness)

Note that CDCL couldn’t care less about narrow proofs...
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Is this running time optimal?
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• have narrow resolution proofs of width O(k)  

• require proofs of size nΩ(k) in 

resolution

polynomial calculus (Grӧbner basis computations)

Sherali-Adams (linear programming hierarchy)

We exhibit family Fn,k of polynomial-size 3-CNF formulas that:

Our results
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i.

description of the formula
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An “obfuscated” pigeonhole principle

Our 3-CNF formula claims that it is possible to

• pick k among a set of n pigeons

• map the chosen pigeons one-to-one to k-1 holes
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: “The composition of p and q is one-to-one”Fn,k

p : [k] �! [n] q : [n] �! [k � 1]

13



: “The composition of p and q is one-to-one”Fn,k

p : [k] �! [n] q : [n] �! [k � 1]

13



u 2 [k]

v 2 [n]

w 2 [k � 1]

standard conversion to 3-CNF

function p picks k pigeons

3 Upper and lower bounds in resolution

The formula has variables pu,v that encode the function p, variables qv,w that encode the
function q, variables rv that encode a superset of the range of p, and the following collection of
clauses:

pu,1 _ · · · _ pu,n u 2 [k] (3.1a)

pu,v _ pu0,v u, u0 2 [k], u 6= u0, and v 2 [n] (3.1b)

pu,v _ rv u 2 [k] and v 2 [n] (3.1c)

rv _ qv,1 _ · · · _ qv,k�1 v 2 [n] (3.1d)

rv _ rv0 _ qv,w _ qv0,w v, v0 2 [n], v 6= v0, and w 2 [k � 1] (3.1e)

Clauses (3.1a)–(3.1b) say that p maps [k] injectively into [n]; (3.1c) say that r contains the range
of p; and (3.1d)–(3.1e) force q to be defined and injective on this range.

Next we transform RPHPk,n
k�1 into a 3-CNF formula, denoted ERPHPk,n

k�1. This is done in
the standard way by using extension variables to break up the wide clauses in (3.1a) and (3.1d)
and the 4-clauses in (3.1e). Breaking (3.1a) produces the clauses

pu,1 _ pu,2 _ yu,2 u 2 [k], (3.2a)

yu,v _ pu,v+1 _ yu,v+1 u 2 [k], v 2 [2, n� 3], (3.2b)

yu,n�2 _ pu,n�1 _ pu,n u 2 [k], (3.2c)

breaking (3.1d) yields

rv _ qv,1 _ zv,1 v 2 [n], (3.2d)

zv,w _ qv,w+1 _ zv,w+1 v 2 [n], w 2 [k � 4], (3.2e)

zv,k�3 _ qv,k�2 _ qv,k�1 v 2 [n], (3.2f)

and the rest of the clauses in ERPHPk,n
k�1 are

pu,v _ pu0,v u, u0 2 [k], u 6= u0, v 2 [n] (3.2g)

pu,v _ rv u 2 [k], v 2 [n] (3.2h)

rv _ rv0 _ rv,v0 v, v0 2 [n], v 6= v0 (3.2i)

rv,v0 _ qv,w _ qv0,w v, v0 2 [n], v 6= v0, w 2 [k � 1]. (3.2j)

The formula ERPHPk,n
k�1 consisting of the clauses in (3.2a)–(3.2j) is the formula for which

we will prove Theorem 3.1.

3.2 Proof of the upper bound

Consider the sequences of the form (v1, v2, . . . , vk, w1, w2, . . . , wk) where vu 2 [n] and wu 2 [k�1].
For each such sequence consider the corresponding clause

_

u2[k]

pu,vu _
_

u2[k]

qvu,wu
. (3.3)

We derive all such clauses from the axiom clauses of ERPHPk,n
k�1, and from the collection of

clauses in (3.3) it is then straightforward to derive contradiction. All of these (sub)derivations
are e�cient, so the size of the whole refutation is dominated by the number of clauses in (3.3).

For each clause in (3.3) we are in one of two cases: either vu = vu0 for some u < u0, or
there must be a pair vu 6= vu0 with wu = wu0 by the pigeonhole principle. In the former
case (3.3) is just a weakening of the axiom (3.2g), namely pu,v _ pu0,v with v = vu = vu0 . In
the latter case we first resolve axioms pu,vu _ rvu , pu0,vu0

_ rvu0 from (3.2h), rvu _ rvu0 _ rvu,vu0
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r ✓ [n]
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The actual formula in the paper is converted to 3-CNF

l1 _ l2 _ . . . _ lm

l1 _ l2 _ e1

¬e2 _ l3 _ e3
...

¬ei�1 _ li _ ei
...

¬em�2 _ lm�1 _ lm

Ignore this detail to simplify the talk
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The 3-CNF version of the formula has 

O(kn2)

variables

clauses

O(n2)
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choose a            and fix          to true 

choose a                 and fix           to true 

Refutation by brute-force DPLL procedure     

For each          :u 2 [k]

if there is a conflict, then backtrack

For each          :u 2 [k]

if there is a conflict then backtrack

qvu,w

pu,vuvu 2 [n]

w 2 [k � 1]
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Yields proof in tree-like resolution (= DPLL)

Width 2k + 1

Size nkkk = nO(k)
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ii.

lower bound for resolution
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Key tool: random restriction

⇢

⇢

Fn,k Fn,k �⇢

proof of simplified formula

A partial assignment ⇢

simplifies formula

Idea: 
Simplified formula requires proof with complex clause
If proof is small, restriction removes all complex clauses

⇡ ⇡ �⇢
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Usually, restriction arguments give exponential 
lower bounds, which cannot work here...

... we need to fine tune the restriction to make it 
work in the right range of parameters.

For the experts: 
Furst-Saxe-Sipser style 
instead of Håstad style
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• Pick a set 

• Fix 

• Match     with     arbitrarily

• If           fix all       at random

• Resulting formula is                    

Random restriction argument: take     as follows⇢

S ✓ [n], |S| = k

rv := v 2 S

[k] S

rv = 0 qv,w

PHPk
k�1

on surviving        variables  qv,w
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Pigeons “mentioned” by the restricted clause:

p1,2 _ p̄3,2 _ p̄1,3 _ r2 _ r4 _ r̄3 _ q3,4
_ q3,2

_ q2,4
_ q̄1,2

_ q̄2,5

⇢

q3,4
_ q3,2

_ q̄1,2 “mentions” 2 pigeons
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Lemma 1. After restriction, a clause mentions k-1 
pigeons with probability <           

Hence, if proof is small there exists restriction 
yielding proof where no clause mentions k-1 pigeons

n�⌦(k)
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Let                          be picked by the restriction S ✓ [n], |S| = k

q̄2,1 _ q2,4 _ q̄2,5E.g. 

An OR of variables mentioning the same pigeon

is not set to true with probability at most 

conditioned on the previous       choices< k

⇣
1
2 + k

n�k

⌘
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a clause in the unrestricted refutation            C

r # of pigeons mentioned in C

r � k log n+ k

r < k log n+ k

Pr[C contains all k picked pigeons] /
✓
k log n+ k

k

◆
n�⌦(k)

⇡

26

Pr[C is not satisfied] 
✓
1

2

◆k logn

 n�k



Restricted clause mentions k-1 pigeons with probability

so by union bound

End of proof of Claim 1

⇢ no clause mentions all
k surviving pigeons, w.p. >0.

|⇧| < nO(k)

n�⌦(k)
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Lemma 2: Any resolution refutation of            has
a clause which mentions k-1 pigeons

PHPk
k�1

(Proof is not hard using standard tools)
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Defendant

Prosecutor

Prosecutor

Prosecutor

Defendant wins: memory mentions k pigeons
Prosecutor wins: memory falsifies a clause of

We use a 2-player game

{q1,2 = 0; q3,2 = 1}

{q1,2 = 0; q3,2 = 1; q2,4 = 0}

{q1,2 = 0; q2,4 = 0}

q2,4?

PHPk
k�1

q2,4 = 0

q3,2Erase
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¬x _ ¬y _ u

¬y _ ¬z _ v

¬u _ ¬v _ s

¬z _ v

¬x _ u

¬v _ s

¬s

u

z

y

x

s

v

⇤

Resolution proofs which never mentions 
k-1 pigeons turns into winning Prosecutor strategy
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Defendant

Prosecutor

How? Use the resolution proof as a rulebook
(but might need extra pigeon for resolution steps)

q1,2 _ q̄3,2

q1,2 _ q2,4q̄3,2 _ q̄2,4
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¬x _ ¬y _ u
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¬s

u

z

y

x

s

v

⇤
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Defendant winning strategy:

Defendant keeps a matching between the pigeons 
mentioned in the record and the holes.

when Prosecutor queries         ...qv,w

v is already mentioned: Defendant answers according to matching 

v is not mentioned: Defendant matches it to a free hole     

when Prosecutor erases last occurrence of   ...v

Defendant removes              from the matching

wv

(v, wv)
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End of proof of Claim 2

Defendant matches the mentioned pigeons

Prosecutor must mention all k pigeons

Any proof of            has clause mentioning k-1 pigeonsPHPk
k�1

34



Consider a proof      of formula           with 

By random restriction, 

Proof recap

by Lemma 1, there is a restriction such that

by Lemma 2

must mention k-1 pigeons in some clause

Fn,k

PHPk
k�1we get            refutation of       

does not mention k-1 pigeons in any clause

⇡ �⇢

⇡ �⇢

⇡ �⇢

|⇡| < nO(k)⇡
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Our results

There are 3-CNF formulas Fn,k

• n2 variables, kn2 clauses,

with narrow tree-like resolution proof of

• width 2k+1 

Requires proof of size nΩ(k) in proof systems

• resolution

• polynomial calculus

• Sherali-Adams
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iii.

open problems
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Our formula has polynomial size Lasserre proofs

Lasserre/Sum of squares proof system

Is the counting argument nΩ(k) tight for Lasserre?
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k-Clique formula

[Beyersdorff, Galesi, Lauria, Razborov ‘12] conjecture size |V|Ω(k)

[Beyersdorff, Galesi, Lauria ’13] prove it for treelike resolution 
[Lauria, Pudlák, Rödl, Thapen ‘13] prove it for binary encoding
[Beame, Impagliazzo, Sabharwal ‘07] size 2Ω(|V|)  for k=O(|V|)

Still open for general resolution and k much smaller than |V|

G = (V,E)

W
v2V xiv i 2 [k]for

Fix                  with no k-clique

¬xiv _ ¬xjw i 6= j, {v, w} 62 Efor
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[Dantchev, Martin, Szeider ‘11] discuss resolution proofs for the claim: 

“CNF formula F has no SAT assignment with at most k ones” 

and ask for formulas that require proof length |Vars|Ω(k)

Parameterized Proof Complexity
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[Ben-Sasson & Wigderson ’99]: 
Short resolution proof can be transformed into narrow one

However, transformation incurs exponential size blowup
So narrow proof is no longer short...

Can the proof be made narrow without exploding the size?
Or is there a trade-off between size and width so that the 

two measures cannot be optimized simultaneously?

Strong trade-offs known for 
- width vs. space [Ben-Sasson ’02]
- size vs. space [Ben-Sasson & Nordström ’11, Beame, Beck, Impagliazzo ’12]

Size-width trade-offs for resolution?
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Thank you for 
your attention!
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