Learn to Relax: Integrating Integer Linear Programming with Conflict-Driven Search

Jo Devriendt †*, Ambros Gleixner \ddagger, Jakob Nordström **
Acknowledgement: Jan Elffers †*
† Lund University, Sweden
\ddagger Zuse Institut Berlin, Germany

* University of Copenhagen, Denmark
- KTH Royal Institute of Technology, Sweden
jn@di.ku.dk
Slides by Jo Devriendt
 \section*{Conflict-driven search for 0-1 ILP}
 \section*{Conflict-driven search for 0-1 ILP}
an example-driven intro

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

$$
x, y, z, v, w \mapsto\{0,1\}
$$

Conflict-driven Search Loop

Conflict-driven Search Loop

- Given 0-1 ILP program $\boldsymbol{\varphi}$ and current assignment $\mathbf{\alpha}$, if a constraint $\mathbf{c} \in \varphi$ would be falsified by assuming $x=0$ (resp. $x=1$), extend a with $x=1$ (resp. $x=0$)

Conflict-driven Search Loop

- Given 0-1 ILP program $\boldsymbol{\varphi}$ and current assignment \mathbf{a}, if a constraint $\mathbf{c} \in \varphi$ would be falsified by assuming $x=0$ (resp. $x=1$), extend a with $x=1$ (resp. $x=0$)
- propagate until fixpoint

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0
\end{aligned}
$$

- Given 0-1 ILP program $\boldsymbol{\varphi}$ and current assignment $\mathbf{\alpha}$, if a constraint $\mathbf{c} \in \varphi$ would be falsified by assuming $x=0$ (resp. $x=1$), $-z+v-w \geq 0$ extend a with $x=1$ (resp. $x=0$)
- propagate until fixpoint

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0
\end{aligned}
$$

- Given 0-1 ILP program $\boldsymbol{\varphi}$ and current assignment $\mathbf{\alpha}$, if a constraint $\mathbf{c} \in \varphi$ would be falsified by assuming $x=0$ (resp. $x=1$), extend a with $x=1$ (resp. $x=0$)
- propagate until fixpoint

$$
\begin{aligned}
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

$$
\alpha=\{ \}
$$

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0
\end{aligned}
$$

- Given 0-1 ILP program $\boldsymbol{\varphi}$ and current assignment $\mathbf{\alpha}$, if a constraint $\mathbf{c} \in \varphi$ would be falsified by assuming $x=0$ (resp. $x=1$), extend a with $x=1$ (resp. $x=0$)
- propagate until fixpoint

$$
\alpha=\{ \}
$$

currently no unit propagation

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0
\end{aligned}
$$

- Conflict: some constraint in φ falsified by $a-z+v-w \geq 0$

$$
-x+z+w \geq 1
$$

$$
\alpha=\{ \}
$$

Conflict?

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

Conflict-driven Search Loop

- Only if unit propagation did not lead to a conflict
- if no unassigned
variable left, return SAT

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

$$
\alpha=\{ \}
$$

Conflict-driven Search Loop

- Only if unit propagation did not lead to a conflict
- if no unassigned
variable left, return SAT
- Resume unit propagation

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

$$
\alpha=\{ \}
$$

Conflict-driven Search Loop

- Only if unit propagation did not lead to a conflict
- if no unassigned
variable left, return SAT
- Resume unit propagation

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

$$
\alpha=\{x=0\}
$$

Conflict-driven Search Loop

$$
\begin{gathered}
+y-z \geq 0 \\
-y+z-v \geq 0 \\
-z+v-w \geq 0 \\
+z+w \geq 1
\end{gathered}
$$

$$
\alpha=\{x=0\}
$$

Conflict-driven Search Loop

$$
\begin{gathered}
+y-z \geq 0 \\
-y+z-v \geq 0 \\
-z+v-w \geq 0 \\
+z+w \geq 1
\end{gathered}
$$

$$
\alpha=\{x=0\}
$$

Conflict-driven Search Loop

$$
\begin{gathered}
+y-z \geq 0 \\
-y+z-v \geq 0 \\
-z+v-w \geq 0 \\
+z+w \geq 1
\end{gathered}
$$

Decide unassigned
variable

$$
\alpha=\{x=0, y=1\}
$$

Conflict-driven Search Loop

$$
\begin{gathered}
1-z \geq 0 \\
-1+z-v \geq 0 \\
-z+v-w \geq 0 \\
+z+w \geq 1
\end{gathered}
$$

Decide unassigned

$$
\alpha=\{x=0, y=1\}
$$

variable
4 no
Conflict?

Conflict-driven Search Loop

$$
\begin{gathered}
1-z \geq 0 \\
-1+z-v \geq 0 \\
-z+v-w \geq 0 \\
+z+w \geq 1
\end{gathered}
$$

Decide unassigned

$$
\alpha=\{x=0, y=1\}
$$

variable
4 no
Conflict?

Conflict-driven Search Loop

$$
\begin{gathered}
1-z \geq 0 \\
-1+z-v \geq 0 \\
-z+v-w \geq 0 \\
+z+w \geq 1
\end{gathered}
$$

Decide unassigned
variable

$$
\begin{gathered}
\alpha=\{x=0, y=1 \\
z=1, v=0\}
\end{gathered}
$$

Conflict?

Conflict-driven Search Loop

$$
\begin{gathered}
0 \geq 0 \\
0 \geq 0 \\
-1-w \geq 0 \\
+1+w \geq 1
\end{gathered}
$$

Decide unassigned variable

$$
\begin{gathered}
\alpha=\{x=0, y=1 \\
z=1, v=0\}
\end{gathered}
$$

Conflict?

Conflict-driven Search Loop $0 \geq 0$

- Conflict: some constraint in φ falsified by a

$0 \geq 0$

$-1-w \geq 0$
$+1+w \geq 1$

Conflict-driven Search Loop

$$
\begin{gathered}
0 \geq 0 \\
0 \geq 0 \\
\frac{-1-w \geq 0}{+1+w \geq 1}
\end{gathered}
$$

Decide unassigned

$$
\begin{gathered}
\alpha=\{x=0, y=1 \\
z=1, v=0\}
\end{gathered}
$$

Learn constraint

Conflict-driven Search Loop

- From falsified constraint and reasons leading $0 \geq 0$ up to conflict, construct learned constraint
- implied by φ, should prevent same conflict

$$
\begin{array}{r}
-1-w \geq 0 \\
+1+w \geq 1
\end{array}
$$

Conflict-driven Search Loop

- From falsified constraint and reasons leading up to conflict, construct learned constraint
- implied by φ, should prevent same conflict
- Add learned constraint to φ
- \rightarrow learned constraint database

Conflict-driven Search Loop

- From falsified constraint and reasons leading up to conflict, construct learned constraint
- implied by φ, should prevent same conflict
- Add learned constraint to φ
- \rightarrow learned constraint database

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

$$
\begin{gathered}
\alpha=\{x=0, y=1 \\
z=1, v=0\}
\end{gathered}
$$

Conflict-driven Search Loop

- From falsified constraint and reasons leading up to conflict, construct learned constraint
- implied by φ, should prevent same conflict
- Add learned constraint to φ
- \rightarrow learned constraint database

$$
+x+y-z \geq 0
$$

$$
-y+z-v \geq 0
$$

$$
-z+v-w \geq 0
$$

$$
-x+z+w \geq 1
$$

$$
\begin{gathered}
\alpha=\{x=0, y=1 \\
z=1, v=0\}
\end{gathered}
$$

Conflict-driven Search Loop

- From falsified constraint and reasons leading

$$
+x+y-z \geq 0
$$ up to conflict, construct learned constraint

- implied by φ, should prevent same conflict
- Add learned constraint to φ
- \rightarrow learned constraint database

$$
\begin{gathered}
-y+z-v \geq 0 \\
-x+v-w \geq 0 \\
-x+z+w \geq 1 \\
\alpha=\{x=0, y=1 \\
z=1, v=0\} \\
-y-w \geq 0
\end{gathered}
$$

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

Decide unassigned variable

$$
\begin{gathered}
\alpha=\{x=0, y=1 \\
z=1, v=0\}
\end{gathered}
$$

Conflict?
yes

$$
-y-w \geq 0
$$

Learn constraint

Backjump

Conflict-driven Search Loop

$$
+x+y-z \geq 0
$$

- Backtrack based on learned constraint

$$
\begin{aligned}
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

Conflict-driven Search Loop

$$
+x+y-z \geq 0
$$

- Backtrack based on learned constraint
- Resume unit propagation

$$
\begin{aligned}
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

Conflict-driven Search Loop

$$
+x+y-z \geq 0
$$

- Backtrack based on learned constraint
- Resume unit propagation

$$
\begin{aligned}
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

Decide unassigned variable

$$
\alpha=\{ \}
$$

4 no
Conflict?
yes
Learn constraint

Backjump

Conflict-driven Search Loop

$$
\begin{aligned}
& +x-z \geq 0 \\
& +z-v \geq 0 \\
& -z+v \geq 0 \\
& -x+z \geq 1
\end{aligned}
$$

Conflict-driven Search Loop

$$
\begin{array}{r}
+x-z \geq 0 \\
+z-v \geq 0 \\
-z+v \geq 0 \\
-x+z \geq 1
\end{array}
$$

Decide unassigned

$$
\alpha=\{y=0, w=0\}
$$

variable
4 no
Conflict?
\downarrow yes

$$
-y-w \geq 0
$$

Learn constraint

Backjump

Conflict-driven Search Loop

$$
\begin{gathered}
-1 \geq 0 \\
1-v \geq 0 \\
-1+v \geq 0 \\
1 \geq 1
\end{gathered}
$$

Conflict-driven Search Loop

$$
\begin{gathered}
-1 \geq 0 \\
1-v \geq 0 \\
-1+v \geq 0 \\
1 \geq 1
\end{gathered}
$$

Conflict-driven Search Loop

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

Conflict-driven Search Loop

$$
\begin{aligned}
+x+y-z & \geq 0 \\
-y+z-v & \geq 0 \\
-z+v-w & \geq 0 \\
-x+z+w & \geq I
\end{aligned}
$$

Decide unassigned

$$
\begin{gathered}
\alpha=\{y=0, w=0 \\
x=0, z=1\}
\end{gathered}
$$

Unit
propagation

Conflict-driven Search Loop

Conflict-driven Search Loop

Conflict-driven Search Loop

Conflict-driven Search Loop

- Learning constraints pushes search forward

Conflict-driven Search Loop

- Learning constraints pushes search forward
- Thousands of conflicts per second

Conflict-driven Search Loop

- Learning constraints pushes search forward
- Thousands of conflicts per second
- Highly optimized unit propagation

Conflict-driven Search Loop

- Learning constraints pushes search forward
- Thousands of conflicts per second
- Highly optimized unit propagation
- First proposed for Boolean satisfiability (SAT) [MS96,BS97,MMZZM01]

Conflict-driven Search Loop

- Learning constraints pushes search forward
- Thousands of conflicts per second
- Highly optimized unit propagation
- First proposed for Boolean satisfiability (SAT) [MS96,BS97,MMZZM01]
- Generalized to pseudo-Boolean (PB) solving [CK05,SS06,LP10,EN18]
- many variations possible

Another look at our example...

$+x+y-z \geq 0$
$-y+z-v \geq 0$
$-z+v-w \geq 0$
$-x+z+w \geq 1$
$x, y, z, v, w \mapsto\{0,1\}$

Another look at our example...

- It's rationally infeasible!

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

$$
x, y, z, v, w \mapsto\{0,1\}
$$

Another look at our example...

$$
+x+y-z \geq 0
$$

- It's rationally infeasible!
- Could be solved without search
$-y+z-v \geq 0$
$-z+v-w \geq 0$
$-x+z+w \geq 1$
$x, y, z, v, w \mapsto\{0,1\}$

Another look at our example...

$+x+y-z \geq 0$
$-y+z-v \geq 0$
$-z+v-w \geq 0$
$-x+z+w \geq 1$

- It's rationally infeasible!
- Could be solved without search
- In theory: rationally infeasible programs are easy for conflictdriven $P B$ search
$x, y, z, v, w \mapsto\{0,1\}$

Another look at our example...

$+x+y-z \geq 0$
$-y+z-v \geq 0$
$-z+v-w \geq 0$
$-x+z+w \geq 1$
$x, y, z, v, w \mapsto\{0,1\}$

- It's rationally infeasible!
- Could be solved without search
- In theory: rationally infeasible programs are easy for conflictdriven $P B$ search
- In practice: PB solvers timeout on certain rationally infeasible programs [EGNV18]
- unit propagation is local
- wrong constraints are learned

Another look at our example...

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

- It's rationally infeasible!
- Could be solved without search
- In theory: rationally infeasible programs are easy for conflictdriven PB search
- In practice: PB solvers timeout on certain rationally infeasible programs [EGNV18]
- unit propagation is local
- wrong constraints are learned

How about integrating an LP solver?

Another look at our example...

$$
\begin{aligned}
& +x+y-z \geq 0 \\
& -y+z-v \geq 0 \\
& -z+v-w \geq 0 \\
& -x+z+w \geq 1
\end{aligned}
$$

- It's rationally infeasible!
- Could be solved without search
- In theory: rationally infeasible programs are easy for conflictdriven PB search
- In practice: PB solvers timeout on certain rationally infeasible programs [EGNV18]
- unit propagation is local
- wrong constraints are learned

How about integrating an LP solver?

-

Linear Programming (LP) solver

Linear Programming (LP) solver

- Input:
- LP relaxation of φ
- variable bounds a
- objective function

Linear Programming (LP) solver

- Input:
- LP relaxation of φ
- variable bounds a
- objective function
- Output: either
- optimal rational solution
- Farkas multipliers
- define a positive linear combination of constraints in φ, falsified by a

Conflict-driven search loop
 with LP solver call

Conflict-driven search loop
 with LP solver call

Decide unassigned variable

Rational infeasibility?

Query LP solver
4 no

Unit
Propagation

Learn constraint

Backjump

Conflict-driven search loop
 with LP solver call

Conflict-driven search loop
 with LP solver call

Extract Farkas multipliers

Conflict-driven search loop
 with LP solver call

Rational infeasibility example

$$
\begin{gathered}
+a+x+y-z \geq 0 \\
+b-y+z-v \geq 0 \\
-z+v-w \geq 0 \\
-x+z+w \geq 1 \\
+a-b \geq 0
\end{gathered}
$$

Rational infeasibility example

$$
\begin{gathered}
+a+x+y-z \geq 0 \\
+b-y+z-v \geq 0 \\
-z+v-w \geq 0 \\
-x+z+w \geq 1 \\
+a-b \geq 0 \\
\alpha=\{a=0, b=0\}
\end{gathered}
$$

Rational infeasibility example

Farkas multipliers

$$
\begin{array}{cc}
+a+x+y-z \geq 0 & \times 1 \\
+b-y+z-v \geq 0 & \times 1 \\
-z+v-w \geq 0 & \times 1 \\
-x+z+w \geq 1 & \times 1 \\
+a-b \geq 0 & \times 0
\end{array}
$$

$$
\alpha=\{a=0, b=0\}
$$

Rational infeasibility example

Farkas multipliers

$$
\begin{array}{cll}
+a+x+y-z \geq 0 & \times 1 & \\
+b-y+z-v \geq 0 & \times 1 & \\
-z+v-w \geq 0 & \times 1 & +a+b \geq 1 \\
-x+z+w \geq 1 & \times 1 & \\
+a-b \geq 0 & \times 0 &
\end{array}
$$

$$
\alpha=\{a=0, b=0\}
$$

Two technical hurdles

Two technical hurdles

- LP solvers are slow compared to conflict-driven search loop
- limit calls to LP solver
- limit LP solver running time
- deterministic measure: balance \#conflicts in conflictdriven solver to \#pivots in LP solver

Two technical hurdles

- LP solvers are slow compared to conflict-driven search loop
- limit calls to LP solver
- limit LP solver running time
- deterministic measure: balance \#conflicts in conflictdriven solver to \#pivots in LP solver
- LP solver uses inexact floating point arithmetic
- learned constraint must be implied by φ
- recalculate Farkas constraint with exact arithmetic
- verify Farkas constraint is still conflicting
- post-process Farkas constraint to eliminate noise

Further ideas

- Every once in a while, run LP solver to completion at root

Further ideas

- Every once in a while, run LP solver to completion at root - use (optimal) rational solution as value heuristic

Further ideas

- Every once in a while, run LP solver to completion at root - use (optimal) rational solution as value heuristic
- generate Chvátal-Gomory (CG) cuts
- add to both LP solver and learned constraint set

Further ideas

- Every once in a while, run LP solver to completion at root
- use (optimal) rational solution as value heuristic
- generate Chvátal-Gomory (CG) cuts
- add to both LP solver and learned constraint set
- Generate "deep" Chvátal-Gomory cuts from internal search nodes
- valid at root node, so safe to add as learned constraint

Further ideas

- Every once in a while, run LP solver to completion at root
- use (optimal) rational solution as value heuristic
- generate Chvátal-Gomory (CG) cuts
- add to both LP solver and learned constraint set
- Generate "deep" Chvátal-Gomory cuts from internal search nodes
- valid at root node, so safe to add as learned constraint
- Add learned constraints as cuts to the LP solver

Working implementation

- PB solver RoundingSat [EN18]
- Strong ILP constraint learning
- Performed well in past PB competitions
- LP solver SoPlex [ZIB]
- SCIP's native LP solver
- State-of-the-art open source

Design choices

- \#pivots/\#conflicts ≤ 1
- CG cut parallelism check
- for decision instances, minimize sum of variables in SoPlex
- for pure CNFs, deactivate LP techniques
- 128 bit precision to calculate CG cuts and Farkas constraints

Experiments!

Compare state-of-the-art

- RoundingSat
- Sat4J
- NaPS
- SCIP
- Gurobi
- CPLEX
to implementations
- RS+SPX
- RS+SPX+GC
- RS+SPX+GC+LC
domset-hexgrid 05 (19 instances)

domset-hexgrid 05 (19 instances)

Knapsack (higher is better, 783 instances)

Knapsack (higher is better, 783 instances)

PB16dec (higher is better, 1783 instances)

PB16dec (higher is better, 1783 instances)

PB16opt (higher is better, 1600 instances)

PB16opt (higher is better, 1600 instances)

Miplib01Dec (higher is better, 556 instances)

Miplib01Dec (higher is better, 556 instances)

Miplib01Opt (higher is better, 291 instances)

Miplib01Opt (higher is better, 291 instances)

composed pebbling php pyramid (48 instances)

composed pebbling php pyramid (48 instances)

Related work

- Some SAT-based solvers use LP solver to decide specialized constraints
- LCG-Glucose: network-flow propagation
- SMT: deciding linear theory

Related work

- Some SAT-based solvers use LP solver to decide specialized constraints
- LCG-Glucose: network-flow propagation
- SMT: deciding linear theory
- In the end, SAT-based solvers only learn clauses
- exponentially weaker than learning 0-1 linear constraints
- Farkas constraints, Chvátal-Gomory cuts, PB learned constraints: all are used for conflict-driven learning

Summary

Conflict-driven search for 0-1 ILPs

Summary

Conflict-driven search for 0-1 ILPs

- Generates cuts from search conflicts

Summary

Conflict-driven search for 0-1 ILPs

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility

Summary

Conflict-driven search for 0-1 ILPs

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility
- Allows sound \& efficient integration with LP solver

Summary

Conflict-driven search for 0-1 ILPs

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility
- Allows sound \& efficient integration with LP solver
- Is further improved by value heuristic \& Gomory cut generation

Bun?

Conflict-driven search for 0-1 ILPs

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility
- Allows sound \& efficient integration with LP solver
- Is further improved by value heuristic \& Gomory cut generation

Experiments approach best of both worlds

Summary

Conflict-driven search for 0-1 ILPs

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility
- Allows sound \& efficient integration with LP solver
- Is further improved by value heuristic \& Gomory cut generation

Experiments approach best of both worlds

Thanks for your attention!

References

[MS96] GRASP - a new search algorithm for satisfiability - Marques-Silva, Sakallah [BS97] Using CSP lookback techniques to solve real-world SAT instances Bayardo, Schrag
[MMZZM01] Chaff: Engineering an efficient SAT solver - Moskewicz, Madigan, Zhao, Zhang, Malik
[P04] Where are the hard knapsack problems? - Pisinger
[CK05] A fast pseudo-Boolean constraint solver - Chai, Kuehlmann
[SS06] Pueblo: A hybrid pseudo-Boolean SAT solver - Sheini, Sakallah
[LP10] The Sat4j library, release 2.2 - Le Berre, Parrain
[EN18] Divide and conquer: Towards faster pseudo-boolean solving - Elffers, Nordström
[EGNV18] Using Combinatorial Benchmarks to Probe the Reasoning Power of pseudo-Boolean Solvers - Elffers, Giráldez-Cru, Nordström, Vinyals
[ZIB] SoPlex - soplex.zib.de
[PBCOMP] Latest PB competition - www.cril.univ-artois.fr/PB16/
[MIPLIB] The Mixed Integer Programming Library - miplib.zib.de

