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The Satisfiability Problem (SAT)

(x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z)

Variables should be set to true or false

Constraint (x ∨ y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all these conditions?
Or is it always the case that some constraint must fail to hold?
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Proof Complexity

Satisfiable formulas have short, efficiently verifiable certificates
(satisfying assignments)

What about unsatisfiable formulas?

Proof system
Formal specification of method for reasoning about formulas
Given formula F , can produce certificate π of unsatisfiability
Proof π should be polynomial-time verifiable (in size of π, not F)

Proof complexity
Study of upper and lower bounds for concrete proof systems
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Motivations for Proof Complexity

Program for showing P 6= NP
Original motivation in [Cook & Reckhow ’79]
Superpolynomial lower bounds for all proof systems ⇒ NP 6= co-NP
Still very distant goal. . .

Quantify power of mathematical reasoning
Study efficient proofs of different mathematical principles
Determine how strong proof systems are needed
Measures “mathematical depth” of corresponding principle

Connections to SAT solving and combinatorial optimization
Can formalize and study proof systems behind state-of-the-art SAT solvers
Sheds light on potential and limitations of such solvers
Also extends to combinatorial optimization (e.g., LP and SDP hierarchies)
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Outline of This Presentation

1 Overview of some proof complexity basics

2 Discuss two proof systems
I Resolution (⇔ state-of-the-art conflict-driven clause learning solvers)
I Polynomial calculus (⇔ algebraic Gröbner basis computations)

3 Present framework for proving polynomial calculus lower bounds
I Based on degree lower bounds via expansion
I Expressed in terms of combinatorial game played on formula
I Unifies previous lower bounds and yields some new ones
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Some Notation and Terminology

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k-CNF formula: CNF formula with clauses of size ≤ k
(where k is some constant)

N = size of formula (# literals, which is ≈ # clauses for k-CNF)
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The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Refutation ends when empty clause ⊥
derived

Can represent refutation as

annotated list or

directed acyclic graph

Tree-like resolution if DAG is tree

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Resolution Size/Length

Size/length = # clauses in refutation

Most fundamental measure in proof complexity

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known
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Examples of Hard Formulas w.r.t Resolution Size (1/2)

Pigeonhole principle (PHP) [Haken ’85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i goes into hole j”

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i 6= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j 6= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP formula is hard for resolution
“Resolution cannot count”

Jakob Nordström (KTH) A Generalized Method for PC Degree Lower Bounds Singapore Feb ’16 9/33
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Examples of Hard Formulas w.r.t Resolution Size (2/2)

Tseitin formulas [Urquhart ’87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

0 0

x y

z

(x ∨ y) ∧ (x ∨ z)
∧ (x ∨ y) ∧ (y ∨ z)
∧ (x ∨ z) ∧ (y ∨ z)

Requires size exp
(
Ω
(
N
))

on well-connected so-called expanders
“Resolution cannot count mod 2”
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Resolution Width

Width = size of largest clause in refutation (always ≤ N)

Width upper bound ⇒ size upper bound

Proof: at most (2 ·#variables)width distinct clauses
(This simple counting argument is essentially tight [Atserias et al.’14])

Width lower bound ⇒ size lower bound

Much less obvious. . .
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Width Lower Bounds Imply Size Lower Bounds

Theorem ([Ben-Sasson & Wigderson ’99])

size ≥ exp

(
Ω

(
(width)2

(formula size N)

))

Yields superpolynomial size bounds for width ω
(√
N logN

)
Almost all known lower bounds on size derivable via width

For tree-like resolution have size ≥ 2width [Ben-Sasson & Wigderson ’99]

General resolution: width up to O
(√
N logN

)
implies no size lower

bounds — possible to tighten analysis? No!
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Optimality of the Size-Width Lower Bound

Ordering principles [St̊almarck ’96, Bonet & Galesi ’99]
“Every (partially) ordered set {e1, . . . , en} has minimal element”

Variables xi,j = “ei < ej”

xi,j ∨ xj,i anti-symmetry; not both ei < ej and ej < ei

xi,j ∨ xj,k ∨ xi,k transitivity; ei < ej and ej < ek implies ei < ek∨
1≤i≤n, i 6=jxi,j ej is not a minimal element

Refutable in resolution in size O(N)
Requires resolution width Ω

(
3
√
N
)

(converted to 3-CNF)
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Polynomial Calculus

Introduced in [Clegg et al. ’96]; slightly modified in [Alekhnovich et al. ’00]

Clauses interpreted as polynomial equations over finite field
Any field in theory; GF(2) in practice
Example: x ∨ y ∨ z gets translated to xyz = 0
(Think of 0 ≡ true and 1 ≡ false)

Derivation rules

Boolean axioms
x2 − x = 0

Negation
x+ x = 1

Linear combination
p = 0 q = 0

αp+ βq = 0
Multiplication

p = 0
xp = 0

Goal: Derive 1 = 0 ⇔ no common root ⇔ formula unsatisfiable
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Polynomial Calculus Size and Degree

Clauses turn into monomials
Write out all polynomials as sums of monomials
W.l.o.g. all polynomials multilinear (because of Boolean axioms)

Size — analogue of resolution length/size
total # monomials in refutation counted with repetitions

Degree — analogue of resolution width
largest degree of monomial in refutation
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Polynomial Calculus Can Mimic Resolution Steps

Example: Resolution step:

x ∨ y ∨ z y ∨ z
x ∨ y

simulated by polynomial calculus derivation:

xyz = 0

yz = 0

xyz = 0

z + z − 1 = 0

yz + yz − y = 0

xyz + xyz − xy = 0

−xyz + xy = 0

xy = 0
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Polynomial Calculus Strictly Stronger than Resolution

Polynomial calculus simulates resolution efficiently

Can mimic refutation step by step as shown on previous slide

Essentially no increase in length/size or width/degree

Hence worst-case upper bounds for resolution carry over

Polynomial calculus is strictly stronger w.r.t. both size and degree

Consider, e.g., Tseitin formulas on expanders

Over GF(2) can just do Gaussian elimination

Also other examples not depending on field characteristic
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Size vs. Degree

Degree upper bound ⇒ size upper bound [Clegg et al.’96]
Qualitatively similar to resolution bound
A bit more involved argument
Again essentially tight by [Atserias et al.’14]

Degree lower bound ⇒ size lower bound [Impagliazzo et al.’99]
Precursor of [Ben-Sasson & Wigderson ’99] — can do same proof to
get same bound

Size-degree lower bound essentially optimal [Galesi & Lauria ’10]
Example: same ordering principle formulas

Most size lower bounds for polynomial calculus derived via degree
lower bounds (but machinery much less developed)
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Lower Bounds via Expansion

Standard approach: Lower
bounds from expansion

Simplest example: Clause-variable
incidence graph (CVIG)

Boundary expansion:
Subsets of left vertices have many
unique neighbours on right

Problem:
CVIG might lose expansion of
combinatorial problem

Need graph capturing underlying
principle!
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Our Results

Main Theorem (Informal)

Graph structure on formula such that expansion implies hardness in
polynomial calculus

Extends an approach from [Alekhnovich, Razborov ’01]

Unifies many previous lower bounds for polynomial calculus

Corollary: New lower bound resolving open question in [Razborov ’02]

Warm-up: Use resolution to present main ideas and challenges
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Revisiting Tseitin Formulas

Given set of equations over F2

x+ w= 0

x+ y= 0

y + w + z= 1

z= 0

Encode as clauses

Does CVIG expand? No!

Graph should encode equations,
not clauses!

x ∨ w

x ∨ w

x ∨ y

x ∨ y

y ∨ w ∨ z

y ∨ w ∨ z

y ∨ w ∨ z

y ∨ w ∨ z

z

Clauses
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Constraint-Variable Incidence Graph

Use one vertex per equation on the left

Put edge if variable appears in equation

x ∨ w

x ∨ w

x ∨ y

x ∨ y

y ∨ w ∨ z

y ∨ w ∨ z

y ∨ w ∨ z

y ∨ w ∨ z

z

x

y

w

z

Clauses Variables

x

y

w

z

x+ w = 0

x+ y = 0

y + w + z = 1

z = 0

Constraints Variables

Now the constraint-variable incidence graph expands!
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Proof Sketch of Tseitin Lower Bound

x+ w = 0

x+ y = 0

z = 0

x

y

w

z

y + w + z = 1

Constraints Variables

1 For each clause, look at minimal set of constraints implying it

Axioms: 1 constraint needed
Contradiction ⊥: All constraints needed
Halfway through: Clause C depending on medium-sized set S

2 S has large boundary expansion ⇒ All boundary variables in C

3 Proof: Suppose not ⇒ not all of S needed for C
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Resolution Lower Bounds

Resolution edge game on (P, x)

1 Adversary provides assignment ρ to all variables

2 Can flip x to some b so that P is satisfied

Theorem (Ben-Sasson & Wigderson ’99)

If from formula F =
∧

P∈F P can form bipartite graph G(F) such that

G(F) is expanding and

for all edges (P, x) we can satisfy P by flipping x

then refuting F requires large width
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Polynomial Calculus Edge Game

Tseitin: linear equations ⇒ easy over F2 (Gaussian elimination)

Need stronger guarantee from constraint-variable incidence graph!

Resolution graph:

Graph is boundary expander
Can play resolution edge game on every edge (P, x)

For polynomial calculus we have to play a harder game

Polynomial calculus edge game on (P, x)

1 Commit to assignment x = b ahead of time

2 Adversary provides assignment ρ to all variables

3 Flipping x = b satisfies P

Easy to see we can’t win this game for Tseitin formulas
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Main Theorem (Preliminary Version)

If from formula F =
∧

P∈F P can form bipartite graph G(F) such that:

G(F) is expanding, and

for all edges (P, x) can fix P to true by flipping x,

then refuting F requires large degree

Not enough to prove functional pigeonhole principle hard!
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Pigeonhole Principle (PHP)

“n+ 1 pigeons don’t fit into n holes”
Very wide clauses — hit with restriction to decrease width
Restricts choices of holes for each pigeon — graph PHP formula

1

2

3

4

1

2

3

But again CVIG not expanding!
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Proving PHP Lower Bound

Isolate hole axioms from graph and group hole variables together

Change game to play on assignments to groups of variables
Assignments must satisfy any hole axioms touched

Polynomial calculus edge game on (P, V ) with side constraint E

1 Commit to ρV : V → {0, 1} satisfying any clauses touched in E

2 Adversary provides total assignment ρ not violating E

3 Flipping V to ρV should now satisfy P ∧ E
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Generalized Method for Degree Lower Bounds

Main Theorem

If from formula F = F ′ ∧E we can form bipartite graph G(F ′) such that:

G(F ′) is expanding, and

For all edges (P, V ) there is an assignment to V
I fixing P to true and
I satisfying any touched clause in E

then refuting F requires large degree

Provides common framework for previous lower bounds:

CNF formulas with expanding CVIGs [Alekhnovich & Razborov ’01]

Pigeonhole principle [Alekhnovich & Razborov ’01]

Graph ordering principle [Galesi & Lauria ’10]

Allows us to establish that functional PHP is hard
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PHP Variants

1

2

3

4

1

2

3

Can have “fat pigeons” assigned to multiple holes

⇒ Add functionality axioms (makes mapping 1-to-1)

Can have holes with no pigeons

⇒ Add onto axioms (makes mapping onto)

Functional PHP = PHP + Functionality

Onto-PHP = PHP + Onto

Onto-FPHP = PHP + Functionality + Onto
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Hardness of PHP Variants

Variant Resolution Polynomial calculus

PHP hard [Haken ’85] hard [AR ’01]
FPHP hard [Haken ’85]
Onto-PHP hard [Haken ’85]
Onto-FPHP hard [Haken ’85] easy! [Riis ’93]

This work

Observe that [AR ’01] proves hardness of Onto-PHP

Prove that FPHP is hard in polynomial calculus
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Hardness of PHP Variants
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PHP hard [Haken ’85] hard [AR ’01]
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Open Problems

Prove polynomial calculus lower bounds for other formulas

I graph colouring formulas
I independent set formulas

Prove size lower bounds via technique that doesn’t use degree

I clique formulas
I weak pigeonhole principle formulas

Find truly general framework capturing all PC degree lower bounds

I We generalize only part of [Alekhnovich & Razborov ’01]
I Cannot deal with lower bounds à la [Buss et al. ’99]

Go beyond polynomial calculus (to sums-of-squares, for instance)
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Go beyond polynomial calculus (to sums-of-squares, for instance)

Jakob Nordström (KTH) A Generalized Method for PC Degree Lower Bounds Singapore Feb ’16 32/33



Open Problems

Prove polynomial calculus lower bounds for other formulas

I graph colouring formulas
I independent set formulas

Prove size lower bounds via technique that doesn’t use degree

I clique formulas
I weak pigeonhole principle formulas

Find truly general framework capturing all PC degree lower bounds

I We generalize only part of [Alekhnovich & Razborov ’01]
I Cannot deal with lower bounds à la [Buss et al. ’99]
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Take-away Message

Generalized method for polynomial calculus degree lower bounds

Unified framework for most previous lower bounds

Exponential size lower bound for Functional PHP

Future directions

Extend techniques further to other tricky formulas

Develop non-degree-based size lower bound techniques

Thank you for your attention!
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