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Introduction Computational Hardness in Theory and Practice

Computational Hardness in Theory

Trained as computational complexity theorist

Focus on problems in NP

Prove unconditional lower bounds for bounded computational models

Captures algorithmic approaches actually used in practice

Except. . .
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Introduction Computational Hardness in Theory and Practice

. . . And in Practice

Combinatorial solving and optimization deals with NP-hard problems
Show up all over the place, e.g.:

airline scheduling
logistics
hardware verification
donor-recipients matching for kidney transplants [MO12, BvdKM+21]

Lots of effort last decades into developing sophisticated so-called
combinatorial solvers that often work amazingly well in practice!

Boolean satisfiability (SAT) solving [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]

Problems with cognitive dissonance — concepts like “strong
exponential time hypothesis” just don’t seem too relevant. . .

Can computational complexity contribute anything?
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Introduction Computational Hardness in Theory and Practice

The Dirty Little Secret. . .

Solvers very fast, but sometimes wrong (even best commercial
ones) [BLB10, CKSW13, AGJ+18, GSD19, GS19]

Even worse: No way of knowing for sure when errors happen

Checking that a solution is feasible should be straightforward
(though some solvers get even this wrong)

But how to check the absence of solutions?

Or that a solution is optimal?
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Introduction Computational Hardness in Theory and Practice

What can be done about this?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only solution but also
2 simple, machine-verifiable proof that solution is correct
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Introduction Proof Logging

Proof Logging with Certifying Solvers
Workflow:

Run solver on a problem
Feed solution + proof to proof checker
Verify that proof checker says solution is correct and/or optimal

Proof system (in the sense of [CR79]) used by certifying solver should
be very simple (to increase trust)
be powerful (to allow proof logging with minimal overhead)
allow verification by stand-alone (formally verified) proof checker

Computational complexity problems, but with a constructive angle!

Success story for basic SAT solving: DRAT proof logging
[HHW13a, HHW13b, WHH14]

But has remained out of reach for stronger paradigms
And even for some advanced SAT solving techniques
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Basic SAT Solving Conflict-Driven Clause Learning by Example

Modern SAT Solving: Backtracking with a Twist
Try to build satisfying assignment — learn from mistakes
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause
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Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Conflict-Driven Clause Learning [MS96, BS97, MMZ+01]
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by flipping last decision as in
DPLL method [DP60, DLL62]

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 8/25



Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)
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Basic SAT Solving Conflict-Driven Clause Learning by Example

Complete Example of CDCL Execution
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Basic SAT Solving Resolution

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
(So lower bounds on proof size ⇒ lower bounds on running time)

(*) Ignores pre- and inprocessing, but we will get there. . .
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Basic SAT Solving Resolution

Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing
together conflict analyses:
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Basic SAT Solving Resolution

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:
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Basic SAT Solving Resolution

Reverse Unit Propagation

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a RUP clause with respect to F if

assigning C to false
unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
All clauses learned by CDCL solver are RUP clauses

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 12/25



Basic SAT Solving Resolution

Reverse Unit Propagation

Reverse unit propagation (RUP) clause [GN03, Van08]
C is a RUP clause with respect to F if

assigning C to false
unit propagating on F until saturation
leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
All clauses learned by CDCL solver are RUP clauses

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 12/25



Basic SAT Solving Resolution

RUP Proofs

So shorter proof of unsatisfiability for

(u∨x∨ y) ∧ (x∨ y∨ z) ∧ (x∨ z) ∧ (y∨ z) ∧ (x∨ z) ∧ (u∨w) ∧ (u∨w)

is sequence of RUP clauses
1 u ∨ x
2 x

3 ⊥
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Basic SAT Solving Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a↔ (x ∧ y)

Allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing could to steps like this

Resolution proof system cannot certify such derivations (by definition)

Extended resolution proof system [Tse68, CR79] extremely powerful

Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 14/25
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Basic SAT Solving Extension Rules

Substitution Redundancy

C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant clauses should be OK
Notions such as RAT [JHB12] and propagation redundancy [HKB17]

Substitution redundancy [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω,
called a witness, for which it holds that

F ∧ ¬C |= (F ∧ C)�ω

Proof sketch for interesting direction: If α satisfies F but falsifies C,
then α ◦ ω satisfies F ∧ C
Implication should be efficiently verifiable (e.g., all clauses in
(F ∧ C)�ω should be RUP, say)
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Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Next Challenge: Cardinality Constraints

Given clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

can deduce that
x1 + x2 + x3 + x4 ≥ 2

Reasoning with cardinality constraints can solve pigeonhole principle
efficiently, which is exponentially hard for basic CDCL [Hak85, BKS04]

Implemented in solver Lingeling [Lin], but no DRAT proof logging
Extended resolution can do it in theory, but efficiently in practice?!
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Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Pseudo-Boolean Constraints
Pseudo-Boolean constraints are 0-1 integer linear constraints∑

i

ai`i ≥ A

ai, A ∈ Z
literals `i: xi or xi (where xi + xi = 1)
as before, variables xi take values 0 = false or 1 = true

Some types of pseudo-Boolean constraints
1 Clauses

x ∨ y ∨ z ⇔ x+ y + z ≥ 1
2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2
3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 17/25
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Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Pseudo-Boolean Proof Logging

Cutting planes proof system [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑

i ai`i ≥ A
∑

i bi`i ≥ B∑
i(cAai + cBbi)`i ≥ cAA+ cBB

[cA, cB ≥ 0]

Division
∑

i cai`i ≥ A∑
i ai`i ≥ dA/ce

[c > 0]

Combine with substitution redundancy rule

Yields VeriPB proof system [EGMN20, GMN20, GMM+20, GN21]
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Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

Recovering cardinality constraints from CNF

Clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Pseudo-Boolean constraints

x1 + x2 + x3 ≥ 1
x1 + x2 + x4 ≥ 1
x1 + x3 + x4 ≥ 1
x2 + x3 + x4 ≥ 1

Add all up

3x1 + 3x2 + 3x3 + 3x4 ≥ 4

and divide by 3 to get

x1 + x2 + x3 + x4 ≥ 2
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Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:
MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMN21]
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 20/25
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Advanced SAT Techniques Cardinality Reasoning and Pseudo-Boolean Constraints

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:
MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1
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s2,2 ∨ x2
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Advanced SAT Techniques XOR Reasoning

XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

This is just XOR reasoning:

x+ y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x+ w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too
inefficient in practice!

Could add XORs to language, but prefer to
keep things super-simple and verifiable. . .
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Advanced SAT Techniques XOR Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z
x ∨ y ∨ z

and
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w
y ∨ z ∨ w

want to derive
x ∨ w
x ∨ w

Use substitution redundancy and fresh
variables a,b to derive

x+ y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x+ w + 2y + 2z + 2a+ 2b = 6

From this can efficiently extract

x+ w ≥ 1
x+ w ≥ 1

VeriPB can certify XOR reasoning [GN21]
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Advanced SAT Techniques Symmetry Handling

The Challenge of Symmetries

Symmetries
crucial for some optimization problems [AW13, GSVW14]
show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries

Better to keep proof system super-simple and verifiable. . .

Interesting challenges for proof logging!
Jakob Nordström (UCPH & LU) Verifiably Correct Combinatorial Optimization DIREC Sep ’21 23/25
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Further Challenges

Challenges Beyond SAT

Proof logging for combinatorial optimization
Maximum satisfiability (MaxSAT) solving
Pseudo-Boolean optimization
Mixed integer linear programming (some work in [CGS17, EG21])
Constraint programming (some work in
[EGMN20, GMN20, GMM+20])

And more. . .
Lots of challenging problems and interesting ideas
Lots of interesting applications of proof logging — enables rigorous
analysis of combinatorial solvers
This talk would (hopefully) sound quite different in a year or two
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Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily
addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness
seems like a promising approach

Leads to interesting computational complexity problems with
constructive twist

Cutting planes reasoning with pseudo-Boolean constraints might hit a
sweet spot between simplicity and expressibility

Thank you for your attention!
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