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SAT Solving and Proof Complexity

The Boolean satisfiability problem (SAT) is NP-complete and
so should be exponentially hard

Yet current state-of-the-art SAT solvers can deal with
formulas containing millions of variables

How to they do it? Why do they work so well? And why do
they sometimes miserably fail?

Best current SAT solvers

Based on conflict-driven clause learning (CDCL)
Sometimes algebraic reasoning (e.g., Gaussian elimination)
Sometimes geometric reasoning (e.g., cardinality constraints)
Sometimes extended resolution

How can we analyze the power of these methods?
This is the research area of proof complexity
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Outline of This Presentation

This talk: crash course in proof complexity

Focus on proof systems behind some current approaches to SAT
solving:

Conflict-driven clause learning — resolution

Algebraic Gröbner basis computations — polynomial calculus

Geometric pseudo-Boolean solvers — cutting planes

Will also briefly mention extended resolution

Survey (some of) what is known about these proof systems

Show some of the “benchmark formulas” used

By necessity, selective and somewhat subjective coverage —
apologies in advance for omissions
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Some Notation and Terminology

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k-CNF formula: CNF formula with clauses of size ≤ k
(where k is some constant)

Mostly assume formulas k-CNFs (for simplicity of exposition)
Conversion to 3-CNF (most often) doesn’t change much

N denotes size of formula (# literals, which is ≈ # clauses)
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Preliminaries
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The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Refutation ends when empty clause ⊥
derived

Can represent refutation as

annotated list or

DAG

Tree-like resolution if DAG is tree

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom
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Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Resolution Size/Length

Size/length = # clauses in refutation

Most fundamental measure in proof complexity

Lower bound on CDCL running time
(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Examples of Hard Formulas w.r.t Resolution Length (1/3)

Pigeonhole principle (PHP) [Hak85]∗

“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i goes into hole j”

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i 6= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j 6= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP formula is hard for resolution
But only length lower bound exp

(
Ω
(

3
√
N
))

in terms of formula size

(*) A full list of references is given at the end of the slides
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Examples of Hard Formulas w.r.t Resolution Length (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of edges around vertex = label

Requires length exp
(
Ω
(
N
))

on well-connected so-called expanders

1

0 0

x y

z

(x ∨ y) ∧ (x ∨ z)
∧ (x ∨ y) ∧ (y ∨ z)
∧ (x ∨ z) ∧ (y ∨ z)
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Examples of Hard Formulas w.r.t Resolution Length (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables

(∆ & 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

k-colourability [BCMM05]

Independent sets and vertex covers [BIS07]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . .
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Stronger Proof Systems than Resolution

Preliminaries
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Resolution Width

Width = size of largest clause in refutation (always ≤ N)

Width upper bound ⇒ length upper bound

Proof: at most (2 ·#variables)width distinct clauses
(This simple counting argument is essentially tight [ALN14])

Width lower bound ⇒ length lower bound

Much less obvious. . .
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Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Width Lower Bounds Imply Length Lower Bounds

Theorem ([BW01])

length ≥ exp

(
Ω

(
width2

formula size N

))

Yields superpolynomial length bounds for width ω
(√
N logN

)
Almost all known lower bounds on length derivable via width

For tree-like resolution have length ≥ 2width [BW01]

General resolution: width up to O
(√
N logN

)
implies no length

lower bounds — possible to tighten analysis? No!
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Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Optimality of the Length-Width Lower Bound

Ordering principles [St̊a96, BG01]
“Every (partially) ordered set {e1, . . . , en} has minimal element”

Variables xi,j = “ei < ej”

xi,j ∨ xj,i anti-symmetry; not both ei < ej and ej < ei

xi,j ∨ xj,k ∨ xi,k transitivity; ei < ej and ej < ek implies ei < ek∨
1≤i≤n, i6=jxi,j ej is not a minimal element

Can also add “total order” axioms

xi,j ∨ xj,i totality; either ei < ej or ej < ei

Reuftable in resolution in length O(N)
Requires resolution width Ω

(
3
√
N
)

(3-CNF version)
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Resolution Space

Space = max # clauses in memory
when performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for
proof complexity)

Can be measured in different ways —
focus here on most common measure
clause space

Space at step t: # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Resolution Space

Space = max # clauses in memory
when performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for
proof complexity)

Can be measured in different ways —
focus here on most common measure
clause space

Space at step t: # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

7. x Res(1, 6)
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Resolution Space

Space = max # clauses in memory
when performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for
proof complexity)

Can be measured in different ways —
focus here on most common measure
clause space

Space at step t: # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

x
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Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Resolution Space

Space = max # clauses in memory
when performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for
proof complexity)

Can be measured in different ways —
focus here on most common measure
clause space

Space at step t: # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 is 5

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

xx
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Bounds on Resolution Space

Space always at most N +O(1) [ET01]

Lower bounds for

Pigeonhole principle [ABRW02, ET01]

Tseitin formulas [ABRW02, ET01]

Random k-CNFs [BG03]

Results always matching width bounds

And proofs of very similar flavour. . . What is going on?
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Space vs. Width

Theorem ([AD08])

space ≥ width +O(1)

Are space and width asymptotically always the same? No!

Pebbling formulas [BN08]

Can be refuted in width O(1)

May require space Ω(N/ logN)

A bit more involved to describe than previous benchmarks. . .
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Pebbling Formulas: Vanilla Version

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

sources are true

truth propa-
gates upwards

but sink is false

Extensive literature on pebbling space and time-space trade-offs
from 1970s and 80s

Have been useful in proof complexity before in various contexts

Hope that pebbling properties of DAG somehow carry over to
resolution refutations of pebbling formulas. Except. . .
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Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Substituted Pebbling Formulas

Won’t work — solved by unit propagation, so supereasy

Make formula harder by substituting x1 ⊕ x2 for every variable x
(also works for other Boolean functions with “right” properties):

x ∨ y

⇓
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2)

⇓
(x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Now CNF formula inherits pebbling graph properties!
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Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Space-Width Trade-offs

Given a formula easy w.r.t. these complexity measures, can
refutations be optimized for two or more measures?

For space vs. width, the answer is a strong no

Theorem ([Ben09])

There are formulas for which

exist refutations in width O(1)

exist refutations in space O(1)

optimization of one measure causes (essentially) worst-case
behaviour for other measure

Holds for vanilla version of pebbling formulas
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Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Length-Space Trade-offs

Theorem ([BN11, BBI12, BNT13])

There are formulas for which

exist refutations in short length

exist refutations in small space

optimization of one measure causes dramatic blow-up for
other measure

Holds for

Substituted pebbling formulas over the right graphs

Tseitin formulas over long, narrow rectangular grids

So no meaningful simultaneous optimization possible for length
and space in the worst case

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 19/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Preliminaries
Length, Width and Space
Resolution Trade-offs

Length-Width Trade-offs?

What about length versus width? [BW01] transforms short
refutation to narrow one, but blows up length exponentially

Is this blow-up inherent?

Or just an artifact of the proof?

Very recent news (solved after problem was advertised at SAT ’14):

Theorem ([Tha14])

There are formulas for which

exist refutations in short length

exist refutations in small width

optimization of one measure causes dramatic blow-up for
other measure

Minor issue: formulas have logarithmic width — would like k-CNFs
Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 20/41
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Complexity Measures and CDCL Hardness
Future Directions?

Recap of Complexity Measures for Resolution

Recall that N = size of formula

Length

# clauses in refutation at most exp(N)

Width

Size of largest clause in refutation at most N

Space

Max # clauses one needs to remember when “verifying correctness
of refutation” at most N (!)
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Complexity Measures and CDCL Hardness
Future Directions?

Proof Complexity Measures and CDCL Hardness

Recall log(length) . width . space

Length

Lower bound on running time for CDCL

CDCL polynomially simulates resolution [PD11]

But short proofs may be worst-case intractable to find [AR08]

Width

Searching in small width known heuristic in AI community

Small width ⇒ CDCL solver will run fast [AFT11]

Space

In practice, memory consumption important bottleneck

Space complexity gives lower bound on clause database size

Plus assumes solver knows exactly which clauses to keep ⇒
in reality, probably (much) more memory needed

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 22/41
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Complexity Measures and CDCL Hardness
Future Directions?

Relations Between Theoretical and Practical Hardness?

1 Are width or even space lower bounds relevant indicators of
CDCL hardness?

2 Or is it true in practice that CDCL does essentially as well as
resolution w.r.t. length/running time?

3 Can CDCL even do as well as resolution w.r.t. time and space
simultaneously?

Not mathematically well-defined questions. . .

But perhaps still possible to perform experiments and draw
interesting conclusions?

Some preliminary work along these lines — see slides from talk on
Monday Feb 2 at http://www.csc.kth.se/~jakobn/research/

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 23/41
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Complexity Measures and CDCL Hardness
Future Directions?

Practical Conclusions So Far?

No firm conclusions — messy reality not easily captured by
nice theories

CDCL performance on combinatorial benchmarks sometimes
surprising; e.g.:

For PHP, worse behaviour with heuristics than without
Sometimes “easy” formulas harder than “hard” ones?! [MN14]
Sometimes small changes in VSIDS decay factor makes all the
difference between supereasy and totally impossible

Open Problems

Could explanations of above phenomena help us understand
CDCL better?

Could controlled experiments on easily scalable theoretical
benchmarks yield other interesting insights?
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Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Polynomial Calculus (or Actually PCR)

Introduced in [CEI96]; below modified version from [ABRW02]

Clauses interpreted as polynomial equations over finite field
Any field in theory; GF(2) in practice
Example: x ∨ y ∨ z gets translated to xyz = 0
(Think of 0 ≡ true and 1 ≡ false)

Derivation rules

Boolean axioms
x2 − x = 0

Negation
x+ x = 1

Linear combination
p = 0 q = 0

αp+ βq = 0
Multiplication

p = 0
xp = 0

Goal: Derive 1 = 0 ⇔ no common root ⇔ formula unsatisfiable
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Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Size, Degree and Space

Write out all polynomials as sums of monomials
W.l.o.g. all polynomials multilinear (because of Boolean axioms)

Size — analogue of resolution length
total # monomials in refutation (counted with repetitions)
Can also define length measure — might be much smaller

Degree — analogue of resolution width
largest degree of monomial in refutation

(Monomial) space — analogue of resolution (clause) space
max # monomials in memory during refutation (with repetitions)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 26/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Size, Degree and Space

Write out all polynomials as sums of monomials
W.l.o.g. all polynomials multilinear (because of Boolean axioms)

Size — analogue of resolution length
total # monomials in refutation (counted with repetitions)
Can also define length measure — might be much smaller

Degree — analogue of resolution width
largest degree of monomial in refutation

(Monomial) space — analogue of resolution (clause) space
max # monomials in memory during refutation (with repetitions)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 26/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Polynomial Calculus Simulates Resolution

Polynomial calculus can simulate resolution proofs efficiently with
respect to length/size, width/degree, and space simultaneously

Can mimic resolution refutation step by step

Hence worst-case upper bounds for resolution carry over

Example: Resolution step:

x ∨ y ∨ z y ∨ z
x ∨ y

simulated by polynomial calculus derivation:

xyz = 0

yz = 0

xyz = 0

z + z − 1 = 0

yz + yz − y = 0

xyz + xyz − xy = 0

−xyz + xy = 0

xy = 0
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Polynomial Calculus Strictly Stronger than Resolution

Polynomial calculus strictly stronger w.r.t. size and degree

Tseitin formulas on expanders (just do Gaussian elimination)

Onto functional pigeonhole principle [Rii93]

Open Problem

Show that polynomial calculus is strictly stronger than resolution
w.r.t. space
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Size vs. Degree

Degree upper bound ⇒ size upper bound [CEI96]
Qualitatively similar to resolution bound
A bit more involved argument
Again essentially tight by [ALN14]

Degree lower bound ⇒ size lower bound [IPS99]
Precursor of [BW01] — can do same proof to get same bound

Size-degree lower bound essentially optimal [GL10]
Example: again ordering principle formulas

Most size lower bounds for polynomial calculus derived via
degree lower bounds (but machinery less developed)
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Examples of Hard Formulas w.r.t. Size (and Degree)

Pigeonhole principle formulas
Follows from [AR03]
Earlier work on other encodings in [Raz98, IPS99]
Hard even with functionality axioms added [MN15]

Tseitin formulas with “wrong modulus”
Can define Tseitin-like formulas counting mod p for p 6= 2
Hard if p 6= characteristic of field [BGIP01]

Random k-CNF formulas
Hard in all characteristics except 2 [BI99]
Lower bound for all characteristics in [AR03]
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Bounds on Polynomial Calculus Space

Lower bound for PHP with wide clauses [ABRW02]

k-CNFs much trickier — sequence of lower bounds for

Obfuscated 4-CNF versions of PHP [FLN+12]

Random 4-CNFs [BG13]

Tseitin formulas in 4-CNF on (some) expanders [FLM+13]

Random 3-CNFs [BGHW14] (but bound is log factor off)

Open Problems

Prove space lower bounds for Tseitin on any expander

Prove tight lower bounds on random 3-CNFs

Prove space lower bound on 3-CNF version of PHP formulas
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Space vs. Degree

Open Problem (analogue of [AD08])

Is it true that space ≥ degree +O(1)?

Partial progress: if formula requires large resolution width, then
XOR-substituted version requires large space [FLM+13]

Optimal separation of space and degree in [FLM+13] using flavour
of Tseitin formulas which

can be refuted in degree O(1)

require space Ω(N)

but separating formulas depend on characteristic of field

Open Problem

Prove space lower bounds for substituted pebbling formulas
(would give space-degree separation independent of characteristic)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 32/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Space vs. Degree

Open Problem (analogue of [AD08])

Is it true that space ≥ degree +O(1)?

Partial progress: if formula requires large resolution width, then
XOR-substituted version requires large space [FLM+13]

Optimal separation of space and degree in [FLM+13] using flavour
of Tseitin formulas which

can be refuted in degree O(1)

require space Ω(N)

but separating formulas depend on characteristic of field

Open Problem

Prove space lower bounds for substituted pebbling formulas
(would give space-degree separation independent of characteristic)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 32/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Trade-offs for Polynomial Calculus

Strong, essentially optimal space-degree trade-offs [BNT13]
Same vanilla pebbling formulas as for resolution
Same parameters

Strong size-space trade-offs [BNT13]
Same formulas as for resolution
Some loss in parameters

Open Problem

Are there size-degree trade-offs in polynomial calculus?

[Tha14] works only for resolution (so far)
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Algebraic SAT Solvers?

Quite some excitement about Gröbner basis approach to
SAT solving after [CEI96]

Promise of performance improvement failed to deliver

Meanwhile: the CDCL revolution. . .

Some current SAT solvers do Gaussian elimination, but this is
only very limited form of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just
that too little work has been done (or both)?

Some shortcut seems to be needed — full Gröbner basis
computation does too much work
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Cutting Planes

Introduced in [CCT87]

Clauses interpreted as linear inequalities over the reals with
integer coefficients
Example: x ∨ y ∨ z gets translated to x+ y + (1− z) ≥ 1
(Now 1 ≡ true and 0 ≡ false again)

Derivation rules

Variable axioms
0 ≤ x ≤ 1

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai+bi)xi ≥ A+B
Division

∑
caixi ≥ A∑

aixi ≥ dA/ce

Goal: Derive 0 ≥ 1 ⇔ formula unsatisfiable
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Size, Length and Space

Length = total # lines/inequalities in refutation

Size = sum also size of coefficients

Space = max # lines in memory during refutation

No (useful) analogue of width/degree

Cutting planes

simulates resolution efficiently w.r.t. length/size and space
simultaneously

is strictly stronger w.r.t. length/size — can refute PHP
efficiently [CCT87]

is strictly stronger w.r.t. space — can refute any CNF in
constant space 5 [GPT14]! (But coefficients will be
exponentially large — what if also coefficient size counted?)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 36/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Size, Length and Space

Length = total # lines/inequalities in refutation

Size = sum also size of coefficients

Space = max # lines in memory during refutation

No (useful) analogue of width/degree

Cutting planes

simulates resolution efficiently w.r.t. length/size and space
simultaneously

is strictly stronger w.r.t. length/size — can refute PHP
efficiently [CCT87]

is strictly stronger w.r.t. space — can refute any CNF in
constant space 5 [GPT14]! (But coefficients will be
exponentially large — what if also coefficient size counted?)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 36/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Size, Length and Space

Length = total # lines/inequalities in refutation

Size = sum also size of coefficients

Space = max # lines in memory during refutation

No (useful) analogue of width/degree

Cutting planes

simulates resolution efficiently w.r.t. length/size and space
simultaneously

is strictly stronger w.r.t. length/size — can refute PHP
efficiently [CCT87]

is strictly stronger w.r.t. space — can refute any CNF in
constant space 5 [GPT14]! (But coefficients will be
exponentially large — what if also coefficient size counted?)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 36/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Size, Length and Space

Length = total # lines/inequalities in refutation

Size = sum also size of coefficients

Space = max # lines in memory during refutation

No (useful) analogue of width/degree

Cutting planes

simulates resolution efficiently w.r.t. length/size and space
simultaneously

is strictly stronger w.r.t. length/size — can refute PHP
efficiently [CCT87]

is strictly stronger w.r.t. space — can refute any CNF in
constant space 5 [GPT14]! (But coefficients will be
exponentially large — what if also coefficient size counted?)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 36/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Size, Length and Space

Length = total # lines/inequalities in refutation

Size = sum also size of coefficients

Space = max # lines in memory during refutation

No (useful) analogue of width/degree

Cutting planes

simulates resolution efficiently w.r.t. length/size and space
simultaneously

is strictly stronger w.r.t. length/size — can refute PHP
efficiently [CCT87]

is strictly stronger w.r.t. space — can refute any CNF in
constant space 5 [GPT14]! (But coefficients will be
exponentially large — what if also coefficient size counted?)

Jakob Nordström (KTH) A (Biased) Proof Complexity Survey Lens Feb ’15 36/41



Resolution
Connections Between Resolution and CDCL

Stronger Proof Systems than Resolution

Polynomial Calculus
Cutting Planes
And Beyond. . .

Hard Formulas w.r.t Cutting Planes Length

Clique-coclique formulas [Pud97]
“A graph with a k-clique is not (k − 1)-colourable”

Lower bound via interpolation and circuit complexity

Open Problems

Prove length lower bounds for cutting planes

for Tseitin formulas

for random k-CNFs

for any formula using other technique than interpolation
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Size-Space Trade-offs for Cutting Planes?

Short cutting planes refutations of Tseitin formulas on
expanders require large space [GP14]
(But such short refutations probably don’t exist anyway)

Short cutting planes refutations of (some) pebbling formulas
require large space [HN12, GP14] (such refutations exist)

Open Problems

Are there trade-offs where the space-efficient CP refutations
have small coefficients? (Say, of polynomial size)

Are there space lower bounds for CP refutations with
polynomial-size coefficients?

Already coefficients of absolute size ≤ 2 quite powerful — can
refute PHP formulas [GPT14]
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Geometric SAT Solvers?

Some work on pseudo-Boolean solvers using (subset of)
cutting planes

Seems hard to make competitive with CDCL on CNFs

One key problem to recover cardinality constraints

But. . . If cardinality constraints can be detected, then solvers
can do really well (at least on combinatorial benchmarks)

E.g., PHP formulas and also zero-one design formulas become
easy [BBLM14]
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Building SAT Solvers on Extended Resolution?

Resolution + introduce new variables to name subformulas

Without restrictions, corresponds to extended Frege

Extremely strong — pretty much no lower bounds known

In order to study extended resolution, would need to:

Describe heuristics/rules actually used
See if possible to reason about such restricted proof system
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Summing up

Overview of resolution, polynomial calculus and cutting planes
(More details in SAT ’14 proceedings [Nor14] or survey [Nor13])

Resolution fairly well understood

Polynomial calculus less so

Cutting planes almost not at all

Could there be interesting connections between proof
complexity measures and hardness of SAT?

How can we build efficient SAT solvers on stronger proof
systems than resolution?

Thank you for your attention!
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Marc Vinyals. Towards an understanding of polynomial calculus: New
separations and lower bounds (extended abstract). In Proceedings of the
40th International Colloquium on Automata, Languages and
Programming (ICALP ’13), volume 7965 of Lecture Notes in Computer
Science, pages 437–448. Springer, July 2013.

[FLN+12] Yuval Filmus, Massimo Lauria, Jakob Nordström, Neil Thapen, and Noga
Ron-Zewi. Space complexity in polynomial calculus (extended abstract).
In Proceedings of the 27th Annual IEEE Conference on Computational
Complexity (CCC ’12), pages 334–344, June 2012.

[GL10] Nicola Galesi and Massimo Lauria. Optimality of size-degree trade-offs for
polynomial calculus. ACM Transactions on Computational Logic,
12:4:1–4:22, November 2010.
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