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SAT in Theory and Practice

Computational complexity

Satisfiability fundamental
problem in theoretical
computer science
SAT canonical NP-complete
problem [Coo71, Lev73]
Hence totally intractable in
worst case (probably)
One of the million dollar
“Millennium Problems”

SAT solving

Enormous progress in
performance last 15–20 years
So-called conflict-driven clause
learning (CDCL) solvers can
deal with millions of variables
Used for hardware & software
verification, OR, AI, . . .
But also exist tiny formulas that
are totally beyond reach

Limitations of CDCL
1 Clauses weak formalism for encoding constraints
2 Also weak method of reasoning (resolution)
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Pseudo-Boolean Reasoning (a.k.a. 0-1 Linear Programming)

Pseudo-Boolean (PB) linear constraints are stronger than clauses

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

with

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially more powerful in theory

But PB solvers less efficient than CDCL in practice!?
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Our Work

Study pseudo-Boolean rules of reasoning used in practice

How do they compare to cutting planes proof system?

In particular, what is the power of division versus saturation?

Broader message
For many (most?) computational problems worst-case Turing
machine model not terribly relevant
But there are lots of interesting algorithms in need of rigorous analysis
Can help out more applied colleagues, and at the same time
do complexity theory for bounded computational models
(what’s not to like?)
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Pseudo-Boolean Solving and Cutting Planes Pseudo-Boolean Solving

Pseudo-Boolean Constraints and Normalized Form

In this talk, “pseudo-Boolean” (PB) refers to 0-1 integer linear constraints

Convenient to use non-negative linear combinations of literals, a.k.a.
normalized form ∑

i ai`i ≥ A

coefficients ai: non-negative integers
degree (of falsity) A: positive integer
literals `i: xi or xi (where xi + xi = 1)

(In what follows, all constraints assumed to be implicitly normalized)
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Pseudo-Boolean Solving and Cutting Planes Pseudo-Boolean Solving

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x+ y + z ≥ 1

Refer to collection of such constraints as “CNF formula”

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Pseudo-Boolean Solving and Cutting Planes Pseudo-Boolean Solving

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses
Lazy approach: learn clauses from PB constraints

Sat4j [LP10] (one of versions in library)
Eager approach: re-encode to clauses and run CDCL

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]
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Pseudo-Boolean Solving and Cutting Planes Pseudo-Boolean Solving

Conflict-Driven Search in a Pseudo-Boolean Setting

“Forward phase” — variable assignments
1 Always propagate forced assignment if possible
2 Otherwise make assignment using decision heuristic

“Backward phase” — conflict analysis
1 When constraint violated (= conflict), derive new constraint that

explains what went wrong
2 Add new constraint to instance ⇒ avoid same mistake again
3 Backtrack until no constraint violated
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Pseudo-Boolean Solving and Cutting Planes Pseudo-Boolean Solving

Propagation, Conflict, and Slack

Slack measures how far current assignment ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

At conflict, derive new constraint from conflict and propagating constraints
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Pseudo-Boolean Solving and Cutting Planes Cutting Planes

The Cutting Planes Proof System [CCT87]

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB
[cA, cB ≥ 0]

Division
∑
i ai`i ≥ A∑

idai/ce`i ≥ dA/ce
[c > 0]

Setting in this talk
Input: Set of pseudo-Boolean constraints without 0-1 solution
Goal: Prove unsatisfiability by deriving 0 ≥ 1 using cutting planes

Ignore algorithmic aspects — heuristics beyond rigorous analysis — and
assume optimal use of derivation rules
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Pseudo-Boolean Solving and Cutting Planes Cutting Planes

More About Cutting Planes

A toy example:

6x+ 2y + 3z ≥ 5 x+ 2y + w ≥ 1
Linear combination

(6x+ 2y + 3z) + 2(x+ 2y + w) ≥ 5 + 2 · 1

Literal axioms and linear combinations sound also over the reals
Division is where the power of cutting planes lies
Exponentially stronger than resolution/CDCL [Hak85, CCT87]
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Pseudo-Boolean Solving and Cutting Planes Pseudo-Boolean Rules in Practice

Generalized Resolution

In conflict-driven search, linear combination always made to cancel variable
(on which constraints disagree)

Generalized resolution rule [Hoo88, Hoo92]

ajxj +
∑
i 6=j ai`i ≥ A bjxj +

∑
i 6=j bi`i ≥ B∑

i 6=j
(
c
aj
ai + c

bj
bi)`i ≥ c

aj
A+ c

bj
B − c

[c = lcm(aj , bj)]

Another toy example:

2x+ y + z ≥ 2 3x+ 2y + u+ w ≥ 3
General resolution on x

3(y + z) + 2(2y + u+ w) ≥ 3 · 2 + 2 · 3− 6(x+ x)
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Pseudo-Boolean Solving and Cutting Planes Pseudo-Boolean Rules in Practice

Saturation

What’s more, pseudo-Boolean solvers based on [CK05] do not do division

Instead use that no variable coefficient need be larger than maximum
contribution required from that variable

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Continuing our example:

7y + 3z + 2u+ 2w ≥ 6

6y + 3z + 2u+ 2w ≥ 6
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Comparing Division and Saturation Overview of Our Results

Theoretical Understanding of Applied PB Reasoning?

Flavours of cutting planes in practice:
1 Boolean rule: (a) saturation or (b) division
2 Linear combinations: (a) generalized resolution or (b) no restrictions

Using generalized resolution seems inherent in conflict-driven setting
But what about Boolean rule?

Saturation most popular (in [CK05, LP10], et cetera)
Division used only recently in [EN18]
What are the relative strengths of these rules? Nothing known. . .

Striking contrast to long line of work on resolution and CDCL
([BKS04, HBPV08, BHJ08, AFT11, PD11] . . . )
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Comparing Division and Saturation Overview of Our Results

Our Results

1 For CNF, saturation no stronger than resolution proof system / CDCL
(even for unrestricted linear combinations)

2 Division + generalized resolution can be exponentially stronger than
saturation + unrestricted linear combinations

3 Single saturation step can require unbounded # divisions to simulate,
even with unrestricted linear combinations

1st result strengthens [VEG+18]
Focus on 2nd and 3rd results — first of its kind
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Comparing Division and Saturation Strength of Division

Cutting Planes and Implicational Completeness

All flavours of cutting planes except division + unrestricted linear
combinations as in [CCT87] collapse to resolution for CNFs
Full cutting planes implicationally complete — can recover, e.g.,
cardinality constraints from CNF

x+ y ≥ 1
x+ z ≥ 1

y + z ≥ 1
2x+ 2y + 2z ≥ 3 [2 non-cancelling additions]
x+ y + z ≥ 2 [Divide by 2]

Impossible with generalized resolution!
So pigeonhole principle (PHP) in CNF hard for PB solvers
CNFs make life hard for both saturation and division — but we want
to show that division can be stronger! Can do so by cheating. . .
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Comparing Division and Saturation Strength of Division

Division + Resolution Can Be Stronger Than Saturation

Take formula requiring recovery of cardinality constraints from CNF

x+ y ≥ 1
x+ z ≥ 1

y + z ≥ 1
2x+ 2y + 2z ≥ 3 [2 non-cancelling additions]
x+ y + z ≥ 2 [Divide by 2]

Add helper variables to make all linear combinations cancelling
⇒ Now easy for division + resolution, since easy for full cutting planes

Assigning helper variables = 0 gives back CNF encoding
⇒ Cutting planes proofs preserved under partial assignments
⇒ Still hard for saturation, even with unrestricted linear combinations
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Comparing Division and Saturation Strength of Division

“Cheating” Applied To Subset Cardinality Formulas

Variables = 1s in matrix with four 1s per row/column + extra 1
Row ⇒ majority of variables true; column ⇒ majority false



1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1



(x1,1 ∨ x1,2 ∨ x1,4)
∧ (x1,1 ∨ x1,2 ∨ x1,8)
∧ (x1,1 ∨ x1,4 ∨ x1,8)
∧ (x1,2 ∨ x1,4 ∨ x1,8)

...
∧ (x4,11 ∨ x8,11 ∨ x10,11)
∧ (x4,11 ∨ x8,11 ∨ x11,11)
∧ (x4,11 ∨ x10,11 ∨ x11,11)
∧ (x8,11 ∨ x10,11 ∨ x11,11)

Exponentially hard for resolution for expanding matrices [MN14]
Easy for cutting planes: recover cardinality constraints and count
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Comparing Division and Saturation Strength of Saturation

Simulating Saturation by Division
Division can simulate saturation by completeness — but how efficiently?

200x+ 51y + 50z + 49w ≥ 100
Multiplication by 100

20000x+ 5100y + 5000z + 4900w ≥ 10000

Exponentially many steps measured in bitsize of coefficents. . .
Our result: Impossible to get rid of exponential dependence in general!
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Comparing Division and Saturation Strength of Saturation

Division Can’t Simulate Saturation Efficiently
Consider derivation

Rx+Ry +
∑R
i=1 zi ≥ R Rx+Ry +

∑2R
i=R+1 zi ≥ R

2Rx+
∑2R
i=1 zi ≥ R

Rx+
∑2R
i=1 zi ≥ R

Theorem
Deriving

Rx+
∑2R
i=1 zi ≥ R

from
Rx+Ry +

∑R
i=1 zi ≥ R and

Rx+Ry +
∑2R
i=R+1 zi ≥ R

requires Ω
(√
R
)

division steps (even with unrestricted linear combinations)
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Proof Sketch
Define potential function

P
(
ax+ by + b′y +

∑
cizi ≥ A

)
= ln ((2a+ b+ b′)/A)

At start: P
(
Rx+Ry +

∑R
i=1zi ≥ R

)
= ln (3)

At end: P
(
Rx+

∑2R
i=1zi ≥ R

)
= ln (2)

Properties:
1 Potential needs to drop by ≥ 1/6
2 But linear combination C1 & C2 → C ′ doesn’t decrease potential:
P(C ′) ≥ min{P(C1),P(C2)}

3 And division C → C ′ only decreases potential by small amount:
P(C ′) ≥ P(C)− 1/

√
R

Hence Ω
(√
R
)

division steps needed
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Comparing Division and Saturation Strength of Saturation

Saturation + Resolution Can Be Stronger Than Division?

Does this show that saturation + generalized resolution can be
exponentially stronger than division? No!

Only shows that saturation step can’t be simulated efficiently

Doesn’t rule out that cutting planes with division could prove
unsatisfiability of benchmarks in completely different way

But if division is always as good as saturation, then it seems like
proof of this can’t be simple step-by-step simulation
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Comparing Division and Saturation Experiments

Some Experimental Results

Strength of Division
When division better than saturation, RoundingSat [EN18] can run
much faster than Sat4j [LP10]
But very sensitive to how helper variables encoded

Strength of Saturation
Have easy benchmarks for saturation that look tricky for division
— in theory
In practice, the benchmarks we tried so far are hard for both division-
and saturation-based solvers

Caveat: obviously artificial benchmarks — we just want to see if
separations can happen in actual solvers
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Directions for Future Research

Division versus saturation
Can cutting planes with saturation be more powerful than division at
proving unsatisfiability?
Can we find good algorithms combining division and saturation?
Can potential functions be a more general approach for proving lower
bounds?

Fundamental challenges
All PB solvers degenerate to resolution for CNF inputs
Sometimes very poor performance even when LP relaxation infeasible!
Combine with mixed integer linear programming (MIP) techniques?
Ongoing work [DGN19, EN20]. . .
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Take-Home Message

Porting conflict-driven paradigm to pseudo-Boolean solving (0-1 ILP)
has potential for exponential gains
Mostly haven’t materialized — instead nontrivial challenges regarding

Efficient implementation
Theoretical understanding

This work: Show that division and saturation rules are incomparable
Future research: Better algorithms and lower bounds needed
Along the way lots of fun questions to work on! ,

Advertisement: University of Copenhagen is hiring!
PhD students, postdocs, and faculty
World-leading in algorithms — expanding into complexity theory

Thank you for your attention!
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