
Leveraging Computational Complexity Theory for
Verifiably Correct Combinatorial Optimization

Jakob Nordström

University of Copenhagen
and Lund University

Digital Research Centre Denmark (DIREC) Algorithms Workshop
Hotel Nyborg Strand
September 13, 2021

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 1/25



Introduction Computational Hardness in Theory and Practice

Computational Hardness in Theory

Trained as computational complexity theorist

Focus on problems in NP

Prove unconditional lower bounds for bounded computational models

Captures algorithmic approaches actually used in practice

Except. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 2/25



Introduction Computational Hardness in Theory and Practice

. . . And in Practice

Combinatorial solving and optimization deals with NP-hard problems
Show up all over the place, e.g.:

airline scheduling
logistics
hardware verification
donor-recipients matching for kidney transplants [MO12, BvdKM+21]

Lots of effort last decades into developing sophisticated so-called
combinatorial solvers that often work amazingly well in practice!

Boolean satisfiability (SAT) solving [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]

Problems with cognitive dissonance — concepts like “strong
exponential time hypothesis” just don’t seem too relevant. . .

Can computational complexity contribute anything?
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 3/25



Introduction Computational Hardness in Theory and Practice

The Dirty Little Secret. . .

Solvers very fast, but sometimes wrong (even best commercial
ones) [BLB10, CKSW13, AGJ+18, GSD19, GS19]

Even worse: No way of knowing for sure when errors happen

Checking that a solution is feasible should be straightforward
(though some solvers get even this wrong)

But how to check the absence of solutions?

Or that a solution is optimal?

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 4/25



Introduction Computational Hardness in Theory and Practice

What can be done about this?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only solution but also
2 simple, machine-verifiable proof that solution is correct

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 5/25



Introduction Computational Hardness in Theory and Practice

What can be done about this?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only solution but also
2 simple, machine-verifiable proof that solution is correct

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 5/25



Introduction Computational Hardness in Theory and Practice

What can be done about this?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only solution but also
2 simple, machine-verifiable proof that solution is correct

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 5/25



Introduction Proof Logging

Proof Logging with Certifying Solvers
Workflow:

Run solver on a problem
Feed solution + proof to proof checker
Verify that proof checker says solution is correct and/or optimal

Proof system (in the sense of [CR79]) used by certifying solver should
be very simple (to increase trust)
be powerful (to allow proof logging with minimal overhead)
allow verification by stand-alone (formally verified) proof checker

Computational complexity problems, but with a constructive angle!

Success story for basic SAT solving: DRAT proof logging
[HHW13a, HHW13b, WHH14]

But has remained out of reach for stronger paradigms
And even for some advanced SAT solving techniques
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 6/25



Introduction Proof Logging

Proof Logging with Certifying Solvers
Workflow:

Run solver on a problem
Feed solution + proof to proof checker
Verify that proof checker says solution is correct and/or optimal

Proof system (in the sense of [CR79]) used by certifying solver should
be very simple (to increase trust)
be powerful (to allow proof logging with minimal overhead)
allow verification by stand-alone (formally verified) proof checker

Computational complexity problems, but with a constructive angle!

Success story for basic SAT solving: DRAT proof logging
[HHW13a, HHW13b, WHH14]

But has remained out of reach for stronger paradigms
And even for some advanced SAT solving techniques
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 6/25



Introduction Proof Logging

Proof Logging with Certifying Solvers
Workflow:

Run solver on a problem
Feed solution + proof to proof checker
Verify that proof checker says solution is correct and/or optimal

Proof system (in the sense of [CR79]) used by certifying solver should
be very simple (to increase trust)
be powerful (to allow proof logging with minimal overhead)
allow verification by stand-alone (formally verified) proof checker

Computational complexity problems, but with a constructive angle!

Success story for basic SAT solving: DRAT proof logging
[HHW13a, HHW13b, WHH14]

But has remained out of reach for stronger paradigms
And even for some advanced SAT solving techniques
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 6/25



Introduction Proof Logging

Proof Logging with Certifying Solvers
Workflow:

Run solver on a problem
Feed solution + proof to proof checker
Verify that proof checker says solution is correct and/or optimal

Proof system (in the sense of [CR79]) used by certifying solver should
be very simple (to increase trust)
be powerful (to allow proof logging with minimal overhead)
allow verification by stand-alone (formally verified) proof checker

Computational complexity problems, but with a constructive angle!

Success story for basic SAT solving: DRAT proof logging
[HHW13a, HHW13b, WHH14]

But has remained out of reach for stronger paradigms
And even for some advanced SAT solving techniques
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 6/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0 Decision

Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0 Decision

Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 7/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 9/25



Basic SAT Solving Resolution

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
(So lower bounds on proof size ⇒ lower bounds on running time)

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 10/25



Basic SAT Solving Resolution

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
(So lower bounds on proof size ⇒ lower bounds on running time)

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 10/25



Basic SAT Solving Resolution

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
(So lower bounds on proof size ⇒ lower bounds on running time)

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 10/25



Basic SAT Solving Resolution

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
(So lower bounds on proof size ⇒ lower bounds on running time)

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 10/25



Basic SAT Solving Resolution

Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing
together conflict analyses:

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 11/25



Basic SAT Solving Resolution

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution. . . by stringing
together conflict analyses:

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 11/25



Basic SAT Solving Resolution

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:

w
d
=0

u
u∨w
= 0

x
d
=0

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

x ∨ z

x ∨ z

x

x
x
=0

u
u∨x
= 1

u ∨ w

u ∨ w

u

x

⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 11/25



Basic SAT Solving Resolution

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x x ∨ z

x ∨ z

x

u ∨ w

u ∨ w

u

x

⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 11/25



Basic SAT Solving Resolution

Reverse Unit Propagation

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a RUP clause with respect to F if

assigning C to false
unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
All clauses learned by CDCL solver are RUP clauses

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 12/25



Basic SAT Solving Resolution

Reverse Unit Propagation

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a RUP clause with respect to F if

assigning C to false
unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
All clauses learned by CDCL solver are RUP clauses

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 12/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 13/25



Basic SAT Solving Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a↔ (x ∧ y)

Allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing could to steps like this

Resolution proof system cannot certify such derivations (by definition)

Extended resolution proof system [Tse68, CR79] extremely powerful

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 14/25



Basic SAT Solving Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a↔ (x ∧ y)

Allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing could to steps like this

Resolution proof system cannot certify such derivations (by definition)

Extended resolution proof system [Tse68, CR79] extremely powerful

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 14/25



Basic SAT Solving Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a↔ (x ∧ y)

Allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing could to steps like this

Resolution proof system cannot certify such derivations (by definition)

Extended resolution proof system [Tse68, CR79] extremely powerful

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 14/25



Basic SAT Solving Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a↔ (x ∧ y)

Allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing could to steps like this

Resolution proof system cannot certify such derivations (by definition)

Extended resolution proof system [Tse68, CR79] extremely powerful

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 14/25



Basic SAT Solving Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a↔ (x ∧ y)

Allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing could to steps like this

Resolution proof system cannot certify such derivations (by definition)

Extended resolution proof system [Tse68, CR79] extremely powerful

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 14/25



Basic SAT Solving Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a↔ (x ∧ y)

Allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing could to steps like this

Resolution proof system cannot certify such derivations (by definition)

Extended resolution proof system [Tse68, CR79] extremely powerful

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 14/25



Basic SAT Solving Extension Rules

Substitution Redundancy

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant clauses should be OK
Notions such as RAT [JHB12] and propagation redundancy [HKB17]

Substitution redundancy [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω,
called a witness, for which it holds that

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C
Implication should be efficiently verifiable (e.g., all clauses in
(F ∧ C)�ω should be RUP, say)

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 15/25



Basic SAT Solving Extension Rules

Substitution Redundancy

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant clauses should be OK
Notions such as RAT [JHB12] and propagation redundancy [HKB17]

Substitution redundancy [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω,
called a witness, for which it holds that

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C
Implication should be efficiently verifiable (e.g., all clauses in
(F ∧ C)�ω should be RUP, say)

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 15/25



Basic SAT Solving Extension Rules

Substitution Redundancy

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant clauses should be OK
Notions such as RAT [JHB12] and propagation redundancy [HKB17]

Substitution redundancy [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω,
called a witness, for which it holds that

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C
Implication should be efficiently verifiable (e.g., all clauses in
(F ∧ C)�ω should be RUP, say)

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 15/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Next Challenge: Cardinality Constraints

Given clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

can deduce that
x1 + x2 + x3 + x4 ≥ 2

Reasoning with cardinality constraints can solve pigeonhole principle
efficiently, which is exponentially hard for basic CDCL [Hak85, BKS04]

Implemented in solver Lingeling [Lin], but no DRAT proof logging
Extended resolution can do it in theory, but efficiently in practice?!

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 16/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Next Challenge: Cardinality Constraints

Given clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

can deduce that
x1 + x2 + x3 + x4 ≥ 2

Reasoning with cardinality constraints can solve pigeonhole principle
efficiently, which is exponentially hard for basic CDCL [Hak85, BKS04]

Implemented in solver Lingeling [Lin], but no DRAT proof logging
Extended resolution can do it in theory, but efficiently in practice?!

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 16/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Pseudo-Boolean Constraints
Pseudo-Boolean constraints are 0-1 integer linear constraints∑

i

ai`i ≥ A

ai, A ∈ Z
literals `i: xi or xi (where xi + xi = 1)
as before, variables xi take values 0 = false or 1 = true

Some types of pseudo-Boolean constraints
1 Clauses

x ∨ y ∨ z ⇔ x+ y + z ≥ 1
2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2
3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 17/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Pseudo-Boolean Constraints
Pseudo-Boolean constraints are 0-1 integer linear constraints∑

i

ai`i ≥ A

ai, A ∈ Z
literals `i: xi or xi (where xi + xi = 1)
as before, variables xi take values 0 = false or 1 = true

Some types of pseudo-Boolean constraints
1 Clauses

x ∨ y ∨ z ⇔ x+ y + z ≥ 1
2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2
3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 17/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Pseudo-Boolean Proof Logging

Cutting planes proof system [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(cAai + cBbi)`i ≥ cAA+ cBB

[cA, cB ≥ 0]

Division
∑

i cai`i ≥ A∑
i ai`i ≥ dA/ce

[c > 0]

Combine with substitution redundancy rule

Yields VeriPB proof system [EGMN20, GMN20, GMM+20, GN21]

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 18/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Pseudo-Boolean Proof Logging

Cutting planes proof system [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(cAai + cBbi)`i ≥ cAA+ cBB

[cA, cB ≥ 0]

Division
∑

i cai`i ≥ A∑
i ai`i ≥ dA/ce

[c > 0]

Combine with substitution redundancy rule

Yields VeriPB proof system [EGMN20, GMN20, GMM+20, GN21]

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 18/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Pseudo-Boolean Proof Logging

Cutting planes proof system [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(cAai + cBbi)`i ≥ cAA+ cBB

[cA, cB ≥ 0]

Division
∑

i cai`i ≥ A∑
i ai`i ≥ dA/ce

[c > 0]

Combine with substitution redundancy rule

Yields VeriPB proof system [EGMN20, GMN20, GMM+20, GN21]

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 18/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Recovering cardinality constraints from CNF

Clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Pseudo-Boolean constraints

x1 + x2 + x3 ≥ 1
x1 + x2 + x4 ≥ 1
x1 + x3 + x4 ≥ 1
x2 + x3 + x4 ≥ 1

Add all up

3x1 + 3x2 + 3x3 + 3x4 ≥ 4

and divide by 3 to get

x1 + x2 + x3 + x4 ≥ 2

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 19/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:
MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 20/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:
MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 20/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:
MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 20/25



Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:
MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 20/25



Advanced SAT Techniques XOR Reasoning

XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

This is just XOR reasoning:

x+ y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x+ w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too
inefficient in practice!

Could add XORs to language, but prefer to
keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 21/25



Advanced SAT Techniques XOR Reasoning

XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

This is just XOR reasoning:

x+ y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x+ w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too
inefficient in practice!

Could add XORs to language, but prefer to
keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 21/25



Advanced SAT Techniques XOR Reasoning

XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

This is just XOR reasoning:

x+ y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x+ w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too
inefficient in practice!

Could add XORs to language, but prefer to
keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 21/25



Advanced SAT Techniques XOR Reasoning

XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

This is just XOR reasoning:

x+ y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x+ w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too
inefficient in practice!

Could add XORs to language, but prefer to
keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 21/25



Advanced SAT Techniques XOR Reasoning

XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

This is just XOR reasoning:

x+ y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x+ w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too
inefficient in practice!

Could add XORs to language, but prefer to
keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 21/25



Advanced SAT Techniques XOR Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

Use substitution redundancy and fresh
variables a,b to derive

x+ y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x+ w + 2y + 2z + 2a+ 2b = 6

From this can efficiently extract

x+ w ≥ 1
x+ w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 22/25



Advanced SAT Techniques XOR Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

Use substitution redundancy and fresh
variables a,b to derive

x+ y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x+ w + 2y + 2z + 2a+ 2b = 6

From this can efficiently extract

x+ w ≥ 1
x+ w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 22/25



Advanced SAT Techniques XOR Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

Use substitution redundancy and fresh
variables a,b to derive

x+ y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x+ w + 2y + 2z + 2a+ 2b = 6

From this can efficiently extract

x+ w ≥ 1
x+ w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 22/25



Advanced SAT Techniques XOR Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

Use substitution redundancy and fresh
variables a,b to derive

x+ y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x+ w + 2y + 2z + 2a+ 2b = 6

From this can efficiently extract

x+ w ≥ 1
x+ w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 22/25



Advanced SAT Techniques XOR Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

Use substitution redundancy and fresh
variables a,b to derive

x+ y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x+ w + 2y + 2z + 2a+ 2b = 6

From this can efficiently extract

x+ w ≥ 1
x+ w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 22/25



Advanced SAT Techniques Symmetry Handling

The Challenge of Symmetries

Symmetries
crucial for some optimization problems [AW13, GSVW14]
show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries

Better to keep proof system super-simple and verifiable. . .

Interesting challenges for proof logging!
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 23/25



Advanced SAT Techniques Symmetry Handling

The Challenge of Symmetries

Symmetries
crucial for some optimization problems [AW13, GSVW14]
show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries

Better to keep proof system super-simple and verifiable. . .

Interesting challenges for proof logging!
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 23/25



Advanced SAT Techniques Symmetry Handling

The Challenge of Symmetries

Symmetries
crucial for some optimization problems [AW13, GSVW14]
show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries

Better to keep proof system super-simple and verifiable. . .

Interesting challenges for proof logging!
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 23/25



Advanced SAT Techniques Symmetry Handling

The Challenge of Symmetries

Symmetries
crucial for some optimization problems [AW13, GSVW14]
show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries

Better to keep proof system super-simple and verifiable. . .

Interesting challenges for proof logging!
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 23/25



Further Challenges

Challenges Beyond SAT

Proof logging for combinatorial optimization
Maximum satisfiability (MaxSAT) solving
Pseudo-Boolean optimization
Mixed integer linear programming (some work in [CGS17, EG21])
Constraint programming (some work in
[EGMN20, GMN20, GMM+20])

And more. . .
Lots of challenging problems and interesting ideas
Lots of interesting applications of proof logging — enables rigorous
analysis of combinatorial solvers
This talk would (hopefully) sound quite different in a year or two

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 24/25



Further Challenges

Challenges Beyond SAT

Proof logging for combinatorial optimization
Maximum satisfiability (MaxSAT) solving
Pseudo-Boolean optimization
Mixed integer linear programming (some work in [CGS17, EG21])
Constraint programming (some work in
[EGMN20, GMN20, GMM+20])

And more. . .
Lots of challenging problems and interesting ideas
Lots of interesting applications of proof logging — enables rigorous
analysis of combinatorial solvers
This talk would (hopefully) sound quite different in a year or two

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 24/25



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily
addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness
seems like a promising approach

Leads to interesting computational complexity problems with
constructive twist

Cutting planes reasoning with pseudo-Boolean constraints might hit a
sweet spot between simplicity and expressibility

Thank you for your attention!

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 25/25



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily
addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness
seems like a promising approach

Leads to interesting computational complexity problems with
constructive twist

Cutting planes reasoning with pseudo-Boolean constraints might hit a
sweet spot between simplicity and expressibility

Thank you for your attention!

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 25/25



References I

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal
Schweitzer. An introduction to certifying algorithms. it - Information Technology
Methoden und innovative Anwendungen der Informatik und Informationstechnik,
53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter
Nightingale. Metamorphic testing of constraint solvers. In Proceedings of the
24th International Conference on Principles and Practice of Constraint
Programming (CP ’18), volume 11008 of Lecture Notes in Computer Science,
pages 727–736. Springer, August 2018.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming:
Analyzing 12 years of progress. In Michael Jünger and Gerhard Reinelt, editors,
Facets of Combinatorial Optimization, pages 449–481. Springer, 2013.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2nd edition, February 2021.

[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence
Research, 22:319–351, December 2004. Preliminary version in IJCAI ’03.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 26/25



References II

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University
of Chicago, 1937.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and
debugging of SAT and QBF solvers. In Proceedings of the 13th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’10), volume
6175 of Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer
programming—A look back from the other side of the tipping point. Annals of
Operations Research, 149(1):37–41, February 2007.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Conference
on Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and
extended resolution. In Proceedings of the 22nd International Conference on
Theory and Applications of Satisfiability Testing (SAT ’19), volume 11628 of
Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 27/25



References III

[BvdKM+21] Péter Biró, Joris van de Klundert, David F. Manlove, William Pettersson, Tommy
Andersson, Lisa Burnapp, Pavel Chromy, Pablo Delgado, Piotr Dworczak,
Bernadette Haase, Aline Hemke, Rachel Johnson, Xenia Klimentova, Dirk
Kuypers, Alessandro Nanni Costa, Bart Smeulders, Frits C. R. Spieksma,
Maŕıa O. Valent́ın, and Ana Viana. Modelling and optimisation in European
kidney exchange programmes. European Journal of Operational Research,
291(2):447–456, June 2021.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of
cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, November
1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer
programming results. In Proceedings of the 19th International Conference on
Integer Programming and Combinatorial Optimization (IPCO ’17), volume 10328
of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid
branch-and-bound approach for exact rational mixed-integer programming.
Mathematical Programming Computation, 5(3):305–344, September 2013.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 28/25



References IV

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44(1):36–50, March 1979. Preliminary
version in STOC ’74.

[Cry] CryptoMiniSat. https://github.com/msoos/cryptominisat/.

[DBB17] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation
learning: Effective dynamic symmetry handling for SAT. In Proceedings of the
20th International Conference on Theory and Applications of Satisfiability Testing
(SAT ’17), volume 10491 of Lecture Notes in Computer Science, pages 83–100.
Springer, August 2017.

[DBBD16] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved
static symmetry breaking for SAT. In Proceedings of the 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’16), volume
9710 of Lecture Notes in Computer Science, pages 104–122. Springer, July 2016.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 29/25

https://github.com/msoos/cryptominisat/


References V

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact
rational mixed integer programming. In Proceedings of the 22nd International
Conference on Integer Programming and Combinatorial Optimization (IPCO ’21),
volume 12707 of Lecture Notes in Computer Science, pages 163–177. Springer,
May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying
all differences using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI ’20), pages 1486–1494, February 2020.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into
SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26,
March 2006.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick
Prosser, and James Trimble. Certifying solvers for clique and maximum common
(connected) subgraph problems. In Proceedings of the 26th International
Conference on Principles and Practice of Constraint Programming (CP ’20),
volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
September 2020.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 30/25



References VI

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism
meets cutting planes: Solving with certified solutions. In Proceedings of the 29th
International Joint Conference on Artificial Intelligence (IJCAI ’20), pages
1134–1140, July 2020.

[GMN21] Stephan Gocht, Ruben Martins, and Jakob Nordström. Certifying CNF encodings
of pseudo-Boolean constraints. Work in progress presented at the workshop
Pragmatics of SAT 2021, July 2021.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for
CNF formulas. In Proceedings of the Conference on Design, Automation and Test
in Europe (DATE ’03), pages 886–891, March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using
pseudo-Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint
programming. Presentation at KTH Royal Institute of Technology. Slides
available at
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf,
February 2019.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 31/25

https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf


References VII

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing
of constraints. In Proceedings of the 25th International Conference on Principles
and Practice of Constraint Programming (CP ’19), volume 11802 of Lecture
Notes in Computer Science, pages 565–582. Springer, October 2019.

[GSVW14] Maria Garcia de la Banda, Peter J. Stuckey, Pascal Van Hentenryck, and Mark
Wallace. The future of optimization technology. Constraints, 19(2):126–138,
April 2014.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while
checking clausal proofs. In Proceedings of the 13th International Conference on
Formal Methods in Computer-Aided Design (FMCAD ’13), pages 181–188,
October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying
refutations with extended resolution. In Proceedings of the 24th International
Conference on Automated Deduction (CADE-24), volume 7898 of Lecture Notes
in Computer Science, pages 345–359. Springer, June 2013.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 32/25



References VIII

[HHW15] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing
symmetry breaking in DRAT proofs. In Proceedings of the 25th International
Conference on Automated Deduction (CADE-25), volume 9195 of Lecture Notes
in Computer Science, pages 591–606. Springer, August 2015.

[HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new
variables. In Proceedings of the 26th International Conference on Automated
Deduction (CADE-26), volume 10395 of Lecture Notes in Computer Science,
pages 130–147. Springer, August 2017.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In
Proceedings of the 6th International Joint Conference on Automated Reasoning
(IJCAR ’12), volume 7364 of Lecture Notes in Computer Science, pages 355–370.
Springer, June 2012.

[Lin] Lingeling, Plingeling and Treengeling. http://fmv.jku.at/lingeling/.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular
MaxSAT solver. In Proceedings of the 17th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture
Notes in Computer Science, pages 438–445. Springer, July 2014.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 33/25

http://fmv.jku.at/lingeling/


References IX

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer.
Certifying algorithms. Computer Science Review, 5(2):119–161, May 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the
38th Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[MO12] David F. Manlove and Gregg O’Malley. Paired and altruistic kidney donation in
the UK: Algorithms and experimentation. In Proceedings of the 11th
International Symposium on Experimental Algorithms (SEA ’12), volume 7276 of
Lecture Notes in Computer Science, pages 271–282. Springer, June 2012.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search algorithm
for satisfiability. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’96), pages 220–227, November 1996.

[PR16] Tobias Philipp and Adrián Rebola-Pardo. DRAT proofs for XOR reasoning. In
Proceedings of the 15th European Conference on Logics in Artificial Intelligence
(JELIA ’16), volume 10021 of Lecture Notes in Computer Science, pages
415–429. Springer, November 2016.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 34/25



References X

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, January 1965.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of
Constraint Programming, volume 2 of Foundations of Artificial Intelligence.
Elsevier, 2006.

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a
PB-constraint in band form and related techniques for PB-solvers. IEICE
Transactions on Information and Systems, 98-D(6):1121–1127, June 2015.

[TD20] Rodrigue Konan Tchinda and Clémentin Tayou Djamégni. On certifying the
UNSAT result of dynamic symmetry-handling-based SAT solvers. Constraints,
25(3–4):251–279, December 2020.

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O.
Silenko, editor, Structures in Constructive Mathematics and Mathematical Logic,
Part II, pages 115–125. Consultants Bureau, New York-London, 1968.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 35/25



References XI

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th
International Symposium on Artificial Intelligence and Mathematics (ISAIM ’08),
2008. Available at http://isaim2008.unl.edu/index.php?page=proceedings.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim:
Efficient checking and trimming using expressive clausal proofs. In Proceedings of
the 17th Internatjuional Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
422–429. Springer, July 2014.

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 36/25

http://isaim2008.unl.edu/index.php?page=proceedings

	Introduction
	Computational Hardness in Theory and Practice
	Proof Logging

	Basic SAT Solving
	Conflict-Driven Clause Learning by Example
	Resolution
	Extension Rules

	Advanced SAT Techniques
	Cardinality Reasoning and Pseudo-Boolean Constraints
	XOR Reasoning
	Symmetry Handling

	Further Challenges
	Conclusion
	Appendix

