On Division Versus Saturation in Cutting Planes

Jakob Nordström

KTH Royal Institute of Technology
Stockholm, Sweden

Bringing CP, SAT and SMT together:
Next Challenges in Constraint Solving
Schloss Dagstuhl - Leibniz Center for Informatics
February 5, 2019

Joint work with Stephan Gocht and Amir Yehudayoff

SAT in Theory and Practice

Computational complexity

- Satisfiability fundamental problem in theoretical computer science
- SAT canonical NP-complete problem [Coo71, Lev73]
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT in Theory and Practice

Computational complexity

- Satisfiability fundamental problem in theoretical computer science
- SAT canonical NP-complete problem [Coo71, Lev73]
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT solving

- Enormous progress in performance last 15-20 years
- State-of-the-art solvers can deal with real-world instances with millions of variables
- Used for hardware \& software verification, OR, AI, ...
- But also exist tiny formulas that are totally beyond reach

SAT in Theory and Practice

Computational complexity

- Satisfiability fundamental problem in theoretical computer science
- SAT canonical NP-complete problem [Coo71, Lev73]
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT solving

- Enormous progress in performance last 15-20 years
- State-of-the-art solvers can deal with real-world instances with millions of variables
- Used for hardware \& software verification, OR, AI, ...
- But also exist tiny formulas that are totally beyond reach

Limitations of CDCL

(1) Clauses weak formalism for encoding constraints
(2) Also weak method of reasoning (resolution)

Pseudo-Boolean Reasoning (a.k.a. 0-1 Linear Programming)

- Pseudo-Boolean (PB) linear constraints are stronger than clauses

Compare

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

with

$$
\begin{aligned}
&\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
& \wedge\left(x_{2} \vee x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

Pseudo-Boolean Reasoning (a.k.a. 0-1 Linear Programming)

- Pseudo-Boolean (PB) linear constraints are stronger than clauses

Compare

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

with

$$
\begin{aligned}
&\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
& \wedge\left(x_{2} \vee x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

- And pseudo-Boolean reasoning exponentially more powerful in theory ("0-1 integer linear programming with learning")

Pseudo-Boolean Reasoning (a.k.a. 0-1 Linear Programming)

- Pseudo-Boolean (PB) linear constraints are stronger than clauses

Compare

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

with

$$
\begin{aligned}
&\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4} \vee x_{6}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{1} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee x_{6}\right) \\
& \wedge\left(x_{2} \vee x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5} \vee x_{6}\right)
\end{aligned}
$$

- And pseudo-Boolean reasoning exponentially more powerful in theory ("0-1 integer linear programming with learning")
- But PB solvers less efficient than CDCL in practice!?

Our Work

- Study pseudo-Boolean rules of reasoning used in practice
- How do they compare to cutting planes proof system?
- In particular, what is the power of division versus saturation?

Pseudo-Boolean Constraints and Normalized Form

In this talk, "pseudo-Boolean" (PB) refers to 0-1 integer linear constraints

Pseudo-Boolean Constraints and Normalized Form

In this talk, "pseudo-Boolean" (PB) refers to 0-1 integer linear constraints
Convenient to use non-negative linear combinations of literals, a.k.a. normalized form

$$
\sum_{i} a_{i} \ell_{i} \geq A
$$

- coefficients a_{i} : non-negative integers
- degree (of falsity) A : positive integer
- literals $\ell_{i}: x_{i}$ or \bar{x}_{i} (where $x_{i}+\bar{x}_{i}=1$)
(In what follows, all constraints assumed to be implicitly normalized)

Some Types of Pseudo-Boolean Constraints

(1) Clauses are pseudo-Boolean constraints

$$
x \vee \bar{y} \vee z \quad \Leftrightarrow \quad x+\bar{y}+z \geq 1
$$

Refer to collection of such constraints as "CNF formula"

Some Types of Pseudo-Boolean Constraints

(1) Clauses are pseudo-Boolean constraints

$$
x \vee \bar{y} \vee z \quad \Leftrightarrow \quad x+\bar{y}+z \geq 1
$$

Refer to collection of such constraints as "CNF formula"
(2) Cardinality constraints

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

Some Types of Pseudo-Boolean Constraints

(1) Clauses are pseudo-Boolean constraints

$$
x \vee \bar{y} \vee z \quad \Leftrightarrow \quad x+\bar{y}+z \geq 1
$$

Refer to collection of such constraints as "CNF formula"
(2) Cardinality constraints

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 3
$$

(3) General constraints

$$
x_{1}+2 \bar{x}_{2}+3 x_{3}+4 \bar{x}_{4}+5 x_{5} \geq 7
$$

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses

- Lazy approach: learn clauses from PB constraints
- Sat4j [LP10] (one of versions in library)
- Eager approach: re-encode to clauses and run CDCL
- MiniSat+ [ES06]
- Open-WBO [MML14]
- NaPS [SN15]

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses

- Lazy approach: learn clauses from PB constraints
- Sat4j [LP10] (one of versions in library)
- Eager approach: re-encode to clauses and run CDCL
- MiniSat+ [ES06]
- Open-WBO [MML14]
- NaPS [SN15]

Native reasoning with pseudo-Boolean constraints

- PRS [DG02]
- Galena [CK05]
- Pueblo [SS06]
- Sat4j [LP10]
- RoundingSat [EN18]

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses

- Lazy approach: learn clauses from PB constraints
- Sat4j [LP10] (one of versions in library)
- Eager approach: re-encode to clauses and run CDCL
- MiniSat+ [ES06]
- Open-WBO [MML14]
- NaPS [SN15]

Native reasoning with pseudo-Boolean constraints

- PRS [DG02]
- Galena [CK05]
- Pueblo [SS06]
- Sat4j [LP10]
- RoundingSat [EN18]

The Cutting Planes Proof System [CCT87]

Literal axioms $\overline{\ell_{i} \geq 0}$
Linear combination $\frac{\sum_{i} a_{i} \ell_{i} \geq A \quad \sum_{i} b_{i} \ell_{i} \geq B}{\sum_{i}\left(c_{A} a_{i}+c_{B} b_{i}\right) \ell_{i} \geq c_{A} A+c_{B} B} \quad\left[c_{A}, c_{B} \geq 0\right]$
Division $\frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i}\left\lceil a_{i} / c\right\rceil \ell_{i} \geq\lceil A / c\rceil} \quad[c>0]$

The Cutting Planes Proof System [CCT87]

Literal axioms $\overline{\ell_{i} \geq 0}$
Linear combination $\frac{\sum_{i} a_{i} \ell_{i} \geq A \quad \sum_{i} b_{i} \ell_{i} \geq B}{\sum_{i}\left(c_{A} a_{i}+c_{B} b_{i}\right) \ell_{i} \geq c_{A} A+c_{B} B} \quad\left[c_{A}, c_{B} \geq 0\right]$

$$
\text { Division } \frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i}\left\lceil a_{i} / c\right\rceil \ell_{i} \geq\lceil A / c\rceil} \quad[c>0]
$$

Setting in this talk

Input: Set of pseudo-Boolean constraints without 0-1 solution Goal: Prove unsatisfiability by deriving $0 \geq 1$ using cutting planes

The Cutting Planes Proof System [CCT87]

Literal axioms
 $$
\ell_{i} \geq 0
$$

Linear combination $\frac{\sum_{i} a_{i} \ell_{i} \geq A \quad \sum_{i} b_{i} \ell_{i} \geq B}{\sum_{i}\left(c_{A} a_{i}+c_{B} b_{i}\right) \ell_{i} \geq c_{A} A+c_{B} B} \quad\left[c_{A}, c_{B} \geq 0\right]$

$$
\text { Division } \frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i}\left\lceil a_{i} / c\right\rceil \ell_{i} \geq\lceil A / c\rceil} \quad[c>0]
$$

Setting in this talk

Input: Set of pseudo-Boolean constraints without 0-1 solution
Goal: Prove unsatisfiability by deriving $0 \geq 1$ using cutting planes Ignore algorithmic aspects - heuristics beyond rigorous analysis - and assume optimal use of derivation rules

More About Cutting Planes

A toy example:

$$
\begin{array}{cc}
6 x+2 y+3 z \geq 5 & x+2 y+w \geq 1 \\
(6 x+2 y+3 z)+2(x+2 y+w) \geq 5+2 \cdot 1
\end{array}
$$

More About Cutting Planes

A toy example:
$\frac{6 x+2 y+3 z \geq 5 \quad x+2 y+w \geq 1}{8 x+6 y+3 z+2 w \geq 7}$ Linear combination

More About Cutting Planes

A toy example:

$$
6 x+2 y+3 z \geq 5 \quad x+2 y+w \geq 1
$$

Linear combination

$$
8 x+6 y+3 z+2 w \geq 7
$$

$$
3 x+2 y+z+w \geq 3
$$

More About Cutting Planes

A toy example:

$$
6 x+2 y+3 z \geq 5 \quad x+2 y+w \geq 1
$$

Linear combination

$$
\frac{8 x+6 y+3 z+2 w \geq 7}{3 x+2 y+z+w \geq 3}
$$

- Literal axioms and linear combinations sound also over the reals
- Division is where the power of cutting planes lies
- Exponentially stronger than resolution/CDCL [Hak85, CCT87]

Generalized Resolution

In conflict-driven search, linear combination always made to cancel variable (on which constraints disagree)

Generalized resolution rule [Hoo88, Hoo92]

$$
\frac{a_{j} x_{j}+\sum_{i \neq j} a_{i} \ell_{i} \geq A \quad b_{j} \bar{x}_{j}+\sum_{i \neq j} b_{i} \ell_{i} \geq B}{\sum_{i \neq j}\left(\frac{c}{a .} a_{i}+\frac{c}{b} b_{i}\right) \ell_{i} \geq \frac{c}{a} A+\frac{c}{b .} B-c} \quad\left[c=\operatorname{lcm}\left(a_{j}, b_{j}\right)\right]
$$

Generalized Resolution

In conflict-driven search, linear combination always made to cancel variable (on which constraints disagree)

Generalized resolution rule [Hoo88, Hoo92]

$$
\frac{a_{j} x_{j}+\sum_{i \neq j} a_{i} \ell_{i} \geq A \quad b_{j} \bar{x}_{j}+\sum_{i \neq j} b_{i} \ell_{i} \geq B}{\sum_{i \neq j}\left(\frac{c}{a_{j}} a_{i}+\frac{c}{b_{j}} b_{i}\right) \ell_{i} \geq \frac{c}{a_{j}} A+\frac{c}{b_{j}} B-c} \quad\left[c=\operatorname{lcm}\left(a_{j}, b_{j}\right)\right]
$$

Another toy example:

$$
\begin{array}{cc}
2 x+y+z \geq 2 \quad 3 \bar{x}+2 y+u+w \geq 3 \\
3(y+z)+2(2 y+u+w) \geq 3 \cdot 2+2 \cdot 3-6(x+\bar{x})
\end{array}
$$

Generalized Resolution

In conflict-driven search, linear combination always made to cancel variable (on which constraints disagree)

Generalized resolution rule [Hoo88, Hoo92]

$$
\frac{a_{j} x_{j}+\sum_{i \neq j} a_{i} \ell_{i} \geq A \quad b_{j} \bar{x}_{j}+\sum_{i \neq j} b_{i} \ell_{i} \geq B}{\sum_{i \neq j}\left(\frac{c}{a_{j}} a_{i}+\frac{c}{b_{j}} b_{i}\right) \ell_{i} \geq \frac{c}{a_{j}} A+\frac{c}{b_{j}} B-c} \quad\left[c=\operatorname{lcm}\left(a_{j}, b_{j}\right)\right]
$$

Another toy example:

$$
\frac{2 x+y+z \geq 2 \quad 3 \bar{x}+2 y+u+w \geq 3}{(3 y+3 z)+(4 y+2 u+2 w) \geq 12-6}
$$

Generalized Resolution

In conflict-driven search, linear combination always made to cancel variable (on which constraints disagree)

Generalized resolution rule [Hoo88, Hoo92]

$$
\frac{a_{j} x_{j}+\sum_{i \neq j} a_{i} \ell_{i} \geq A \quad b_{j} \bar{x}_{j}+\sum_{i \neq j} b_{i} \ell_{i} \geq B}{\sum_{i \neq j}\left(\frac{c}{a_{j}} a_{i}+\frac{c}{b_{j}} b_{i}\right) \ell_{i} \geq \frac{c}{a_{j}} A+\frac{c}{b_{j}} B-c} \quad\left[c=\operatorname{lcm}\left(a_{j}, b_{j}\right)\right]
$$

Another toy example:

$$
\frac{2 x+y+z \geq 2 \quad 3 \bar{x}+2 y+u+w \geq 3}{7 y+3 z+2 u+2 w \geq 6}
$$

Saturation

What's more, pseudo-Boolean solvers based on [CK05] do not do division
Instead use that no variable coefficient need be larger than maximum contribution required from that variable

Saturation rule

$$
\frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i} \min \left\{a_{i}, A\right\} \cdot \ell_{i} \geq A}
$$

Saturation

What's more, pseudo-Boolean solvers based on [CK05] do not do division Instead use that no variable coefficient need be larger than maximum contribution required from that variable

Saturation rule

$$
\frac{\sum_{i} a_{i} \ell_{i} \geq A}{\sum_{i} \min \left\{a_{i}, A\right\} \cdot \ell_{i} \geq A}
$$

Continuing our example:

$$
\frac{7 y+3 z+2 u+2 w \geq 6}{6 y+3 z+2 u+2 w \geq 6}
$$

Theoretical Understanding of Applied PB Reasoning?

Flavours of cutting planes in practice:
(1) Boolean rule: (a) saturation or (b) division
(2) Linear combinations: (a) generalized resolution or (b) no restrictions

Theoretical Understanding of Applied PB Reasoning?

Flavours of cutting planes in practice:
(1) Boolean rule: (a) saturation or (b) division
(2) Linear combinations: (a) generalized resolution or (b) no restrictions

Using generalized resolution seems inherent in conflict-driven setting But what about Boolean rule?

- Saturation most popular (in [CK05, LP10], et cetera)
- Division used only recently in [EN18]
- What are the relative strengths of these rules? AFAIK no study!

Theoretical Understanding of Applied PB Reasoning?

Flavours of cutting planes in practice:
(1) Boolean rule: (a) saturation or (b) division
(2) Linear combinations: (a) generalized resolution or (b) no restrictions

Using generalized resolution seems inherent in conflict-driven setting But what about Boolean rule?

- Saturation most popular (in [CK05, LP10], et cetera)
- Division used only recently in [EN18]
- What are the relative strengths of these rules? AFAIK no study!

Striking contrast to long line of work on resolution and CDCL ([BKS04, HBPV08, BHJ08, AFT11, PD11] ...)

Our Results

(1) For CNF, saturation no stronger than resolution proof system / CDCL (even for unrestricted linear combinations)

Our Results

(1) For CNF, saturation no stronger than resolution proof system / CDCL (even for unrestricted linear combinations)
(2) Division + generalized resolution can be exponentially stronger than saturation + unrestricted linear combinations

Our Results

(1) For CNF, saturation no stronger than resolution proof system / CDCL (even for unrestricted linear combinations)
(2) Division + generalized resolution can be exponentially stronger than saturation + unrestricted linear combinations
(3) Single saturation step can require unbounded \# divisions to simulate, even with unrestricted linear combinations

Our Results

(1) For CNF, saturation no stronger than resolution proof system / CDCL (even for unrestricted linear combinations)
(2) Division + generalized resolution can be exponentially stronger than saturation + unrestricted linear combinations
(3) Single saturation step can require unbounded \# divisions to simulate, even with unrestricted linear combinations

1st result strengthens [VEG ${ }^{+} 18$]
Focus on 2nd and 3rd results - first of its kind (AFAIK)

Cutting Planes and Implicational Completeness

- All flavours of cutting planes except division + unrestricted linear combinations as in [CCT87] collapse to resolution for CNFs
- Full cutting planes implicationally complete - can recover, e.g., cardinality constraints from CNF

Cutting Planes and Implicational Completeness

- All flavours of cutting planes except division + unrestricted linear combinations as in [CCT87] collapse to resolution for CNFs
- Full cutting planes implicationally complete - can recover, e.g., cardinality constraints from CNF

$$
\begin{array}{rlr}
x+y & \geq 1 \\
x+ & z & \geq 1 \\
y+z & \geq 1 \\
\hline 2 x+2 y+2 z & \geq 3 & {[2 \text { non-cancelling additions] }]} \\
\hline x+y+z & \geq 2 & {[\text { Divide by } 2]}
\end{array}
$$

Cutting Planes and Implicational Completeness

- All flavours of cutting planes except division + unrestricted linear combinations as in [CCT87] collapse to resolution for CNFs
- Full cutting planes implicationally complete - can recover, e.g., cardinality constraints from CNF

$$
\begin{array}{rlrl}
x+y & \geq 1 \\
x+ & z & \geq 1 \\
y+z & \geq 1 \\
\hline 2 x+2 y+2 z & \geq 3 & {[2 \text { non-cancelling additions] }]} \\
\hline x+y+z & \geq 2 & {[\text { Divide by } 2]}
\end{array}
$$

- Impossible with generalized resolution!
- So pigeonhole principle (PHP) in CNF hard for PB solvers
- CNFs make life hard for both saturation and division - but we want to show that division can be stronger!

Cutting Planes and Implicational Completeness

- All flavours of cutting planes except division + unrestricted linear combinations as in [CCT87] collapse to resolution for CNFs
- Full cutting planes implicationally complete - can recover, e.g., cardinality constraints from CNF

$$
\begin{array}{rlr}
x+y & \geq 1 \\
x+ & z & \geq 1 \\
y+z & \geq 1 \\
\hline 2 x+2 y+2 z & \geq 3 & \quad[2 \text { non-cancelling additions] }] \\
\hline x+y+z & \geq 2 & {[\text { Divide by } 2]}
\end{array}
$$

- Impossible with generalized resolution!
- So pigeonhole principle (PHP) in CNF hard for PB solvers
- CNFs make life hard for both saturation and division - but we want to show that division can be stronger! Can do so by cheating...

Division + Resolution Can Be Stronger Than Saturation

Take CNF like PHP or subset cardinality [Spe10, VS10, MN14] Exponentially hard for all flavours of cutting planes except [CCT87]

Division + Resolution Can Be Stronger Than Saturation

Take CNF like PHP or subset cardinality [Spe10, VS10, MN14] Exponentially hard for all flavours of cutting planes except [CCT87]

$x+y \quad \geq 1$	
$x+\quad z \geq 1$	
$y+z \geq 1$	
$2 x+2 y+2 z \geq 3$	[2 non-cancelling additions]
$x+y+z \geq 2$	[Divide by 2]

Division + Resolution Can Be Stronger Than Saturation

Take CNF like PHP or subset cardinality [Spe10, VS10, MN14] Exponentially hard for all flavours of cutting planes except [CCT87]

$$
\begin{aligned}
& h_{1}+h_{2}+x+y \quad \geq 1 \\
& \bar{h}_{1}+\quad x+\quad z \geq 2 \\
& \bar{h}_{2}+\quad y+z \geq 2 \\
& 2 x+2 y+2 z \geq 3 \\
& x+y+z \geq 2 \quad \text { [Divide by } 2 \text {] }
\end{aligned}
$$

Add helper variables to make all linear combinations cancelling \Rightarrow Now easy for division, since easy for full cutting planes

Division + Resolution Can Be Stronger Than Saturation

Take CNF like PHP or subset cardinality [Spe10, VS10, MN14] Exponentially hard for all flavours of cutting planes except [CCT87]

$$
\begin{aligned}
& h_{1}+h_{2}+x+y \quad \geq 1 \\
& \bar{h}_{1}+\quad x+\quad z \geq 2 \\
& \bar{h}_{2}+\quad y+z \geq 2 \\
& 2 x+2 y+2 z \geq 3 \\
& x+y+z \geq 2 \quad \text { [Divide by } 2 \text {] }
\end{aligned}
$$

Add helper variables to make all linear combinations cancelling \Rightarrow Now easy for division, since easy for full cutting planes

Assigning helper variables $=0$ gives back CNF encoding \Rightarrow Cutting planes proofs preserved under partial assignments \Rightarrow Still hard for saturation, even with unrestricted linear combinations

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

$$
200 x+51 y+50 z+49 w \geq 100
$$

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

$$
200 x+51 y+50 z+49 w \geq 100
$$

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

$$
\frac{200 x+51 y+50 z+49 w \geq 100}{20000 x+5100 y+5000 z+4900 w} \geq 10000
$$

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

$\frac{200 x+51 y+50 z+\quad 49 w}{20000 x+5100 y+5000 z+4900 w} \geq 10000$	
$199 x+51 y+50 z+49 w$	Multiplication by 100
Division by 101	

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

$\frac{200 x+51 y+\quad 50 z+\quad 49 w}{20000 x+5100 y+5000 z+4900 w} \geq 10000$	
$\frac{199 x+51 y+50 z+\quad 49 w}{\text { Multiplication by } 100}$Division by 101 $19900 x+5100 y+5000 z+4900 w$ ≥ 10000	Multiplication by 100

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

$\frac{200 x+51 y+50 z+\quad 49 w}{20000 x+5100 y+5000 z+4900 w} \geq 10000$	
$199 x+51 y+50 z+49 w$	Multiplication by 100
$\frac{\text { Division by } 101}{}$$19900 x+5100 y+5000 z+4900 w$ ≥ 10000	Multiplication by 100
$198 x+51 y+50 z+49 w$	≥ 100

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

$00 x$	$51 y+$	$50 z+$	$49 w$	100	Multiplication by 100
$20000 x+5100 y+5000 z+4900 w \geq 10000$					
$199 x+$	$51 y+$	$50 z+$	$49 w \geq$	100	Division by 101
$19900 x+5100 y+5000 z+4900 w \geq 10000$					by 101
$198 x+$	$51 y+$	$50 z+$	$w \geq$	100	
$19800 x+5100 y+5000 z+4900 w \geq 10000$					100

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

Simulating Saturation by Division

Division can simulate saturation by completeness - but how efficiently?

$200 x+$	$51 y+$	$50 z+$	$49 w \geq$	100	Multiplication by 100
$20000 x+5100 y+5000 z+4900 w \geq 10000$					
$199 x+$	$51 y+$	$50 z+$	$49 w \geq$	100	Division by 101
$19900 x+5100 y+5000 z+4900 w \geq 10000$					Division by 101
$198 x+$	$51 y+$	$50 z+$	$49 w \geq$	100	
$19800 x+5100 y+5000 z+4900 w \geq 10000$					Division by 101
$197 x+$	$51 y+$	$50 z+$	$49 w \geq$		

Exponentially many steps measured in bitsize of coefficents Impossible to get rid of exponential dependence in general!

Division Can't Simulate Saturation Efficiently

Consider saturation step

$$
\frac{2 R x+\sum_{i=1}^{R} z_{i} \geq R}{R x+\sum_{i=1}^{R} z_{i} \geq R}
$$

Division Can't Simulate Saturation Efficiently

Consider saturation step

$$
\frac{2 R x+\sum_{i=1}^{R} z_{i} \geq R}{R x+\sum_{i=1}^{R} z_{i} \geq R}
$$

Theorem

Deriving $R x+\sum_{i=1}^{R} z_{i} \geq R$ from $2 R x+\sum_{i=1}^{R} z_{i} \geq R$ requires at least $\sqrt[4]{R}$ division steps for cutting planes with unrestricted linear combinations

Division Can't Simulate Saturation Efficiently

Consider saturation step

$$
\frac{2 R x+\sum_{i=1}^{R} z_{i} \geq R}{R x+\sum_{i=1}^{R} z_{i} \geq R}
$$

Theorem

Deriving $R x+\sum_{i=1}^{R} z_{i} \geq R$ from $2 R x+\sum_{i=1}^{R} z_{i} \geq R$ requires at least $\sqrt[4]{R}$ division steps for cutting planes with unrestricted linear combinations

Proof sketch:

- All derived lines are on form $L \doteq A x+\sum_{i=1}^{R} b_{i} z_{i} \geq C$

Division Can't Simulate Saturation Efficiently

Consider saturation step

$$
\frac{2 R x+\sum_{i=1}^{R} z_{i} \geq R}{R x+\sum_{i=1}^{R} z_{i} \geq R}
$$

Theorem

Deriving $R x+\sum_{i=1}^{R} z_{i} \geq R$ from $2 R x+\sum_{i=1}^{R} z_{i} \geq R$ requires at least $\sqrt[4]{R}$ division steps for cutting planes with unrestricted linear combinations

Proof sketch:

- All derived lines are on form $L \doteq A x+\sum_{i=1}^{R} b_{i} z_{i} \geq C$
- Define potential $\mathcal{P}(L)=C / \sqrt{A \sum_{i} b_{i}}$

Division Can't Simulate Saturation Efficiently

Consider saturation step

$$
\frac{2 R x+\sum_{i=1}^{R} z_{i} \geq R}{R x+\sum_{i=1}^{R} z_{i} \geq R}
$$

Theorem

Deriving $R x+\sum_{i=1}^{R} z_{i} \geq R$ from $2 R x+\sum_{i=1}^{R} z_{i} \geq R$ requires at least $\sqrt[4]{R}$ division steps for cutting planes with unrestricted linear combinations

Proof sketch:

- All derived lines are on form $L \doteq A x+\sum_{i=1}^{R} b_{i} z_{i} \geq C$
- Define potential $\mathcal{P}(L)=C / \sqrt{A \sum_{i} b_{i}}$
- Start potential $1 / \sqrt{2}$; end potential 1

Division Can't Simulate Saturation Efficiently

Consider saturation step

$$
\frac{2 R x+\sum_{i=1}^{R} z_{i} \geq R}{R x+\sum_{i=1}^{R} z_{i} \geq R}
$$

Theorem

Deriving $R x+\sum_{i=1}^{R} z_{i} \geq R$ from $2 R x+\sum_{i=1}^{R} z_{i} \geq R$ requires at least $\sqrt[4]{R}$ division steps for cutting planes with unrestricted linear combinations

Proof sketch:

- All derived lines are on form $L \doteq A x+\sum_{i=1}^{R} b_{i} z_{i} \geq C$
- Define potential $\mathcal{P}(L)=C / \sqrt{A \sum_{i} b_{i}}$
- Start potential $1 / \sqrt{2}$; end potential 1
- Linear combinations don't increase potential

Division Can't Simulate Saturation Efficiently

Consider saturation step

$$
\frac{2 R x+\sum_{i=1}^{R} z_{i} \geq R}{R x+\sum_{i=1}^{R} z_{i} \geq R}
$$

Theorem

Deriving $R x+\sum_{i=1}^{R} z_{i} \geq R$ from $2 R x+\sum_{i=1}^{R} z_{i} \geq R$ requires at least $\sqrt[4]{R}$ division steps for cutting planes with unrestricted linear combinations

Proof sketch:

- All derived lines are on form $L \doteq A x+\sum_{i=1}^{R} b_{i} z_{i} \geq C$
- Define potential $\mathcal{P}(L)=C / \sqrt{A \sum_{i} b_{i}}$
- Start potential $1 / \sqrt{2}$; end potential 1
- Linear combinations don't increase potential
- Potential increase from single division $<R^{-1 / 4}$

Saturation + Resolution Can Be Stronger Than Division?

- Does this show that saturation + generalized resolution can be exponentially stronger than division? No!

Saturation + Resolution Can Be Stronger Than Division?

- Does this show that saturation + generalized resolution can be exponentially stronger than division? No!
- Only shows that saturation step can't be simulated efficiently

Saturation + Resolution Can Be Stronger Than Division?

- Does this show that saturation + generalized resolution can be exponentially stronger than division? No!
- Only shows that saturation step can't be simulated efficiently
- Doesn't rule out that cutting planes with division could prove unsatisfiability of benchmarks in completely different way

Saturation + Resolution Can Be Stronger Than Division?

- Does this show that saturation + generalized resolution can be exponentially stronger than division? No!
- Only shows that saturation step can't be simulated efficiently
- Doesn't rule out that cutting planes with division could prove unsatisfiability of benchmarks in completely different way
- But if division is always as good as saturation, then it seems like proof of this can't be simple step-by-step simulation (as for most other such results)

Some Tentative Experimental Results

Caveat: Very much a work in progress...

Some Tentative Experimental Results

Caveat: Very much a work in progress...

Strength of Division

- When division better than saturation, RoundingSat [EN18] can run much faster than Sat4j [LP10]
- But sensitive to how helper variables encoded

Some Tentative Experimental Results

Caveat: Very much a work in progress...

Strength of Division

- When division better than saturation, RoundingSat [EN18] can run much faster than Sat4j [LP10]
- But sensitive to how helper variables encoded

Strength of Saturation

- Have easy benchmarks for saturation that look tricky for division - in theory
- In practice, the benchmarks we tried so far are hard for both divisionand saturation-based solvers

Some Tentative Experimental Results

Caveat: Very much a work in progress...

Strength of Division

- When division better than saturation, RoundingSat [EN18] can run much faster than Sat4j [LP10]
- But sensitive to how helper variables encoded

Strength of Saturation

- Have easy benchmarks for saturation that look tricky for division - in theory
- In practice, the benchmarks we tried so far are hard for both divisionand saturation-based solvers

Further caveat: obviously artificial benchmarks - we just want to see if separations can happen in actual solvers

Directions for Future Research

Division promising in practice

- Higher conflict speed when PB reasoning doesn't help [EN18]
- Seems to perform better when PB reasoning crucial [EGNV18]
- Keeps coefficients small - can do fixed-precision integer arithmetic

Directions for Future Research

Division promising in practice

- Higher conflict speed when PB reasoning doesn't help [EN18]
- Seems to perform better when PB reasoning crucial [EGNV18]
- Keeps coefficients small - can do fixed-precision integer arithmetic

Questions regarding saturation

- Theory: Can cutting planes with saturation be more powerful than division at proving unsatisfiability?
- Practice: Maybe best to combine division and saturation?

Directions for Future Research

Division promising in practice

- Higher conflict speed when PB reasoning doesn't help [EN18]
- Seems to perform better when PB reasoning crucial [EGNV18]
- Keeps coefficients small - can do fixed-precision integer arithmetic

Questions regarding saturation

- Theory: Can cutting planes with saturation be more powerful than division at proving unsatisfiability?
- Practice: Maybe best to combine division and saturation?

Fundamental challenges

- All PB solvers degenerate to resolution for CNF inputs
- Sometimes very poor performance even on rationally infeasible LPs! Combine with MIP techniques?

Take-Home Message

- Conflict-driven search hugely successful SAT solving paradigm

Take-Home Message

- Conflict-driven search hugely successful SAT solving paradigm
- Possible to port to pseudo-Boolean reasoning
(Didn't talk about how - see tinyurl.com/ConflictDrivenPBS for tutorial)

Take-Home Message

- Conflict-driven search hugely successful SAT solving paradigm
- Possible to port to pseudo-Boolean reasoning
(Didn't talk about how - see tinyurl.com/ConflictDrivenPBS for tutorial)
- Potential exponential gains mostly haven't materialized so far

Take-Home Message

- Conflict-driven search hugely successful SAT solving paradigm
- Possible to port to pseudo-Boolean reasoning
(Didn't talk about how - see tinyurl.com/ConflictDrivenPBS for tutorial)
- Potential exponential gains mostly haven't materialized so far
- Instead highly nontrivial challenges regarding
- Efficient implementation
- Theoretical understanding

Take-Home Message

- Conflict-driven search hugely successful SAT solving paradigm
- Possible to port to pseudo-Boolean reasoning
(Didn't talk about how - see tinyurl.com/ConflictDrivenPBS for tutorial)
- Potential exponential gains mostly haven't materialized so far
- Instead highly nontrivial challenges regarding
- Efficient implementation
- Theoretical understanding
- This work: Study of relative strengths of division and saturation rules - seem incomparable

Take-Home Message

- Conflict-driven search hugely successful SAT solving paradigm
- Possible to port to pseudo-Boolean reasoning
(Didn't talk about how - see tinyurl.com/ConflictDrivenPBS for tutorial)
- Potential exponential gains mostly haven't materialized so far
- Instead highly nontrivial challenges regarding
- Efficient implementation
- Theoretical understanding
- This work: Study of relative strengths of division and saturation rules - seem incomparable
- Future research: Build blisteringly fast pseudo-Boolean solvers (far from there yet, but remember CDCL took 50 years)

Take-Home Message

- Conflict-driven search hugely successful SAT solving paradigm
- Possible to port to pseudo-Boolean reasoning
(Didn't talk about how - see tinyurl.com/ConflictDrivenPBS for tutorial)
- Potential exponential gains mostly haven't materialized so far
- Instead highly nontrivial challenges regarding
- Efficient implementation
- Theoretical understanding
- This work: Study of relative strengths of division and saturation rules - seem incomparable
- Future research: Build blisteringly fast pseudo-Boolean solvers (far from there yet, but remember CDCL took 50 years)
- Along the way lots of fun questions to work on! ©

Take-Home Message

- Conflict-driven search hugely successful SAT solving paradigm
- Possible to port to pseudo-Boolean reasoning
(Didn't talk about how - see tinyurl.com/ConflictDrivenPBS for tutorial)
- Potential exponential gains mostly haven't materialized so far
- Instead highly nontrivial challenges regarding
- Efficient implementation
- Theoretical understanding
- This work: Study of relative strengths of division and saturation rules - seem incomparable
- Future research: Build blisteringly fast pseudo-Boolean solvers (far from there yet, but remember CDCL took 50 years)
- Along the way lots of fun questions to work on! :

Thank you for your attention!

References I

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms with many restarts and bounded-width resolution. Journal of Artificial Intelligence Research, 40:353-373, January 2011. Preliminary version in SAT '09.
[BHJ08] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas: Resolution refinements that characterize DLL-algorithms with clause learning. Logical Methods in Computer Science, 4(4:13), December 2008.
[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research, 22:319-351, December 2004. Preliminary version in IJCAI '03.
[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25-38, November 1987.
[CK05] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(3):305-317, March 2005. Preliminary version in DAC '03.
[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (STOC '71), pages 151-158, 1971.

References II

[DG02] Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-Boolean satisfiability solver. In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI '02), pages 635-640, July 2002.
[EGNV18] Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using combinatorial benchmarks to probe the reasoning power of pseudo-Boolean solvers. In Proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing (SAT '18), volume 10929 of Lecture Notes in Computer Science, pages 75-93. Springer, July 2018.
[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI '18), pages 1291-1299, July 2018.
[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, 2006.
[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2-3):297-308, August 1985.

References III

$$
\begin{array}{ll}
\text { [HBPV08] } & \begin{array}{l}
\text { Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause } \\
\text { learning can effectively P-simulate general propositional resolution. In Proceedings of } \\
\text { the 23rd National Conference on Artificial Intelligence (AAAI '08), pages 283-290, } \\
\text { July 2008. }
\end{array} \\
\text { [Hoo88] } & \begin{array}{l}
\text { John N. Hooker. Generalized resolution and cutting planes. Annals of Operations } \\
\text { Research, 12(1):217-239, 1988. }
\end{array} \\
\text { [Hoo92] } & \begin{array}{l}
\text { John N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of } \\
\text { Mathematics and Artificial Intelligence, 6(1):271-286, 1992. }
\end{array} \\
\text { [Lev73] } & \begin{array}{l}
\text { Leonid A. Levin. Universal sequential search problems. Problemy peredachi } \\
\text { informatsii, 9(3):115-116, 1973. In Russian. Available at }
\end{array} \\
\text { http://mi.mathnet.ru/ppi914. }
\end{array}
$$

References IV

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 121-137. Springer, July 2014.
[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as resolution engines. Artificial Intelligence, 175(2):512-525, February 2011. Preliminary version in CP '09.
[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in band form and related techniques for PB-solvers. IEICE Transactions on Information and Systems, 98-D(6):1121-1127, June 2015.
[Spe10] Ivor Spence. sgen1: A generator of small but difficult satisfiability benchmarks. Journal of Experimental Algorithmics, 15:1.2:1-1.2:15, March 2010.
[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):165-189, March 2006. Preliminary version in DATE '05.

References V

[VEG ${ }^{+}$18] Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström. In between resolution and cutting planes: A study of proof systems for pseudo-Boolean SAT solving. In Proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing (SAT '18), volume 10929 of Lecture Notes in Computer Science, pages 292-310. Springer, July 2018.
[VS10] Allen Van Gelder and Ivor Spence. Zero-one designs produce small hard SAT instances. In Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT '10), volume 6175 of Lecture Notes in Computer Science, pages 388-397. Springer, July 2010.

