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The Satisfiability Problem (SAT)

(x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z)

Variables should be set to true or false

Constraint (x ∨ y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all these conditions?
Or is it always the case that some constraint must fail to hold?

Can we use computers to solve the SAT problem efficiently?
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SAT Solving in Theory and Practice

The unreasonable effectiveness of SAT solvers

The Boolean satisfiability problem (SAT) is NP-complete and
so should be exponentially hard
Yet conflict-driven clause learning (CDCL) SAT solvers can
deal with formulas containing millions of variables
How can they work so well? What are their limits?

How to understand the power of CDCL?

Community structure
Parameterized complexity
This talk: proof complexity
Rigorous analysis of underlying method of reasoning
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Purpose of This Presentation

Survey some of the research in the area (most of it not mine)
including some ongoing work (of mine)

Discuss some theoretical “benchmark formulas” used to
understand potential and limitations of SAT solvers

Highlight some (of the many) remaining open problems

Caveats:
By necessity, selective and somewhat subjective coverage
Will sweep some technical details under the rug — happy to discuss offline
Full references for all papers at end of slides
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Some More Caveats and Clarifications

Limitations of proof complexity
Asking for rigorous analysis is asking a lot. . .
In addition, proof complexity considers optimal algorithms
(so restrict focus to unsatisfiable formulas)
Still possible to prove some highly nontrivial theorems
Separate question how to interpret these theoretical theorems

Why focus on theory benchmarks?
See what SAT solvers can do (sometimes very neat things)
See what SAT solvers cannot do (provably hard instances)
See what SAT solvers “should be able” to do (formulas easy
for proof system but hard for corresponding SAT solvers)
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Outline

1 Resolution and Conflict-Driven Clause Learning
The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

2 Cutting Planes and Pseudo-Boolean SAT Solving
The Cutting Planes Proof System
Pseudo-Boolean SAT Solving

3 Seeking Practical CDCL Insights from Theoretical Benchmarks
Experimental Set-up
Some Tentative Findings
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

Some Notation and Terminology

Literal a: variable x or its negation x (or ¬x)

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k-CNF formula: CNF formula with clauses of size ≤ k
(where k is some constant)

N denotes size of formula (# literals counted with repetitions)

O(f(N)) grows at most as quickly as f(N) asymptotically
Ω(g(N)) grows at least as quickly as g(N) asymptotically
Θ(h(N)) grows equally quickly as h(N) asymptotically
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

The Resolution Proof System Underlying CDCL

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when empty clause ⊥ derived

Can represent refutation/proof as
annotated list or
directed acyclic graph

Tree-like resolution if DAG is tree
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Res(7, 8)
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Making the Connection to DPLL

Basis of best modern SAT solvers still DPLL method
[DP60, DLL62]

Visualize execution of DPLL algorithm as search tree
Branch on variable assignments in internal nodes
Stop in leaves when falsfied clause found
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DPLL Execution as Resolution Proof

A DPLL execution is a resolution proof

Look at our example again:

and apply resolution rule bottom-up

(Slightly more needed to turn this into formal theorem, but this is essentially it)
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CDCL Execution as Resolution Proof

Many more ingredients in modern CDCL SAT solvers
[BS97, MS99, MMZ+01], for instance:

Choice of branching variables crucial
In leaf, compute & add reason for failure (clause learning)
Restart every once in a while (saving learned clauses)

But CDCL still yields resolution proofs
(though clause learning ⇒ general DAGs instead of trees)

Will talk more about this later in the presentation
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Resolution Size/Length

Size/length of proof = # clauses (9 in our example)
Length of refuting F = min over all proofs for F

Most fundamental measure in proof complexity

Lower bound on CDCL running time
(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known

Jakob Nordström (KTH) Understanding CDCL Through Lens of Proof Complexity KTH Nov ’17 12/43



Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

Resolution Size/Length

Size/length of proof = # clauses (9 in our example)
Length of refuting F = min over all proofs for F

Most fundamental measure in proof complexity

Lower bound on CDCL running time
(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known

Jakob Nordström (KTH) Understanding CDCL Through Lens of Proof Complexity KTH Nov ’17 12/43



Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

Some Examples of Hard Formulas w.r.t. Length (1/2)

Pigeonhole principle (PHP) [Hak85]
“n + 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i goes into hole j”

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole
pi,j ∨ pi′,j no hole j gets two pigeons i 6= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j 6= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP formula is hard for resolution
“Resolution cannot count”
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Some Examples of Hard Formulas w.r.t. Length (2/2)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd
Write CNF requiring parity of # true incident edges = label

1

0 0

x y

z

(x ∨ y) ∧ (x ∨ z)
∧ (x ∨ y) ∧ (y ∨ z)
∧ (x ∨ z) ∧ (y ∨ z)

Requires length exp
(
Ω
(
N
))

on well-connected so-called expanders
“Resolution cannot count mod 2”
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Resolution Space
Space = max # clauses in memory
when performing refutation

Motivated by solver memory usage (but
also of intrinsical theory interest)

Can be measured in different ways —
makes most sense here to focus on
clause space

Space at step t = # clauses at steps
≤ t used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Space at step t = # clauses at steps
≤ t used at steps ≥ t
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Space of proof = max over all steps
Space of refuting F = min over all proofs
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x
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7. x Res(1, 6)
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Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Apply for space on top of storing formula
Hold even for optimal algorithms that magically know exactly
which clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound holds only for proofs of
exponential size
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Length and Space

Exist space-efficient proofs ⇒ exist short proofs [AD08]
(for k-CNF formulas, to be precise)

Existence of short proofs ⇒ existence of space-efficient proofs?
No!

Pebbling formulas [Nor09, NH13, BN08]

Can be refuted in length O(N)
May require space Ω(N/ log N)
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Length-Space Trade-offs
Length ≈ running time; space ≈ memory consumption
SAT solvers aggressively try to minimize both — is this possible?

Theorem ([BN11, BBI12, BNT13])
There are formulas for which

exist refutations in short length
exist refutations in small space
optimization of one measure causes dramatic blow-up for
other measure

Holds for
Pebbling formulas on the right graphs
Tseitin formulas on long, narrow rectangular grids

So simultaneous optimization not possible [at least in theory]
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Abstract Description of CDCL (1/2)
Trail: a stack of decisions xi

d= b and unit propagations xi
C= b

( x7
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dec. level 1

, x2
d= 1, x12
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decision level 2
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)

Clause database D: original formula + learned clauses

Start in Case mode; transit to Conflict, Unit, or Decision

Case If trail falsifies clause C ∈ D, move to Conflict;
else if all variables assigned, output SAT;
else if some C ∈ D unit w.r.t. trail, move to Unit;
else if restart, set trail to () and move to Case;
else

1 decide if to apply database reduction to D;
2 move to Decision
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The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

Abstract Description of CDCL (2/2)

Unit Pick clause C ∈ D that is unit w.r.t. trail
(All literals except one is falsified)
Add propagated assignment x

C= b to trail
Move to Case

Conflict If trail contains no decisions, output UNSAT;
else

apply learning scheme to derive clause C;
backjump, i.e., remove assignments from trail
until C not false but still unit propagates;
move to Unit

Decision Use decision scheme to add decision x
d= b to trail

Move to Case

Description from [EJL+16] drawing heavily on [AFT11, BHJ08, PD11]
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Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

CDCL Execution Example
Too small formula for interesting example. . . So expand slightly:

(u∨(x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)
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CDCL Execution Example as Resolution Refutation
Obtain resolution refutation. . . from CDCL execution by stringing
together conflict analyses:
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Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

Understanding the Efficiency of CDCL Proof Search

Lower bounds in proof complexity ⇒ impossibility results for
CDCL even assuming optimal choices

But CDCL only finds proofs with very specific structure —
can it match resolution upper bounds?

Long line of work aimed at proving that CDCL explores
resolution search space efficiently, e.g.,
[BKS04, Van05, BHJ08, HBPV08]
Challenging problem — progress only by making assumptions
such as

artificial preprocessing
decisions past conflicts
non-standard learning scheme
no unit propagation(!)
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The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

CDCL Simulation of Resolution

General idea is obvious:
Given resolution proof (C1, C2, . . . , Cτ )
Force solver to efficiently learn Ct for t = 1, 2, 3, . . .

Not as easy as it seems. . .

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size

Constructive version in [AFT11]: ∃ resolution proof with
clauses of bounded size ⇒ CDCL will run fast

Good, so then we’re done understanding CDCL?
Not quite. . .

Jakob Nordström (KTH) Understanding CDCL Through Lens of Proof Complexity KTH Nov ’17 24/43



Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

CDCL Simulation of Resolution

General idea is obvious:
Given resolution proof (C1, C2, . . . , Cτ )
Force solver to efficiently learn Ct for t = 1, 2, 3, . . .

Not as easy as it seems. . .

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size

Constructive version in [AFT11]: ∃ resolution proof with
clauses of bounded size ⇒ CDCL will run fast

Good, so then we’re done understanding CDCL?
Not quite. . .

Jakob Nordström (KTH) Understanding CDCL Through Lens of Proof Complexity KTH Nov ’17 24/43



Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

CDCL Simulation of Resolution

General idea is obvious:
Given resolution proof (C1, C2, . . . , Cτ )
Force solver to efficiently learn Ct for t = 1, 2, 3, . . .

Not as easy as it seems. . .

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size

Constructive version in [AFT11]: ∃ resolution proof with
clauses of bounded size ⇒ CDCL will run fast

Good, so then we’re done understanding CDCL?
Not quite. . .

Jakob Nordström (KTH) Understanding CDCL Through Lens of Proof Complexity KTH Nov ’17 24/43



Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks

The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

Room for Further Improvement of [AFT11, PD11]?

Very frequent restarts needed — no progress at all in between
Restarts are important, but not quite that important?!

Decision strategy in [PD11] needs (unknown) resolution
proof or should be fully random in [AFT11]
Probably inherent — fully algorithmic result unlikely [AR08]

In clause database no learned clause must ever be forgotten
But in practice something like 90–95% of clauses erased. . .

Solvers typically have to run in (close to) linear time O(n)
But simulation running time something like O

(
n5)
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The Resolution Proof System
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Theoretical Analysis of CDCL

What We Would Want

Want a more fine-grained and realistic CDCL model. . .
Capture restarts, clause learning, memory management, etc.
Modular design to allow study of different features
Theoretical analogue of projects in [KSM11, SM11, ENSS16]

. . . Leading to improved theoretical insights
Can CDCL proof search be time and space efficient?
And can it be really efficient? (No large polynomial blow-ups)
How does memory management affect proof search quality?
Do restarts increase reasoning power?
How do other heuristics help or hinder proof search?
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What We Have So Far (1/2)

This is ongoing work — reporting results so far in [EJL+16]

Much less impressive results than we would have liked. . .
(but these seem like hard problems)

Formalize description a few slides back as CDCL proof system

Proof: Decisions + conflict analyses + erasures + restarts

Time/Size: # decisions + propagations + conflict analysis steps
Space: (Size of clause database)− (size of formula)
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The Resolution Proof System
Conflict-Driven Clause Learning
Theoretical Analysis of CDCL

What We Have So Far (2/2)

Known: no clause learning ⇒ collapse to tree-like resolution

Show too aggressive clause removal ⇒ exponential blow-up in
running time, matching theory [BN11, BBI12, BNT13]

Involves time- and space-efficient CDCL simulations of some
resolution proofs (but far from general simulation result)

In addition, these simulations do not need restarts (impossible
to prove in principle for model in [AFT11, PD11])

Intuitively plausible results, but quite painful to formalize

Only math theorems, but have some indications of similar
behaviour in practical experiments [ENSS16]
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Pseudo-Boolean SAT Solving

Cutting Planes

Introduced in [CCT87] based on integer LP in [Gom63, Chv73]

Clauses interpreted as linear inequalities over the reals with
integer coefficients (identifying 1 ≡ true and 0 ≡ false)

Example: x ∨ y ∨ z gets translated to x + y + (1− z) ≥ 1

Derivation rules

Variable axioms 0 ≤ x ≤ 1 Multiplication
∑

aixi ≥ A∑
caixi ≥ cA

Addition
∑

aixi ≥ A
∑

bixi ≥ B∑
(ai+bi)xi ≥ A+B

Division
∑

caixi ≥ A∑
aixi ≥ dA/ce

Goal: Derive 0 ≥ 1 ⇔ formula unsatisfiable
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The Cutting Planes Proof System
Pseudo-Boolean SAT Solving

Size, Length and Space

Length = total # lines/inequalities in refutation
Size = sum also size of coefficients
Space = max # lines in memory during refutation

Cutting planes
simulates resolution efficiently w.r.t. length/size and space
simultaneously
is strictly stronger w.r.t. length/size — can refute
PHP [CCT87] and subset cardinality formulas efficiently
is strictly stronger w.r.t. space — can refute any CNF in
constant space 5 (!) [GPT15] (But coefficients will be
exponentially large — what if also coefficient size counted?)
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks
The Cutting Planes Proof System
Pseudo-Boolean SAT Solving

Hard Formulas w.r.t. Cutting Planes Length

Clique-coclique formulas [Pud97]
“A graph with an m-clique is not (m−1)-colourable”

pi,j = indicator variables for edges in an n-vertex graph
qk,i = identifiers for members of m-clique in graph
ri,` = encoding of legal (m−1)-colouring of vertices

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is kth member of clique
qk,i ∨ qk′,i clique members are uniquely defined
pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges
ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour
pi,j ∨ ri,` ∨ rj,` neighbours have distinct colours

Exponential lower bound via interpolation and circuit complexity
Technique very specifically tied to structure of formula
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks
The Cutting Planes Proof System
Pseudo-Boolean SAT Solving

Some Challenging Problems for Cutting Planes

Prove length lower bounds for cutting planes
for Tseitin formulas
for random k-CNFs

Prove space lower bounds for cutting planes
with polynomial-size coefficients (nothing known)
with constant-size coefficients (very weak bounds in [GPT15])

Are there trade-offs where the space-efficient CP refutations have
small coefficients? (Say, of polynomial or even constant size)
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks
The Cutting Planes Proof System
Pseudo-Boolean SAT Solving

Some Recent News About Cutting Planes

Theorem ([FPPR17, HP17])
Random CNF formulas of logarithmic width are exponentially hard
for cutting planes

Theorem ([dRNV16])
There exist flavours of pebbling formulas such that

∃ small-size refutations with constant-size coefficients
∃ small-space refutations with constant-size coefficients
Decreasing the space even for refutations with exponentially
large coefficients causes exponential blow-up of length
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks
The Cutting Planes Proof System
Pseudo-Boolean SAT Solving

What About Conflict-Driven Cutting Planes Solvers?
So-called pseudo-Boolean SAT solvers use (a subset of) cutting
planes — but seems hard to make them competitive with CDCL

Possible to combine reasoning power of cutting planes with
efficiency of CDCL? Work in this direction in, e.g., Sat4j [LP10]

Several challenges:
How detect unit propagation? Not enough to watch just
2 literals (or any finite number)
Linear constraints more complicated than clauses — and
integer arithmetic can become expensive
Not obvious how to do conflict analysis

Can sometimes skip “resolution steps” in conflict analysis with
propagating constraints on reason side — good or bad?
Can happen that “resolvent” is not conflicting — can be fixed
in several ways, but what way is best?
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks
Experimental Set-up
Some Tentative Findings

Empirical Analysis of CDCL Solvers

Can we explain empirically when and why CDCL works well (or not)?
Run experiments and draw interesting conclusions?

Theory approach: Correlated with complexity measures?
Some work in [JMNŽ12], but more questions than answers
Applied approach: Vary settings on industrial benchmarks
Some work in [KSM11, SM11], but diversity and sparsity of
industrial benchmarks makes it hard to draw clear conclusions

Why not combine the two approaches?

Generate scalable & easy versions of theoretical benchmarks
Have short proofs, so no excuse for solver not doing well. . .
Study effect of different CDCL heuristics on performance

Jakob Nordström (KTH) Understanding CDCL Through Lens of Proof Complexity KTH Nov ’17 35/43
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks
Experimental Set-up
Some Tentative Findings

Theoretically Easy Combinatorial Benchmarks

Study tweaked versions of well-studied formulas with:
short resolution proofs that can in principle be found by CDCL
without any preprocessing
often even without any restarts
sometimes even without learning, i.e., just DPLL
. . . given right variable decision order

Test theoretical results in [AFT11, PD11]: Does CDCL search
for proofs efficiently?

Several benchmarks extremal w.r.t. proof complexity measures
or trade-offs — can be expected to “challenge” solver
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks
Experimental Set-up
Some Tentative Findings

Instrumented CDCL Solver

To run experiments, add “knobs” to Glucose [AS09, Glu] and vary
settings for:

restart policy
branching
clause database management
clause learning

Yields huge number of potential combinations
Not all combinations make sense, but many do
Test also settings where “convential wisdom” knows answer
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Resolution and Conflict-Driven Clause Learning
Cutting Planes and Pseudo-Boolean SAT Solving

Seeking Practical CDCL Insights from Theoretical Benchmarks
Experimental Set-up
Some Tentative Findings

Some Preliminary Conclusions (1/2)
Importance of restarts

Sometimes very frequent restarts very important
Crucial in [AFT11, PD11] for CDCL to simulate resolution
efficiently
Also seems to matter in practice for some formulas which are
hard for subsystems of resolution such as regular resolution
(stone formulas [AJPU07])

Clause erasure
Theory says very aggressive clause removal could hurt badly
Seem to see this on scaled-down versions of time-space
trade-off formulas in [BBI12, BNT13] (Tseitin formulas)
Even no erasure at all can be competitive for these formulas
for frequent enough restarts
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Seeking Practical CDCL Insights from Theoretical Benchmarks
Experimental Set-up
Some Tentative Findings

Plot 1: Tseitin Formulas on Grids
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Tseitin grid (5xN): different restart and clause erasure strategies

Minisat 2.2 reduce freq, no restarts

Minisat 2.2 reduce freq, LBD restarts

LBD reduce freq, no restarts

LBD reduce freq, LBD restarts

No deletion, no restarts

No deletion, LBD restarts

Fixed var. order, no deletion
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Some Preliminary Conclusions (2/2)
Clause assessment

Can LBD (literal block distance) heuristic balance aggressive
erasures by identifying important clauses? Maybe. . .
But LBD can backfire for too aggressive removal — do old
glue clauses clog up the clause database?

Variable branching
Variables chosen based on activity in recent conflicts —
sometimes small changes in rate of forgetting absolutely
crucial (ordering principle formulas [Kri85, St̊a96])
Does slow decay bring solver closer to tree-like resolution???

CDCL vs. resolution
Sometimes CDCL fails miserably on easy formulas
Sometimes strange easy-hard-easy patterns (subset cardinality
formulas [Spe10, VS10, MN14])
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Plot 2: Ordering Principle Formulas
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POP: different VSIDS decay factor and restart strategies

VSIDS 0.95, No restarts

VSIDS 0.95, LBD restarts

VSIDS 0.80, No restarts

VSIDS 0.80, LBD restarts

Fixed var. order
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Plot 3: Subset Cardinality Formulas
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Subset card: different clause erasure and restart strategies

LBD assessment, Minisat 2.2 reduce freq, no restarts

LBD assessment, Minisat 2.2 reduce freq, LBD restarts

LBD assessment, LBD reduce freq, no restarts

LBD assessment, LBD reduce freq, LBD restarts
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Summing up
This presentation:

Survey of resolution and connections to CDCL
Brief discussion of cutting planes and pseudo-Boolean solving
See survey paper [Nor15] for more details

Some open problems (not exhaustive list):
Can CDCL simulate resolution time- and space-efficiently?
Is standard CDCL without restarts weaker than resolution?
Can study of subsystems of cutting planes explain power and
limitations of pseudo-Boolean solvers?
Is it possible to build SAT solvers based on stronger proof
systems than resolution that beat CDCL solvers?

Thank you for your attention!
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