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Introduction Proof Complexity

Proof Complexity

Study of efficiently verifiable certificates of unsatisfiability

Example: Is the following CNF formula satisfiable?

(z ∨ y) ∧ (z ∨ y ∨ x) ∧ (z ∨ y) ∧ (y ∨ x) ∧ (z ∨ x)

Study the power of different methods of reasoning (a.k.a. proof
systems) in propositional logic

This talk: resolution
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Introduction Proof Complexity

Motivation for Proof Complexity

1 Separate NP and coNP

2 Understand how much reasoning power required to prove different
mathematical statements

3 Analyse applied satisfiability algorithms (SAT solvers)
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Introduction Proof Complexity

Just To Make Sure We’re on the Same Page. . .

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

Empty clause (with no literals) denoted ⊥ = (contradiction)
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Introduction Resolution

Resolution Proof System

Derive new clauses using resolution rule: C∨x D∨x
C∨D

Certify unsatisfiability by deriving empty clause ⊥
Proof of unsatisfiability = refutation

y

x

z ∨ ȳ

z̄

z

⊥

z̄ ∨ y

z ∨ y

ȳ ∨ x

z ∨ ȳ ∨ x̄

z̄ ∨ x̄
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z ∨ ȳ ∨ x̄

z̄ ∨ x̄

z ∨ ȳ
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x

z̄

Jakob Nordström (KTH) Pseudo-Width for Highly Overconstrained Formulas Dagstuhl Mar ’19 5/27



Introduction Resolution

Resolution Proof System

Derive new clauses using resolution rule: C∨x D∨x
C∨D

Certify unsatisfiability by deriving empty clause ⊥
Proof of unsatisfiability = refutation

y

⊥

z̄ ∨ y

z ∨ y
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Introduction Resolution

Complexity Measures for Resolution

z̄ ∨ y

z ∨ y

ȳ ∨ x

z ∨ ȳ ∨ x̄

z̄ ∨ x̄

y

x

z ∨ ȳ

z̄

z

⊥

Length of refutation = #clauses (11 in our example)

Width of refutation = #literals in largest clause (3 in our example)

Minimize over all refutations to define length L(F `⊥) and
width W(F `⊥) of refuting formula F
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z ∨ ȳ ∨ x̄

z̄ ∨ x̄

y

x

z ∨ ȳ

z̄

z

⊥

Length of refutation = #clauses (11 in our example)

Width of refutation = #literals in largest clause (3 in our example)

Minimize over all refutations to define length L(F `⊥) and
width W(F `⊥) of refuting formula F

Jakob Nordström (KTH) Pseudo-Width for Highly Overconstrained Formulas Dagstuhl Mar ’19 6/27



Introduction Resolution

Size-Width Lower Bound

Ben-Sasson & Wigderson [BW01]

L(F `⊥) = exp
(

Ω
(

W(F `⊥)2

#variables in F

))

Linear lower bounds on width ⇒ exponential lower bounds on length
Can be used to prove almost all resolution lower bounds:

Pigeonhole principle formulas [Hak85]
Tseitin formulas [Urq87]
Random k-CNF formulas [CS88, BKPS02]
. . .
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Introduction Resolution

Open Problems

So are we done with resolution? Not quite. . .

Size-width lower bound yields nothing for width /
√

#variables

This is essentially tight by [BG01]

Interesting challenges for resolution lower bounds e.g.:
k-clique formulas
Pseudo-random generator formulas
Weak pigeonhole principle formulas (highly overconstrained)
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Introduction Resolution

This talk

Strong lower bounds for weak pigeonhole principle formulas

Using and refining Razborov’s pseudo-width method [Raz03, Raz04b]

Seems like a very powerful tool that could be useful elsewhere
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Pigeonhole Principle Previous Work on Standard PHP formulas

Pigeonhole Principle (PHP) Formulas

One variable per edge:
xi,j for i ∈ [m] and j ∈ [n]
Pigeon axioms: At least 1 hole∨

j∈[n] xi,j (for i ∈ [m])
Hole axioms: At most 1 pigeon
xi,j ∨ xi′,j

Functionality axioms: Only 1 hole
xi,j ∨ xi,j′ (for i ∈ [m], j 6= j′ ∈ [n])

Onto axioms: At least 1 pigeon∨
i∈[m] xi,j (for j ∈ [n])
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m Pigeons n Holes

x1,1

xm,n

S

∂(S)
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Pigeonhole Principle Previous Work on Standard PHP formulas

Pigeonhole Principle and Resolution: Some History

Haken [Hak85]:
L
(
Onto-FPHPn+1

n `⊥
)

= exp(Ω(n))
Buss & Turán [BT88]:
L
(
Onto-FPHPm

n `⊥
)

= exp
(
Ω
(

n2

m

))
Raz [Raz04a]:
L
(
PHPm

n `⊥
)

= exp
(
Ω
(

n
log10 m

))
Razborov [Raz03, Raz04b]:
L
(
Onto-FPHPm

n `⊥
)

= exp
(
Ω
(

n
log2 m

))
m Pigeons n Holes

x1,1

xm,n

S

∂(S)

(Much more info in Razborov’s survey on PHP in proof complexity [Raz02])
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Pigeonhole Principle Restricted PHP Formulas

Pigeonhole Principle on Graphs

Replace complete graph by “good” sparse
graph, restricting pigeon choices

Intuitively, graph is “good” if any small set
of pigeons has many partial matchings
(r,∆, c)-boundary expander:

1 every pigeon has degree ≤ ∆
2 all sets S ⊆ [m] of size ≤ r have
≥ c · |S| unique neighbours
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Pigeonhole Principle Restricted PHP Formulas

Lower Bounds for Graph PHP Formulas on Expanders

Ben-Sasson & Wigderson [BW01]:
For r = Ω(n/ logm), ∆ = logm and
c = 3

4 logm:
L(FPHP(G) `⊥) = exp

(
Ω
(

n2

m log m

))
Razborov [Raz03, Raz04b]:
L(Onto-FPHP(G) `⊥) = exp

(
Ω
(

min degree
log2 m

))
What about m� n2 and ∆ ≈ logm?

m Pigeons n Holes

S

∂(S)

∆
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Pigeonhole Principle Our Results

Our Weak Graph PHP Lower Bounds

For m ≤ no(log n), ∆ = logm and G sampled from G(m,n,∆):

L
(
FPHP(G) `⊥

)
≥ exp

(
n1−o(1)

)
For m = nk, ∆ = 32

(
k
ε

)2
and G sampled from G(m,n,∆):

L
(
FPHP(G) `⊥

)
≥ exp

(
n1−ε)

For m < exp
(
n1/16

)
and ∆ = O(polylog(m)), ∃ graphs G such that:

L
(
FPHP(G) `⊥

)
≥ exp

(
n1/5

)
(using expander construction in [GUV09])
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Pigeonhole Principle Our Results

A General Theorem

Theorem
Let G be an

(
r,∆, (1− ε logn/logm)∆

)
-boundary expander. Then

L
(
FPHP(G) `⊥

)
= exp

(
Ω
(

r

nε log2m

))

Technical note:
Need expansion limn→∞ c = ∆
Would be great to show that c = (1− ε)∆ is enough
Probably room for improvement also in other parameters
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Pseudo-Width Method Roadmap

Very High-Level Proof Outline

Define pseudo-width measure on clauses ≈ interesting pigeons

Short refutations can be transformed into low-width refutations

But any refutation of FPHP(G) requires large pseudo-width

Hence, no short refutations can exist �
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Pseudo-Width Method Intuition and Definitions

Pseudo-Width

Each clause has 3 different kinds of pigeons:

obese stout slim
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Pseudo-Width Method Intuition and Definitions

Measuring the Strength of Clauses

How strong is a clause C?
Depends on how many pigeon-to-hole
matchings C rules out
I.e., how many matchings falsify C
Positive literals — don’t match edge
Negative literal — have to match edge
If several negative literals in C,
no matching ruled out

i

positive literals in C

Key take-away
For each pigeon, consider #matchings that C rules out
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Pseudo-Width Method Intuition and Definitions

Obese Pigeons

(Pseudo-)width: measure of weakness of clauses
More matchings satisfy C ⇒ weaker clause

di(C) = #matchings of pigeon i that satisfy C

Choose (somehow) filter vector ~d = (d1, . . . , dm), di < ∆
If di(C) ≥ di, then pigeon i is obese in clause C
Pobese(C) = {i ∈ [m] | di(C) ≥ di}
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Pseudo-Width Method Intuition and Definitions

Stout Pigeons and Pseudo-Width

di(C) = #matchings of pigeon i that satisfy C
~d = (d1, . . . , dm)

Pigeons δ-close to being obese are also somewhat fat. . .
If di(C) ≥ di − δ for δ / ∆/ logm, then pigeon i is stout in C
Pstout(C) = {i ∈ [m] | di(C) ≥ di − δ}
Pseudo-width of clause C is

W ∗(C) =
∣∣Pstout(C)

∣∣
i.e., #stout pigeons in C
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Pseudo-Width Method Getting Into Technicalities. . .

Refined Proof Outline

1 Given refutation, classify clauses as having high or low pseudo-width

⊥

2 Substitute high-pseudo-width clauses by lower-width fake axioms A
3 By construction

|A| ≤ length L of original refutation
∃ low-pseudo-width refutation of FPHP(G) ∪ A

4 Show that since A not too large, FPHP(G) ∪ A must still require
large pseudo-width E �
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Pseudo-Width Method Getting Into Technicalities. . .

Filter Lemma

Lemma (Razborov [Raz03] (with a small twist))
If δ ≤ ε∆ log n

log m and length L < 2w0 , then ∃ ~d = (d1, . . . , dm) such that
∀ clauses C in refutation one of two cases applies:

1 |Pobese(C)| ≥ w0
2 |Pstout(C)| = W ∗(C) ≤ O

(
w0 · nε

)

⊥

Jakob Nordström (KTH) Pseudo-Width for Highly Overconstrained Formulas Dagstuhl Mar ’19 22/27



Pseudo-Width Method Getting Into Technicalities. . .

Filter Lemma

Lemma (Razborov [Raz03] (with a small twist))
If δ ≤ ε∆ log n

log m and length L < 2w0 , then ∃ ~d = (d1, . . . , dm) such that
∀ clauses C in refutation one of two cases applies:

1 |Pobese(C)| ≥ w0
2 |Pstout(C)| = W ∗(C) ≤ O

(
w0 · nε

)

⊥

Jakob Nordström (KTH) Pseudo-Width for Highly Overconstrained Formulas Dagstuhl Mar ’19 22/27



Pseudo-Width Method Getting Into Technicalities. . .

Proof of Pseudo-Width Upper Bound

Fake axiom
A fake axiom is any clause with exactly w0 obese pigeons

Fake intuition: such clauses so weak we can almost give them “for free”

Corollary (of Filter Lemma)
If FPHP(G) can be refuted in length L < 2w0 , then exists

filter vector ~d
fake axiom set A with |A| ≤ L

such that FPHP(G) ∪ A can be refuted in pseudo-width O
(
w0 · nε

)
Proof:

1 Replace type-1 clauses with many obese pigeons by (stronger) fake axioms
2 Now all clauses have low width (type-2 clauses were already OK) — done!
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Pseudo-Width Method Getting Into Technicalities. . .

Pseudo-Width Lower Bound: Statement and Intuition

Lemma
Suppose G is

(
r,∆, (1− ε logn/logm)∆

)
-boundary expander. Then

refuting FPHP(G) ∪ A requires pseudo-width Ω
(
r · logn/logm

)
Fake proof:

Measure progress made up to C as fraction of matchings ruled out for Pstout(C)
True (original) axioms rule out no matchings
Fake axioms rule out exponentially small fraction of matchings (hard to match
obese pigeons while avoiding to satisfy clause)
Contradiction ⊥ rules out 100% of partial matchings! (Since Pstout(⊥) = ∅)
Key technical lemma: For small-pseudo-width resolution steps

C ∨ xi,j D ∨ xi,j

C ∨ D

C ∨ D rules out at most same fraction of matchings as C ∨ xi,j plus D ∨ xi,j

⇒ Too few fake axioms to add up to 100% E
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⇒ Too few fake axioms to add up to 100% E
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Pseudo-Width Method Getting Into Technicalities. . .

More About the Actual Pseudo-Width Lower Bound

A couple of issues:
1 Not true that C ∨D rules out same fraction as C ∨ xi,j plus D ∨ xi,j

— pigeon i can cease to be stout in C ∨D
2 Also, assignments to a few other stout pigeons i′1, . . . , i′∆ might

occupy all ∆ holes available for pigeon i needing to be matched

Solutions:
1 Need “lossy counting”

Associate matchings with linear subspaces of suitable space
Consider span of all matchings ruled out
When “enough” matchings for pigeon i, can stop counting

2 Consider Pcrit(C) ⊇ Pstout(C) so that residual graph
G \

(
Pcrit(C)×N(Pcrit(C))

)
is expander

3 Do proof on previous slide, but with linear algebra ,
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Pseudo-Width Method Getting Into Technicalities. . .

Technical Details in Their Full Glory

Fix linear spaces Li for i ∈ [n] of dimension `i ≈ ∆− di + δ/4
Associate assignment i 7→ j with vector ~vi,j ∈ Li so that

|J | ≥ `i ⇒ span
(
{~vi,j | j ∈ J}

)
= Li

Associate partial matching ϕ with subspace

L(ϕ) =
⊗

i∈dom(ϕ)
~vi,ϕ(i) ⊗

⊗
i/∈dom(ϕ)

Li

Strength of clause C measured by

Z(C) = span
(
{L(ϕ) | dom(ϕ)=Pcrit(C); ϕ doesn’t satisfy C}

)
Main Technical Lemma
For derivations in low pseudo-width it holds that

Z(C ∨D) ⊆ span
(
Z(C ∨ x), Z(D ∨ x)

)
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Take-Home Message

Resolution very well-studied; large toolbox developed

But many challenging problems remain beyond current techniques
Razborov’s pseudo-width method seems like a powerful tool that
might also work for, e.g.,

k-clique formulas
Pseudo-random generator formulas

Would be great to extend to other proof systems
resolution over parities
polynomial calculus

Thanks! Questions?
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