Learn to Relax: Integrating Integer Linear Programming with Conflict-Driven Search

Jo Devriendt †*, Ambros Gleixner ‡, J<u>akob Nordström</u> *° Acknowledgement: Jan Elffers †* † Lund University, Sweden ‡ Zuse Institut Berlin, Germany * University of Copenhagen, Denmark ° KTH Royal Institute of Technology, Sweden jn@di.ku.dk Slides by Jo Devriendt

1

Conflict-driven search for 0-1 ILP

an example-driven intro

$$x,y,z,v,w\mapsto \{0,1\}$$

Unit propagation

• Given 0-1 ILP program $\boldsymbol{\phi}$ and current assignment $\boldsymbol{\alpha}$, if a constraint $\boldsymbol{c} \in \boldsymbol{\phi}$ would be falsified by assuming x=0 (resp. x=1), extend $\boldsymbol{\alpha}$ with x=1 (resp. x=0)

- Given 0-1 ILP program $\boldsymbol{\phi}$ and current assignment $\boldsymbol{\alpha}$, if a constraint $\boldsymbol{c} \in \boldsymbol{\phi}$ would be falsified by assuming x=0 (resp. x=1), extend $\boldsymbol{\alpha}$ with x=1 (resp. x=0)
- propagate until fixpoint

- Given 0-1 ILP program φ and current assignment α, if a constraint c ∈ φ would be falsified by assuming x=0 (resp. x=1), extend α with x=1 (resp. x=0)
- propagate until fixpoint

 $-x+z+w \ge 1$

- Given 0-1 ILP program φ and current assignment α, if a constraint c ∈ φ would be falsified by assuming x=0 (resp. x=1), extend α with x=1 (resp. x=0)
- propagate until fixpoint

$$egin{aligned} +x+y-z&\geq 0\ -y+z-v&\geq 0\ -z+v-w&\geq 0\ -x+z+w&\geq 1 \end{aligned}$$

Т

$$\alpha = \{\}$$

- Given 0-1 ILP program φ and current assignment α, if a constraint c ∈ φ would be falsified by assuming x=0 (resp. x=1), extend α with x=1 (resp. x=0)
- propagate until fixpoint

 $\alpha = \{\}$

currently no unit propagation

Conflict-driven Search Loop $+x+y-z \ge 0$ $-y+z-v\geq 0$ • Conflict: some constraint in φ falsified by α $-z+v-w \ge 0$ $-x+z+w \ge 1$ $\alpha = \{\}$

- Only if unit propagation did not lead to a conflict
 - if no unassigned variable left, return SAT

- Only if unit propagation did not lead to a conflict
 - if no unassigned variable left, return SAT
- Resume unit propagation

 $egin{aligned} +x+y-z&\geq 0\ -y+z-v&\geq 0\ -z+v-w&\geq 0\ -x+z+w&\geq 1 \end{aligned}$

 $\alpha = \{\}$

- Only if unit propagation did not lead to a conflict
 - if no unassigned variable left, return SAT
- Resume unit propagation

 $egin{aligned} +x+y-z&\geq 0\ -y+z-v&\geq 0\ -z+v-w&\geq 0\ -x+z+w&\geq 1\ lpha&=\{x=0\} \end{aligned}$

- From falsified constraint and **reasons** leading up to conflict, construct **learned constraint**
 - implied by ϕ , should prevent same conflict

 $lpha=\{x=0,y=1,\ z=1,v=0\}$

 $-w \ge 0$

0 > 0

0 > 0

+1+w > 1

- From falsified constraint and reasons leading up to conflict, construct learned constraint
 - implied by ϕ , should prevent same conflict
- Add learned constraint to φ
 - Iearned constraint database

$$-1 - w \ge 0$$

+ 1 + w \ge 1

0 > 0

0 > 0

$$egin{array}{l} = \{x=0,y=1\}\ z=1,v=0\} \end{array}$$

- From falsified constraint and reasons leading up to conflict, construct learned constraint
 - implied by ϕ , should prevent same conflict
- Add learned constraint to φ
 - Iearned constraint database

$$egin{aligned} &-y+z-v \ge 0 \ &-z+v-w \ge 0 \ &-x+z+w \ge 1 \ &z=1, y=1, \ &z=1, v=0 \} \end{aligned}$$

 $+x+y-z \ge 0$

- From falsified constraint and **reasons** leading up to conflict, construct **learned constraint**
 - implied by φ, should prevent same conflict
- Add learned constraint to $\boldsymbol{\phi}$
 - \rightarrow learned constraint database

 $-x+z+w \geq 1$

$$egin{aligned} &lpha = \{x=0, y=1, \ &z=1, v=0 \} \end{aligned}$$

- From falsified constraint and **reasons** leading up to conflict, construct **learned constraint**
 - implied by φ, should prevent same conflict
- Add learned constraint to $\boldsymbol{\phi}$
 - \rightarrow learned constraint database

 $+x+y-z \ge 0$

 $-y+z-v\geq 0$

 $-z+v-w\geq 0$

 $-x+z+w\geq 1$

Backtrack based on learned constraint

 $+x+y-z \ge 0$

 $-y+z-v\geq 0$

 $-z+v-w \ge 0$

 $-x+z+w \ge 1$

Decide unassigned

variable

Conflict?

Learn constraint

Backjump

no

yes yes

- Backtrack based on learned constraint
- Resume unit propagation

Unit

propagation

 $egin{aligned} &-x+z+w\geq 1\ lpha&=\{x=0,y=1,\ &z=1,v=0\} \end{aligned}$

 $+x+y-z \ge 0$

 $-y+z-v\geq 0$

 $-z+v-w \ge 0$

 $-y-w \ge 0$

- Backtrack based on learned constraint
- Resume unit propagation

 $egin{aligned} +x+y-z&\geq 0\ -y+z-v&\geq 0\ -z+v-w&\geq 0\ -x+z+w&\geq 1 \end{aligned}$

 $\alpha = \{\}$

Decide unassigned

• Learning constraints pushes search forward

- Learning constraints pushes search forward
- Thousands of conflicts per second

- Learning constraints pushes search forward
- Thousands of conflicts per second
- Highly optimized unit propagation

- Learning constraints pushes search forward
- Thousands of conflicts per second
- Highly optimized unit propagation
- First proposed for Boolean satisfiability (SAT) [MS96,BS97,MMZZM01]

- Learning constraints pushes search forward
- Thousands of conflicts per second
- Highly optimized unit propagation
- First proposed for Boolean satisfiability (SAT) [MS96,BS97,MMZZM01]
- Generalized to pseudo-Boolean (PB) solving [CK05,SS06,LP10,EN18]
 - many variations possible

 $egin{aligned} +x+y-z&\geq 0\ -y+z-v&\geq 0\ -z+v-w&\geq 0\ -x+z+w&\geq 1 \end{aligned}$

- It's rationally infeasible!
- $egin{aligned} +x+y-z&\geq 0\ -y+z-v&\geq 0\ -z+v-w&\geq 0\ -x+z+w&\geq 1 \end{aligned}$
- $w \mid z \mid w \geq 1$
- $x,y,z,v,w\mapsto \{0,1\}$

$$+x+y-z \ge 0$$

$$-y+z-v \ge 0$$

$$-z+v-w \ge 0$$

$$-x+z+w \ge 1$$

- It's rationally infeasible!
- Could be solved without search

$$+x+y-z \ge 0$$

$$-y+z-v\geq 0$$

$$-z+v-w \ge 0$$

$$-x+z+w \ge 1$$

• It's rationally infeasible!

- Could be solved without search
- In theory: rationally infeasible programs are easy for conflictdriven PB search

$$+x+y-z \ge 0$$

$$-y+z-v\geq 0$$

$$-z+v-w\geq 0$$

$$-x+z+w \ge 1$$

- It's rationally infeasible!
- Could be solved without search
- In theory: rationally infeasible programs are easy for conflict-driven PB search
- In practice: PB solvers timeout on certain rationally infeasible programs [EGNV18]
 - unit propagation is **local**
 - wrong constraints are learned

$$+x+y-z \ge 0$$

$$-y+z-v\geq 0$$

$$-z+v-w\geq 0$$

$$-x+z+w \geq 1$$

$$x,y,z,v,w\mapsto \{0,1\}$$

- It's rationally infeasible!
- Could be solved without search
- In theory: rationally infeasible programs are easy for conflict-driven PB search
- In practice: PB solvers timeout on certain rationally infeasible programs [EGNV18]
 - unit propagation is **local**
 - wrong constraints are learned

How about integrating an LP solver?

$$+x+y-z \ge 0$$

$$-y+z-v\geq 0$$

$$-z+v-w\geq 0$$

$$-x+z+w \geq 1$$

$$x,y,z,v,w\mapsto \{0,1\}$$

- It's rationally infeasible!
- Could be solved without search
- In theory: rationally infeasible programs are easy for conflict-driven PB search
- In practice: PB solvers timeout on certain rationally infeasible programs [EGNV18]
 - unit propagation is **local**
 - wrong constraints are learned

How about integrating an LP solver?

Linear Programming (LP) solver

Linear Programming (LP) solver

3

2

- Input:
 - LP relaxation of φ
 - variable bounds α
 - objective function

Linear Programming (LP) solver

3

2

- Input:
 - LP relaxation of φ
 - variable bounds α
 - objective function
- Output: either
 - optimal rational solution
 - Farkas multipliers
 - define a positive linear combination of constraints in φ, falsified by α

 $egin{aligned} +a + x + y - z &\geq 0 \ +b - y + z - v &\geq 0 \ -z + v - w &\geq 0 \ -x + z + w &\geq 1 \ +a - b &\geq 0 \end{aligned}$

$$lpha=\{a=0,b=0\}$$

Farkas multipliers

 $egin{aligned} +a+x+y-z&\geq 0 & imes 1\ +b-y+z-v&\geq 0 & imes 1\ -z+v-w&\geq 0 & imes 1\ -x+z+w&\geq 1 & imes 1\ +a-b&\geq 0 & imes 0 \end{aligned}$

$$lpha=\{a=0,b=0\}$$

Farkas multipliers

 $egin{aligned} +a + x + y - z &\geq 0 & imes 1 \ +b - y + z - v &\geq 0 & imes 1 \ -z + v - w &\geq 0 & imes 1 & +a + b &\geq 1 \ -x + z + w &\geq 1 & imes 1 \ +a - b &\geq 0 & imes 0 \end{aligned}$

$$lpha=\{a=0,b=0\}$$

Two technical hurdles

Two technical hurdles

- LP solvers are **slow** compared to conflict-driven search loop
 - Imit calls to LP solver
 - Iimit LP solver running time
 - deterministic measure: balance #conflicts in conflictdriven solver to #pivots in LP solver

Two technical hurdles

- LP solvers are **slow** compared to conflict-driven search loop
 - Iimit calls to LP solver
 - Iimit LP solver running time
 - deterministic measure: balance #conflicts in conflictdriven solver to #pivots in LP solver
- LP solver uses inexact floating point arithmetic
 - learned constraint must be implied by $\boldsymbol{\phi}$
 - recalculate Farkas constraint with exact arithmetic
 - **verify** Farkas constraint is still conflicting
 - **post-process** Farkas constraint to eliminate noise

Further ideas

• Every once in a while, run LP solver to completion at root

Further ideas

- Every once in a while, run LP solver to completion at root
 - use (optimal) rational solution as value heuristic

Further ideas

- Every once in a while, run LP solver to completion at root
 - use (optimal) rational solution as value heuristic
 - generate Chvátal-Gomory (CG) cuts
 - $\circ~$ add to both LP solver and learned constraint set

31

Further ideas

- Every once in a while, run LP solver to completion at root
 - use (optimal) rational solution as value heuristic
 - generate Chvátal-Gomory (CG) cuts
 - $\circ~$ add to both LP solver and learned constraint set
- Generate "deep" Chvátal-Gomory cuts from internal search nodes
 - valid at root node, so safe to add as learned constraint

Further ideas

- Every once in a while, run LP solver to completion at root
 - use (optimal) rational solution as value heuristic
 - generate Chvátal-Gomory (CG) cuts
 - $\circ~$ add to both LP solver and learned constraint set
- Generate "deep" Chvátal-Gomory cuts from internal search nodes
 - valid at root node, so safe to add as learned constraint
 - Add learned constraints as cuts to the LP solver

Working implementation

- PB solver **RoundingSat** [EN18]
 - Strong ILP constraint learning
 - Performed well in past PB competitions
- LP solver **SoPlex** [ZIB]
 - SCIP's native LP solver
 - State-of-the-art open source

Design choices

- #pivots/#conflicts ≤ 1
- CG cut **parallelism check**
- for decision instances, minimize sum of variables in SoPlex
- for pure CNFs, **deactivate** LP techniques
- **128 bit precision** to calculate CG cuts and Farkas constraints

Experiments!

Compare state-of-the-art

- RoundingSat
- Sat4J
- NaPS
- SCIP
- Gurobi
- CPLEX

to implementations

- RS+SPX
- RS+SPX+GC
- RS+SPX+GC+LC

Related work

- Some SAT-based solvers use LP solver to decide specialized constraints
 - **LCG-Glucose**: network-flow propagation
 - **SMT**: deciding linear theory

Related work

- Some SAT-based solvers use LP solver to decide specialized constraints
 - LCG-Glucose: network-flow propagation
 - **SMT**: deciding linear theory
- In the end, SAT-based solvers only learn **clauses**
 - exponentially weaker than learning 0-1 linear constraints
 - Farkas constraints, Chvátal-Gomory cuts, PB learned constraints: all are used for conflict-driven learning

Conflict-driven search for 0-1 ILPs

• Generates cuts from search conflicts

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility
- Allows sound & efficient integration with LP solver

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility
- Allows sound & efficient integration with LP solver
- Is further improved by value heuristic & Gomory cut generation

Conflict-driven search for 0-1 ILPs

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility
- Allows sound & efficient integration with LP solver
- Is further improved by value heuristic & Gomory cut generation

Experiments approach best of both worlds

Conflict-driven search for 0-1 ILPs

- Generates cuts from search conflicts
- Does not always find short refutations for rational infeasibility
- Allows sound & efficient integration with LP solver
- Is further improved by value heuristic & Gomory cut generation

Experiments approach best of both worlds

Thanks for your attention!

References

- [MS96] GRASP a new search algorithm for satisfiability Marques-Silva, Sakallah
- [BS97] Using CSP lookback techniques to solve real-world SAT instances -Bayardo, Schrag
- [MMZZM01] Chaff: Engineering an efficient SAT solver Moskewicz, Madigan, Zhao, Zhang, Malik
- [P04] Where are the hard knapsack problems? Pisinger
- [CK05] A fast pseudo-Boolean constraint solver Chai, Kuehlmann
- [SS06] Pueblo: A hybrid pseudo-Boolean SAT solver Sheini, Sakallah
- [LP10] The Sat4j library, release 2.2 Le Berre, Parrain
- [EN18] Divide and conquer: Towards faster pseudo-boolean solving Elffers, Nordström
- [EGNV18] Using Combinatorial Benchmarks to Probe the Reasoning Power of pseudo-Boolean Solvers Elffers, Giráldez-Cru, Nordström, Vinyals
- [ZIB] SoPlex soplex.zib.de
- [PBCOMP] Latest PB competition www.cril.univ-artois.fr/PB16/
- [MIPLIB] The Mixed Integer Programming Library miplib.zib.de