
Certified CNF Translations for Pseudo-Boolean Solving

Jakob Nordström

University of Copenhagen
and Lund University

Swedish Operations Research Conference (SOAK 2022)

October 24, 2022

Joint work with Stephan Gocht, Ruben Martins, and Andy Oertel

Thanks for the slides!



Certified CNF Translations for Pseudo-Boolean Solving

Jakob Nordström

University of Copenhagen
and Lund University

Swedish Operations Research Conference (SOAK 2022)

October 24, 2022

Joint work with Stephan Gocht, Ruben Martins, and Andy Oertel

Thanks for the slides!



The Pseudo-Boolean (PB) Problem

0-1 integer linear
constraints:

pseudo-Boolean
formula:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

Pseudo-Boolean solver Result:
feasible/infeasibleResult:

SAT/UNSAT

I Input: Pseudo-Boolean formula (a.k.a. 0-1 integer linear program)
I Collection of 0-1 integer linear constraints

I Pseudo-Boolean solvers:
I Native: Sat4j [LP10], RoundingSAT [EN18]
I SAT-based: MiniSAT+ [ES06], Open-WBO [MML14], NaPS [SN15]

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 1/22



The Pseudo-Boolean (PB) Problem

0-1 integer linear
constraints:

0-1 integer linear
constraints:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

Pseudo-Boolean solver Result:
feasible/infeasibleResult:
feasible/infeasible

I Input: Pseudo-Boolean formula (a.k.a. 0-1 integer linear program)
I Collection of 0-1 integer linear constraints

I Pseudo-Boolean solvers:
I Native: Sat4j [LP10], RoundingSAT [EN18]
I SAT-based: MiniSAT+ [ES06], Open-WBO [MML14], NaPS [SN15]

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 1/22



The Pseudo-Boolean (PB) Problem

0-1 integer linear
constraints:

0-1 integer linear
constraints:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

Pseudo-Boolean solver Result:
feasible/infeasibleResult:
feasible/infeasible

I Input: Pseudo-Boolean formula (a.k.a. 0-1 integer linear program)
I Collection of 0-1 integer linear constraints

I Pseudo-Boolean solvers:
I Native: Sat4j [LP10], RoundingSAT [EN18]
I SAT-based: MiniSAT+ [ES06], Open-WBO [MML14], NaPS [SN15]

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 1/22



The Pseudo-Boolean (PB) Problem

0-1 integer linear
constraints:

0-1 integer linear
constraints:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation

SAT solver
CNF formula

I Input: Pseudo-Boolean formula (a.k.a. 0-1 integer linear program)
I Collection of 0-1 integer linear constraints

I Pseudo-Boolean solvers:
I Native: Sat4j [LP10], RoundingSAT [EN18]
I SAT-based: MiniSAT+ [ES06], Open-WBO [MML14], NaPS [SN15]

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 1/22



Certifying Results with Proof Logging

Solver

Input Result

Proof

Proof checker
Verification

of result

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 2/22



Certifying Results with Proof Logging

SolverInput

Result

Proof

Proof checker
Verification

of result

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 2/22



Certifying Results with Proof Logging

SolverInput Result

Proof

Proof checker
Verification

of result

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 2/22



Certifying Results with Proof Logging

SolverInput Result

Proof

Proof checker

Verification
of result

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 2/22



Certifying Results with Proof Logging

SolverInput Result

Proof

Proof checker
Verification

of result

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 2/22



Certifying Correctness

0-1 integer-linear
constraints:

0-1 integer-linear
constraints:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation

SAT solver

DRAT
checker

Verification
of result

CNF formula

I Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]

I PB-to-CNF translation uncertified!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 3/22



Certifying Correctness

0-1 integer-linear
constraints:

0-1 integer-linear
constraints:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation

SAT solver

DRAT
checker

Verification
of result

CNF formula

DRAT proof/
Solution

I Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]

I PB-to-CNF translation uncertified!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 3/22



Certifying Correctness

0-1 integer-linear
constraints:

0-1 integer-linear
constraints:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation

SAT solver

DRAT
checker

Verification
of result

CNF formula

DRAT proof/
Solution

5

5

I Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]

I PB-to-CNF translation uncertified!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 3/22



Pseudo-Boolean Proof Logging

I Multi-purpose proof format
I Allows easy proof logging for

I Reasoning with pseudo-Boolean constraints (by design)
I SAT solving (including advanced techniques) [GN21, BGMN22]
I Constraint programming [EGMN20, GMN22]
I Subgraph problems [GMN20, GMM+20]

This work:

I Proof logging for translating pseudo-Boolean constraints to CNF

I General framework to certify many different encodings

I Promising foundation for certifying MaxSAT solving and PB optimization

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 4/22



Pseudo-Boolean Proof Logging

I Multi-purpose proof format
I Allows easy proof logging for

I Reasoning with pseudo-Boolean constraints (by design)
I SAT solving (including advanced techniques) [GN21, BGMN22]
I Constraint programming [EGMN20, GMN22]
I Subgraph problems [GMN20, GMM+20]

This work:

I Proof logging for translating pseudo-Boolean constraints to CNF

I General framework to certify many different encodings

I Promising foundation for certifying MaxSAT solving and PB optimization

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 4/22



Workflow

0-1 integer linear
constraints

SAT-based pseudo-Boolean solver

Result:
feasible/infeasible

PB-to-CNF
translation

SAT solver

VeriPB
checker

Verification
of result

CNF formula

DRAT proof/
solution

PB proof

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 5/22



Basic Notation

I Boolean variable x : 0 (false) or 1 (true)

I Literal `: x or negation x = 1− x

I 0-1 integer linear constraint: integer linear inequality over literals

3x1 + 2x2 + 5x3 ≥ 5

I Equality constraint: syntactic sugar for 2 inequalities

3x1 + 2x2 + 5x3 = 5
3x1 + 2x2 + 5x3 ≥ 5
3x1 + 2x2 + 5x3 ≤ 5

I Clause: disjunction of literals / at-least-one constraint

x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 6/22



Basic Notation

I Boolean variable x : 0 (false) or 1 (true)

I Literal `: x or negation x = 1− x

I 0-1 integer linear constraint: integer linear inequality over literals

3x1 + 2x2 + 5x3 ≥ 5

I Equality constraint: syntactic sugar for 2 inequalities

3x1 + 2x2 + 5x3 = 5
3x1 + 2x2 + 5x3 ≥ 5
3x1 + 2x2 + 5x3 ≤ 5

I Clause: disjunction of literals / at-least-one constraint

x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 6/22



Basic Notation

I Boolean variable x : 0 (false) or 1 (true)

I Literal `: x or negation x = 1− x

I 0-1 integer linear constraint: integer linear inequality over literals

3x1 + 2x2 + 5x3 ≥ 5

I Equality constraint: syntactic sugar for 2 inequalities

3x1 + 2x2 + 5x3 = 5
3x1 + 2x2 + 5x3 ≥ 5
3x1 + 2x2 + 5x3 ≤ 5

I Clause: disjunction of literals / at-least-one constraint

x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 6/22



Cutting Planes Proof System [CCT87]

Rules:

I Literal axiom

`i ≥ 0

I Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3
Add

x1 + 3x2 + x3 ≥ 4
I Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6
I Division

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 3

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 7/22



Cutting Planes Proof System [CCT87]

Rules:

I Literal axiom

`i ≥ 0
I Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3
Add

x1 + 3x2 + x3 ≥ 4

I Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6
I Division

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 3

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 7/22



Cutting Planes Proof System [CCT87]

Rules:

I Literal axiom

`i ≥ 0
I Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3
Add

x1 + 3x2 + x3 ≥ 4
I Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6

I Division

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 3

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 7/22



Cutting Planes Proof System [CCT87]

Rules:

I Literal axiom

`i ≥ 0
I Addition

x1 + 2x2 + 2x3 ≥ 3 x2 + 3x3 ≥ 3
Add

x1 + 3x2 + x3 ≥ 4
I Multiplication

x1 + 2x2 ≥ 3
Multiply by 2

2x1 + 4x2 ≥ 6
I Division

2x1 + 2x2 + 4x3 ≥ 5
Divide by 2

x1 + x2 + 2x3 ≥ 3

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 7/22



Extended Cutting Planes: Reification

Extension rule to introduce fresh variables:

I Reification (special case of redundance rule in [GN21, BGMN22])

a⇔ x1 + x2 + 2x3 ≥ 2
2a + x1 + x2 + 2x3 ≥ 2
3a + x1 + x2 + 2x3 ≥ 3

(a⇒ x1 + x2 + 2x3 ≥ 2)
(a⇐ x1 + x2 + 2x3 ≥ 2)

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 8/22



Translating 0-1 ILP to CNF: Outline

1. Construct circuit evaluating left-hand side of 0-1 integer linear constraint

2. Encode circuit to CNF using so-called Tseitin translation

3. Enforce constraint

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 9/22



Translating 0-1 ILP to CNF: Step 1

1. Construct circuit evaluating left-hand side of 0-1 integer linear constraint

I Several approaches to construct logical circuit evaluating PB constraint
I Sequential counter [Sin05], totalizer [BB03], adder network [ES06], . . .

Example: `1 + `2 + `3 ≥ 2

Meaning of si ,j variable:
si ,j true if and only if
`1 + . . . + `i ≥ j

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 10/22



Translating 0-1 ILP to CNF: Step 1

1. Construct circuit evaluating left-hand side of 0-1 integer linear constraint

I Several approaches to construct logical circuit evaluating PB constraint
I Sequential counter [Sin05], totalizer [BB03], adder network [ES06], . . .

Example: `1 + `2 + `3 ≥ 2

Meaning of si ,j variable:
si ,j true if and only if
`1 + . . . + `i ≥ j

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 10/22



Translating 0-1 ILP to CNF: Step 2

2. Encode circuit to CNF using Tseitin translation

I Introduce fresh variable for each wire

I Encode using clauses describing behaviour of each component

Example: Sequential counter component

Specification of si ,j

si ,j ↔ (`i∧si−1,j−1)∨si−1,j

Clausal encoding

`i ∨ s i−1,j−1 ∨ si ,j

s i−1,j ∨ si ,j

`i ∨ si−1,j ∨ s i ,j

si−1,j−1 ∨ s i ,j

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 11/22



Translating 0-1 ILP to CNF: Step 2

2. Encode circuit to CNF using Tseitin translation

I Introduce fresh variable for each wire

I Encode using clauses describing behaviour of each component

Example: Sequential counter component

Specification of si ,j

si ,j ↔ (`i∧si−1,j−1)∨si−1,j

Clausal encoding

`i ∨ s i−1,j−1 ∨ si ,j

s i−1,j ∨ si ,j

`i ∨ si−1,j ∨ s i ,j

si−1,j−1 ∨ s i ,j

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 11/22



Translating 0-1 ILP to CNF: Step 3

3. Enforce constraint

I Add clauses enforcing comparison with right-hand side

Example: `1 + `2 + `3 ≥ 2

At least 2 true literals if s3,2 true

Add unary clause

s3,2

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 12/22



Translating 0-1 ILP to CNF: Step 3

3. Enforce constraint

I Add clauses enforcing comparison with right-hand side

Example: `1 + `2 + `3 ≥ 2

At least 2 true literals if s3,2 true

Add unary clause

s3,2

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 12/22



Our Work: Translation Correct?

Is the translation correct?

I Yes! Sinz showed that in [Sin05]

I But did we code up the translation correctly?

How can we show correctness?

I Proof logging!

I In our case: Give formal derivation of clauses using Cutting Planes + reification

This means

I 0-1 ILP has feasible solutions =⇒ CNF translation satisfiable

I Solver finds no solution to CNF translation =⇒ 0-1 ILP is infeasible

End-to-end verification of SAT-based pseudo-Boolean solvers!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 13/22



Our Work: Translation Correct?

Is the translation correct?

I Yes! Sinz showed that in [Sin05]

I But did we code up the translation correctly?

How can we show correctness?

I Proof logging!

I In our case: Give formal derivation of clauses using Cutting Planes + reification

This means

I 0-1 ILP has feasible solutions =⇒ CNF translation satisfiable

I Solver finds no solution to CNF translation =⇒ 0-1 ILP is infeasible

End-to-end verification of SAT-based pseudo-Boolean solvers!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 13/22



Our Work: Translation Correct?

Is the translation correct?

I Yes! Sinz showed that in [Sin05]

I But did we code up the translation correctly?

How can we show correctness?

I Proof logging!

I In our case: Give formal derivation of clauses using Cutting Planes + reification

This means

I 0-1 ILP has feasible solutions =⇒ CNF translation satisfiable

I Solver finds no solution to CNF translation =⇒ 0-1 ILP is infeasible

End-to-end verification of SAT-based pseudo-Boolean solvers!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 13/22



Our Work: Translation Correct?

Is the translation correct?

I Yes! Sinz showed that in [Sin05]

I But did we code up the translation correctly?

How can we show correctness?

I Proof logging!

I In our case: Give formal derivation of clauses using Cutting Planes + reification

This means

I 0-1 ILP has feasible solutions =⇒ CNF translation satisfiable

I Solver finds no solution to CNF translation =⇒ 0-1 ILP is infeasible

End-to-end verification of SAT-based pseudo-Boolean solvers!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 13/22



Our Work: Translation Correct?

Is the translation correct?

I Yes! Sinz showed that in [Sin05]

I But did we code up the translation correctly?

How can we show correctness?

I Proof logging!

I In our case: Give formal derivation of clauses using Cutting Planes + reification

This means

I 0-1 ILP has feasible solutions =⇒ CNF translation satisfiable

I Solver finds no solution to CNF translation =⇒ 0-1 ILP is infeasible

End-to-end verification of SAT-based pseudo-Boolean solvers!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 13/22



Rest of This Talk: Some technical details?

We develop general framework certifying PB-to-CNF translations

I But let us stay with our example:

Sequential counter encoding of `1 + `2 + `3 ≥ 2

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 14/22



Circuit Specification in Pseudo-Boolean Form

Using Cutting Planes + reification, do syntactic derivation of circuit specification:

I Specification of si ,j variables

si ,j ⇔
i−1∑
k=1

si−1,k + `i ≥ j

I Ordering of si ,j variables
si ,j ≥ si ,j+1

I Preservation of sum
i∑

k=1

si ,k =
i−1∑
k=1

si−1,k + `i

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 15/22



Circuit Specification in Pseudo-Boolean Form

Using Cutting Planes + reification, do syntactic derivation of circuit specification:

I Specification of si ,j variables

si ,j ⇔
i−1∑
k=1

si−1,k + `i ≥ j

I Ordering of si ,j variables
si ,j ≥ si ,j+1

I Preservation of sum
i∑

k=1

si ,k =
i−1∑
k=1

si−1,k + `i

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 15/22



Circuit Specification in Pseudo-Boolean Form

Using Cutting Planes + reification, do syntactic derivation of circuit specification:

I Specification of si ,j variables

si ,j ⇔
i−1∑
k=1

si−1,k + `i ≥ j

I Ordering of si ,j variables
si ,j ≥ si ,j+1

I Preservation of sum
i∑

k=1

si ,k =
i−1∑
k=1

si−1,k + `i

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 15/22



Deriving the CNF Translation
We now have 0-1 integer linear constraints:

s1,1 = `1 s2,1 + s2,2 = s1,1 + `2 s3,1 + s3,2 + s3,3 = s2,1 + s2,2 + `3

s2,1 ≥ s2,2 s3,1 ≥ s3,2 s3,2 ≥ s3,3 s3,1 + s3,2 + s3,3 ≥ 2

But we want clauses:

`1 ∨ s1,1 `2 ∨ s1,1 ∨ s2,2 `3 ∨ s2,1 ∨ s3,1 `3 ∨ s2,2 ∨ s3,3

`1 ∨ s1,1 `2 ∨ s2,2 `3 ∨ s2,1 ∨ s3,2 `3 ∨ s3,3

`2 ∨ s2,1 s1,1 ∨ s2,2 s2,2 ∨ s3,2 s2,2 ∨ s3,3

s1,1 ∨ s2,1 `3 ∨ s3,1 `3 ∨ s2,2 ∨ s3,2

∨

s3,2

`2 ∨ s1,1 ∨ s2,1 s2,1 ∨ s3,1 s2,1 ∨ s3,2

I Follow easily from pseudo-Boolean specification by so-called reverse unit
propagation [GN03, Van08]

I See SAT ’22 paper [GMNO22] for details

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 16/22



Deriving the CNF Translation
We now have 0-1 integer linear constraints:

s1,1 = `1 s2,1 + s2,2 = s1,1 + `2 s3,1 + s3,2 + s3,3 = s2,1 + s2,2 + `3

s2,1 ≥ s2,2 s3,1 ≥ s3,2 s3,2 ≥ s3,3 s3,1 + s3,2 + s3,3 ≥ 2

But we want clauses:

`1 ∨ s1,1 `2 ∨ s1,1 ∨ s2,2 `3 ∨ s2,1 ∨ s3,1 `3 ∨ s2,2 ∨ s3,3

`1 ∨ s1,1 `2 ∨ s2,2 `3 ∨ s2,1 ∨ s3,2 `3 ∨ s3,3

`2 ∨ s2,1 s1,1 ∨ s2,2 s2,2 ∨ s3,2 s2,2 ∨ s3,3

s1,1 ∨ s2,1 `3 ∨ s3,1 `3 ∨ s2,2 ∨ s3,2

∨

s3,2

`2 ∨ s1,1 ∨ s2,1 s2,1 ∨ s3,1 s2,1 ∨ s3,2

I Follow easily from pseudo-Boolean specification by so-called reverse unit
propagation [GN03, Van08]

I See SAT ’22 paper [GMNO22] for details

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 16/22



Deriving the CNF Translation
We now have 0-1 integer linear constraints:

s1,1 = `1 s2,1 + s2,2 = s1,1 + `2 s3,1 + s3,2 + s3,3 = s2,1 + s2,2 + `3

s2,1 ≥ s2,2 s3,1 ≥ s3,2 s3,2 ≥ s3,3 s3,1 + s3,2 + s3,3 ≥ 2

But we want clauses:

`1 ∨ s1,1 `2 ∨ s1,1 ∨ s2,2 `3 ∨ s2,1 ∨ s3,1 `3 ∨ s2,2 ∨ s3,3

`1 ∨ s1,1 `2 ∨ s2,2 `3 ∨ s2,1 ∨ s3,2 `3 ∨ s3,3

`2 ∨ s2,1 s1,1 ∨ s2,2 s2,2 ∨ s3,2 s2,2 ∨ s3,3

s1,1 ∨ s2,1 `3 ∨ s3,1 `3 ∨ s2,2 ∨ s3,2

∨

s3,2

`2 ∨ s1,1 ∨ s2,1 s2,1 ∨ s3,1 s2,1 ∨ s3,2

I Follow easily from pseudo-Boolean specification by so-called reverse unit
propagation [GN03, Van08]

I See SAT ’22 paper [GMNO22] for details

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 16/22



Experiments

I Certified translations for the following CNF encodings:1

I Sequential counter [Sin05]
I Totalizer [BB03]
I Generalized totalizer [JMM15]
I Adder network [ES06]

I Proof verified by proof checker VeriPB2

I Benchmarks from PB 2016 Evaluation:3

I SMALLINT decision benchmarks without purely clausal formulas
I 3 subclasses of benchmarks:

I Only cardinality constraints (sequential counter, totalizer)
I Only general 0-1 ILP constraints (generalized totalizer, adder network)
I Mixed cardinality & general 0-1 ILP constraints (sequential counter + adder network)

1https://github.com/forge-lab/VeritasPBLib
2https://gitlab.com/MIAOresearch/software/VeriPB
3http://www.cril.univ-artois.fr/PB16/

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 17/22

https://github.com/forge-lab/VeritasPBLib
https://gitlab.com/MIAOresearch/software/VeriPB
http://www.cril.univ-artois.fr/PB16/


CNF Size vs Proof Size in KiB

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og
gi
n
g

sequential
totalizer

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og
gi
n
g

adder
gte

seq+adder

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 18/22



Translation Time vs Verification Time in Seconds

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
o
n

sequential
totalizer

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
o
n

adder
gte

seq+adder

I Translation just generates clauses and proof

I Verification slower, as reasoning has to be performed

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 19/22



Solving Time vs Verification Time in Seconds

10−4 10−3 10−2 10−1 100 101 102 103 104 10510−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
rifi

ca
tio

n

sequential
totalizer

10−4 10−3 10−2 10−1 100 101 102 103 104 10510−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
rifi

ca
tio

n

adder
gte

seq+adder

I Solved with fork of Kissat4 syntactically modified to output pseudo-Boolean proofs

I Room for improvement, but this clearly shows that our approach is viable

4https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 20/22

https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork


Future Work

Improving performance:

I Cutting Planes derivations instead of reverse unit propagations [VDB22]

I Backwards checking/trimming for verification (as in DRAT-trim [HHW13a])

Extend proof logging further:

I Sorting networks like odd-even mergesort, bitonic sorter [Bat68]

I MaxSAT solving and pseudo-Boolean optimization

I Mixed integer linear programming

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 21/22



Future Work

Improving performance:

I Cutting Planes derivations instead of reverse unit propagations [VDB22]

I Backwards checking/trimming for verification (as in DRAT-trim [HHW13a])

Extend proof logging further:

I Sorting networks like odd-even mergesort, bitonic sorter [Bat68]

I MaxSAT solving and pseudo-Boolean optimization

I Mixed integer linear programming

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 21/22



Conclusion
This work:

I General approach for certifying different PB-to-CNF translations

I End-to-end verification of SAT-based pseudo-Boolean solving

Pseudo-Boolean reasoning provides unified proof logging method for:

I SAT solving (including advanced techniques) [GN21, BGMN22]

I (Basic) constraint programming [EGMN20, GMN22]

I Subgraph problems [GMN20, GMM+20]

I This work: SAT-based pseudo-Boolean solving

I Next up: MaxSAT solving and pseudo-Boolean optimization

I Future goal(?): Mixed integer linear programming

Thank you for your attention!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 22/22



Conclusion
This work:

I General approach for certifying different PB-to-CNF translations

I End-to-end verification of SAT-based pseudo-Boolean solving

Pseudo-Boolean reasoning provides unified proof logging method for:

I SAT solving (including advanced techniques) [GN21, BGMN22]

I (Basic) constraint programming [EGMN20, GMN22]

I Subgraph problems [GMN20, GMM+20]

I This work: SAT-based pseudo-Boolean solving

I Next up: MaxSAT solving and pseudo-Boolean optimization

I Future goal(?): Mixed integer linear programming

Thank you for your attention!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 22/22



Conclusion
This work:

I General approach for certifying different PB-to-CNF translations

I End-to-end verification of SAT-based pseudo-Boolean solving

Pseudo-Boolean reasoning provides unified proof logging method for:

I SAT solving (including advanced techniques) [GN21, BGMN22]

I (Basic) constraint programming [EGMN20, GMN22]

I Subgraph problems [GMN20, GMM+20]

I This work: SAT-based pseudo-Boolean solving

I Next up: MaxSAT solving and pseudo-Boolean optimization

I Future goal(?): Mixed integer linear programming

Thank you for your attention!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 22/22



Conclusion
This work:

I General approach for certifying different PB-to-CNF translations

I End-to-end verification of SAT-based pseudo-Boolean solving

Pseudo-Boolean reasoning provides unified proof logging method for:

I SAT solving (including advanced techniques) [GN21, BGMN22]

I (Basic) constraint programming [EGMN20, GMN22]

I Subgraph problems [GMN20, GMM+20]

I This work: SAT-based pseudo-Boolean solving

I Next up: MaxSAT solving and pseudo-Boolean optimization

I Future goal(?): Mixed integer linear programming

Thank you for your attention!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 22/22



Conclusion
This work:

I General approach for certifying different PB-to-CNF translations

I End-to-end verification of SAT-based pseudo-Boolean solving

Pseudo-Boolean reasoning provides unified proof logging method for:

I SAT solving (including advanced techniques) [GN21, BGMN22]

I (Basic) constraint programming [EGMN20, GMN22]

I Subgraph problems [GMN20, GMM+20]

I This work: SAT-based pseudo-Boolean solving

I Next up: MaxSAT solving and pseudo-Boolean optimization

I Future goal(?): Mixed integer linear programming

Thank you for your attention!

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 22/22



References I

[Bat68] Kenneth E. Batcher.
Sorting networks and their applications.
In Proceedings of the Spring Joint Computer Conference of the American Federation of Information
Processing Societies (AFIPS ’68), volume 32, pages 307–314, April 1968.

[BB03] Olivier Bailleux and Yacine Boufkhad.
Efficient CNF encoding of Boolean cardinality constraints.
In Proceedings of the 9th International Conference on Principles and Practice of Constraint
Programming (CP ’03), volume 2833 of Lecture Notes in Computer Science, pages 108–122.
Springer, September 2003.

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Certified symmetry and dominance breaking for combinatorial optimisation.
In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI ’22), pages
3698–3707, February 2022.

[CCT87] William Cook, Collette Rene Coullard, and György Turán.
On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25–38, November 1987.

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 1/6



References II

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Justifying all differences using pseudo-Boolean reasoning.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), pages
1486–1494, February 2020.

[EN18] Jan Elffers and Jakob Nordström.
Divide and conquer: Towards faster pseudo-Boolean solving.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18),
pages 1291–1299, July 2018.

[ES06] Niklas Eén and Niklas Sörensson.
Translating pseudo-Boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, March 2006.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble.
Certifying solvers for clique and maximum common (connected) subgraph problems.
In Proceedings of the 26th International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357.
Springer, September 2020.

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 2/6



References III

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Subgraph isomorphism meets cutting planes: Solving with certified solutions.
In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI ’20),
pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
An auditable constraint programming solver.
In Proceedings of the 28th International Conference on Principles and Practice of Constraint
Programming (CP ’22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel.
Certified CNF translations for pseudo-Boolean solving.
In Proceedings of the 25th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs), pages
16:1–16:25, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov.
Verification of proofs of unsatisfiability for CNF formulas.
In Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’03), pages
886–891, March 2003.

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 3/6



References IV

[GN21] Stephan Gocht and Jakob Nordström.
Certifying parity reasoning efficiently using pseudo-Boolean proofs.
In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages
3768–3777, February 2021.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler.
Trimming while checking clausal proofs.
In Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design
(FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler.
Verifying refutations with extended resolution.
In Proceedings of the 24th International Conference on Automated Deduction (CADE-24), volume
7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June 2013.

[JMM15] Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho.
Generalized totalizer encoding for pseudo-Boolean constraints.
In Proceedings of the 21st International Conference on Principles and Practice of Constraint
Programming (CP ’15), volume 9255 of Lecture Notes in Computer Science, pages 200–209.
Springer, August-September 2015.

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 4/6



References V

[LP10] Daniel Le Berre and Anne Parrain.
The Sat4j library, release 2.2.
Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64, July 2010.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce.
Open-WBO: A modular MaxSAT solver.
In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 438–445. Springer,
July 2014.

[Sin05] Carsten Sinz.
Towards an optimal CNF encoding of Boolean cardinality constraints.
In Proceedings of the 11th International Conference on Principles and Practice of Constraint
Programming (CP ’05), volume 3709 of Lecture Notes in Computer Science, pages 827–831.
Springer, October 2005.

[SN15] Masahiko Sakai and Hidetomo Nabeshima.
Construction of an ROBDD for a PB-constraint in band form and related techniques for
PB-solvers.
IEICE Transactions on Information and Systems, 98-D(6):1121–1127, June 2015.

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 5/6



References VI

[Van08] Allen Van Gelder.
Verifying RUP proofs of propositional unsatisfiability.
In 10th International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.
http://isaim2008.unl.edu/index.php?page=proceedings.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts.
QMaxSATpb: A certified MaxSAT solver.
In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442.
Springer, September 2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr.
DRAT-trim: Efficient checking and trimming using expressive clausal proofs.
In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
July 2014.

Jakob Nordström Certified CNF Translations for Pseudo-Boolean Solving 6/6


	Appendix

