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Topic of This Survey

Study of space in proof complexity initiated in late 1990s
Motivated by considerations of SAT solver memory usage
But also (and mainly?) intrinsically interesting for proof complexity

This talk intended to give overview of

space complexity

size-space trade-offs (a.k.a. time-space trade-offs)

Make most sense for relatively weak proof systems — focus on:

resolution

polynomial calculus

cutting planes (only mention very briefly)

By necessity, selective coverage — apologies for omissions
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Outline

1 Space Complexity
Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

2 Size-Space Trade-offs
Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

3 Open Problems
Open Problems for Resolution
Open Problems for Polynomial Calculus
Open Problems for Cutting Planes
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Some Notation and Terminology

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k-CNF formula: CNF formula with clauses of size ≤ k
(where k is some constant)

Mostly assume formulas k-CNFs (for simplicity of exposition)
Conversion to 3-CNF most often doesn’t change much
[except sometimes the difference is huge. . . ]

N denotes size of formula (# literals, which is ≈ # clauses)
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Refutation ends when empty clause ⊥
derived

Can represent refutation as

annotated list or

DAG

Tree-like resolution if DAG is tree

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Space Complexity
Size-Space Trade-offs
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Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Resolution Size and Space

Size/length = total # clauses in
refutation

Space = max # clauses in memory
when performing refutation

(Exist other space measures also —
focus here on most well-studied one)

Space at step t: # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

7. x Res(1, 6)
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Upper Bounds on Resolution Size and Space

Size / space of refuting formula defined by taking
minimum over all resolution refutations

Size always at most exp(O(N))

Space always at most N +O(1)

Can be achieved simultaneously (even in tree-like resolution)
[ET01]
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Blackboard Definition of Resolution

Think of resolution refutation as being presented on blackboard:

Write down axiom clauses from formula

Apply resolution rule (only to clauses currently on board)

Erase clauses (when no longer needed)

Define derivation as sequence of clause configurations (C0, . . . ,Cτ )
where Ct obtained from Ct−1 by:

Download Ct = Ct−1 ∪ {C} for axiom clause C ∈ F
Inference Ct = Ct−1 ∪ {D} inferred by resolution on clauses

in Ct−1
Erasure Ct = Ct−1 \ {D} for some D ∈ Ct−1

Size = # download & inference steps
Space = max0≤t≤τ{|Ct|}
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Space Lower Bound as Two-Person Game

F requires space s ⇔ all Ct derived from F in space < s satisfiable

Given derivation (C0, . . . ,Cτ ), construct αt satisfying Ct

Space game Lower bound game

Download Pick αt of size ≤ |Ct| Enlarge to αt ⊇ αt−1
of size ≤ |Ct|

Inference Do nothing Do nothing

Erasure Pick αt of size ≤ |Ct| Shrink to αt ⊆ αt−1
of size ≤ |Ct|

Space game exactly characterizes space (but hard to play)

Restricted lower bound game: can construct αt inductively
(but no guarantee this will work)
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

General Proof Strategy for Space Lower Bound

Hard to get a handle on structure of derived configuration Ct

Construct auxiliary configuration Dt (view αt as 1-CNF) that is
easier to understand but still gives information about Ct:

1 Dt implies Ct (i.e., Dt “stronger” than Ct)
2 Dt is satisfiable (so, in particular, Ct also satisfiable)
3 |Dt| ≤ |Ct| (all we know about space of Ct)
4 At derivation step Ct−1  Ct, can do a local update

Dt−1  Dt if |Dt−1| small enough (i.e., less than s)

If we can do this, clearly we get lower bound on space

Two observations:

“On the safe side” of adversary (Dt stronger than Ct)
History-dependent (can get different Dt for same Ct)
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Resolution Space Lower Bound for Random k-CNFs (1/2)

Random k-CNF formulas
∆n randomly sampled k-clauses over n variables
Resolution space lower bound Ω(n) [BG03]

In fact, holds for any CNF whose graph is good enough expander

Graph G(F ) of CNF F

Bipartite graph G(U
.
∪ V,E)

U = set of clauses; V = set of variables

Edge (C, x) if variable x occurs in C [ignore sign of literal]

(d, δ, s)-bipartite expander

Bipartite graph G(U
.
∪ V,E) with left degree d

Every A ⊆ U s.t. |A| ≤ s has neighbourhood |NG(A)| ≥ δ|A|
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Size-Space Trade-offs
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Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Resolution Space Lower Bound for Random k-CNFs (2/2)

Theorem ([BG03])

If F is random k-CNF for k ≥ 3 over n variables with ∆n clauses
then F requires space Ω(n) almost surely

Proof sketch.

Given small-space derivation (C0,C1,C2, . . .) from F , inductively
construct 1-CNF Dt implying Ct and satisfying |Dt| ≤ |Ct|:

1 Download of C ∈ F : Since G(F ) has expansion 1 + ε, can
find variable in C not in Dt−1 [needs an argument, of course]

2 Inference: Set Dt = Dt−1
3 Erasure: Pick Dt ⊆ Dt−1 of size |Dt| ≤ |Ct| implying Ct
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Taking Care of Erasures by Locality Lemma

Lemma (Locality lemma for resolution)

Suppose D 1-CNF; C clause configuration; D implies C
Then ∃ 1-CNF D′ of size |D′| ≤ |C| s.t. D′ implies C

Proof.

Consider bipartite graph with

clauses C ∈ C on left; unit clauses ∈ D on right

edge between C and D if D � C (share a literal)

For every C ∈ C, pick one neighbour D ∈ D (must exist) to form
1-CNF D′
Then by construction:

|D′| ≤ |C|
D′ � C
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1-CNF D′
Then by construction:

|D′| ≤ |C|
D′ � C
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Space Lower Bounds from Width Lower Bounds

Tight space lower bound obtained in this way also for

Pigeonhole principle [ABRW02, ET01]

Tseitin formulas [ABRW02, ET01]

Matching width lower bounds (min size of largest clause in proof)
Under the hood proofs of very similar flavour. . . What is going on?

Theorem ([AD03])

For k-CNF formulas it holds that space ≥ width +O(1)

With hindsight, almost all space lower bounds obtainable this way

But not quite — get back to this later
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Polynomial Calculus (or Actually PCR)

Introduced in [CEI96]; below modified version from [ABRW02]

Clauses interpreted as polynomial equations over (fixed) field
in variables x, x, y, y, z, z, . . . (where x and x distinct variables)

Example: x ∨ y ∨ z gets translated to xyz = 0
Think of 0 ≡ true and 1 ≡ false

Derivation rules

Boolean axioms
x2 − x = 0

Negation
x+ x = 1

Linear combination
p = 0 q = 0

αp+ βq = 0
Multiplication

p = 0
xp = 0

Goal: Derive 1 = 0 ⇔ no common root ⇔ formula unsatisfiable
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Size, Degree and Space

Write out all polynomials as sums of monomials
W.l.o.g. all polynomials multilinear (because of Boolean axioms)

Size — analogue of resolution size
total # monomials in refutation (counted with repetitions)
[Can also define length measure — might be much smaller]

Degree — analogue of resolution width
largest degree of monomial in refutation

(Monomial) space — analogue of resolution (clause) space
max # monomials in memory during refutation (with repetitions)
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PCR Strictly Stronger than Resolution

Polynomial calculus simulates resolution efficiently with respect to
length/size, width/degree, and space simultaneously

Can mimic resolution refutation step by step

Hence worst-case upper bounds for resolution carry over

PCR strictly stronger w.r.t. size and degree

Tseitin formulas on expanders over GF(2)
(just do Gaussian elimination)

Onto functional pigeonhole principle [Rii93]

Open Problem

Show that PCR is strictly stronger than resolution w.r.t. space
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Lower Bounds on PCR Space

Lower bound for PHP with wide clauses [ABRW02]

k-CNFs much trickier — sequence of lower bounds for

Obfuscated 4-CNF versions of PHP [FLN+12]

Random 4-CNFs + general technique [BG13]

Tseitin formulas on (some) expanders [FLM+13]

Open Problem

Prove tight space lower bounds for Tseitin on any expander

Prove tight space lower bounds for ordering principle formulas

Prove any space lower bound on random 3-CNFs

Prove any space lower bound for any 3-CNF!?
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What We Want (Recap of Lower Bound Proof Strategy)

Given PCR derivation (P0,P1,P2, . . .) in small space

Want to construct “auxiliary configurations” D0,D1,D2, . . . s.t.

Dt highly structured, so easier to understand than Pt
but still gives information about Pt

Maintain invariants for Dt:
1 Dt implies Pt (i.e., Dt “stronger” than Pt)
2 Dt is satisfiable (so, in particular, Pt also satisfiable)

3 space of Dt ≤ space of Pt (all we know about space of Pt)
4 For Pt−1  Pt, can do update Dt−1  Dt if Dt−1 small

If so, small-space derivation cannot derive contradiction
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So What’s the Problem?

Resolution (clause) space s ⇒ ∃ satisfying assignment of size ≤ s

Not true for polynomials!

Example

Consider polynomial equation −1 + xyzuvw = 0

Monomial space 2

But have to set 6 variables to satisfy

Obviously generalizes to arbitrary number of variables

Cannot use 1-CNFs / assignments as auxiliary configurations!

But miraculously, 2-CNFs sometimes work! [ABRW02]
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PCR Space Lower Bound for Random k-CNFs

Theorem ([BG13])

If F is random k-CNF for k ≥ 4 over n variables with ∆n clauses
then F requires PCR space Ω(n) almost surely

Proof approach:

Structured auxiliary configurations: 2-CNFs Dt = At ∧ Bt
Each A ∈ At is subclause of axiom C ∈ F
No distinct A,A′ ∈ At share any variables

Every B ∈ Bt associated to two unique AB, A
′
B ∈ At

B contains one variable from AB and one variable from A′B

(Straightforward to verify that any such Dt is satisfiable)
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Inductive Proof: Invariants and Inference

Proof invariants:

Dt = At ∧ Bt structured auxiliary configuration

Dt implies Pt
|Dt| ≤ 6 · (# [distinct] monomials in Pt)

Proof is by case analysis over derivation step

1. Inference Pt = Pt ∪ {Q} for polynomial Q derived from Pt−1
Set Dt := Dt−1
Dt = Dt−1 implies Q by soundness

Space of Dt stays the same

Space of Pt goes up
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Inductive Proof: Axiom Download

2. Download Pt = Pt ∪ {C} for C ∈ F

For simplicity, assume extra download of C ′ ∈ F
Without loss of generality: can then immediately erase C ′

Since G(F ) has expansion 2 + ε, can find 2-clauses
A ⊆ C and A′ ⊆ C ′ on disjoint sets of variables
[argument analogous to [BG03] but expansion requires 4-CNF]

Pick one arbitrary literal each from A and A′ to form B

At := At−1 ∪ {A,A′}
Bt := Bt−1 ∪ {B}
Space of Dt = At ∧ Bt up by 3

Space of Pt up by 1
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Inductive Proof: Erasure

3. Erasure Pt = Pt−1 \ {Q} for Q ∈ Pt−1
Know Dt−1 implies Pt ⊆ Pt−1
But |Dt−1| might be far too large

Need to find smaller auxiliary configuration that implies Pt
(Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR [ABRW02, BG13])

Suppose

D = A ∧ B structured auxiliary configuration

P PCR-configuration

D implies P
Then
∃ D∗=A∗∧B∗ with |D∗| ≤ 6 · (# monomials in P) s.t. D∗ implies P
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Proof sketch for Locality Lemma for PCR (1/4)

Build graph G=(U∪V,E)

U = distinct monomials M in P
V = clauses in B
Edge between m ∈M and B ∈ B
if ∃ common variable

Let Γ ⊆M set of maximal size
such that |N(Γ)| ≤ 2 · |Γ|
Assume Γ 6= M (else done)

∀ S ⊆M \ Γ by maximality
|N(S) \N(Γ)| > 2 · |S|
⇒ ∃ matching of each m ∈M \ Γ
to 2 distinct B′, B′′ ∈ B \N(Γ)

(Make 2 copies of each m ∈M \ Γ
and apply Hall’s theorem)

m1

m2

m3

m4

m5

B1

B2

B3

B4

B5

B6

B7

B8

B11

B12

B13

B9

B10
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Look at m ∈M \ Γ — suppose matched to
B′ = x ∨ y and B′′ = z ∨ w

Say x, z common variables and m = xz ·m′
(maybe y and/or w in m′ — don’t care)

Suppose further

B′ ↔ A′1 = x ∨ x′ and A′2 = y ∨ y′

B′′ ↔ A′′1 = z ∨ z′ and A′′2 = w ∨ w′

New clauses for m in D∗ will be

B∗ = x ∨ z [common variables with signs as in m]

A∗1 = x ∨ x′ [A-clause associated to x]

A∗2 = z ∨ z′ [A-clause associated to z]

Plus keep all B-clauses in N(Γ) and their A-clauses — Done!
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Need to prove three things:

1 D∗ structured auxiliary configuration
Straightforward to verify

2 D∗ has the right size
OK, since |D∗| ≤ 6 · |M | ≤
≤ 6 · (# monomials in P)

3 D∗ implies P
Perhaps a priori not so clear. . .

Prove implication in slightly roundabout way:
Given any β satisfying D∗, find α such that

P(α) = P(β)

α satisfies D
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Look at our example monomial

m=xz ·m′ ∈M \ Γ

with new clauses in D∗ [satisfied by β]

B∗=x ∨ z, A∗1=x ∨ x′, A∗2=z ∨ z′

Old clauses in D [to be satisfied by α] are:

B′=x ∨ y ↔ A′1=x ∨ x′, A′2=y ∨ y′
B′′=z ∨ w ↔ A′′1 =z ∨ z′, A′′2 =w ∨ w′

Let α=β except that for m ∈M \ Γ we set
y=w= false and x′=y′=z′=w′= true

α(m) = β(m) for all m ∈ Γ [didn’t touch those variables]

α(m) = β(m) = 0 for all m ∈M \ Γ [by construction of D∗]
α satisfies D and hence P
But then β must also satisfy P, Q.E.D.
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m

B1

B2

B3

B4

B5

B6

B7

B8

B11

B12

B13

B′

B′′

Look at our example monomial

m=xz ·m′ ∈M \ Γ

with new clauses in D∗ [satisfied by β]

B∗=x ∨ z, A∗1=x ∨ x′, A∗2=z ∨ z′

Old clauses in D [to be satisfied by α] are:

B′=x ∨ y ↔ A′1=x ∨ x′, A′2=y ∨ y′
B′′=z ∨ w ↔ A′′1 =z ∨ z′, A′′2 =w ∨ w′

Let α=β except that for m ∈M \ Γ we set
y=w= false and x′=y′=z′=w′= true

α(m) = β(m) for all m ∈ Γ [didn’t touch those variables]

α(m) = β(m) = 0 for all m ∈M \ Γ [by construction of D∗]
α satisfies D and hence P
But then β must also satisfy P, Q.E.D.
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Space Complexity
Size-Space Trade-offs

Open Problems

Preliminaries
Space Lower Bounds for Resolution
Space Lower Bounds for Polynomial Calculus

Another Intriguing Problem: Space vs. Degree

Open Problem (analogue of [AD08])

Is it true that space ≥ degree +O(1)?

Partial progress: if formula requires large resolution width, then
XOR-substituted version requires large space [FLM+13]

Optimal separation of space and degree in [FLM+13] by flavour of
Tseitin formulas which

can be refuted in degree O(1)

require space Ω(N)

but separating formulas depend on characteristic of field
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Comparing Size and Space

Some “rescaling” needed to get meaningful comparisons of
size/length and space

Size exponential in formula size in worst case

Space at most linear in worst case

So natural to compare space to logarithm of size
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Size-Space Correlations and/or Trade-offs?

∃ constant space refutation ⇒ ∃ polynomial size refutation [AD03]

For tree-like resolution: any polynomial size refutation can be
carried out in logarithmic space [ET01]

So essentially no trade-offs for tree-like resolution

Does short size imply small space for general resolution?

Are there size-space trade-offs for general resolution?
(Some trade-off results in restricted settings in [Ben02, Nor09])
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

An Optimal Size-Space Separation

Size and space in resolution are “completely uncorrelated”

Theorem ([BN08])

There are k-CNF formula families of size N with

refutation size O(N)

refutation space Ω(N/ logN)

Optimal separation of size and space — given size O(N), always
possible to get clause space O(N/ logN)
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Size-Space Trade-offs

There is a rich collection of size-space trade-offs

Results hold for

resolution

even k-DNF resolution (which we won’t go into here)

Different trade-offs covering (almost) whole range of space from
constant to linear

Simple, explicit formulas
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

One Example: Robust Trade-offs for Small Space

Theorem ([BN11] (informal))

For any arbitrarily slowly growing function g there exist explicit
k-CNF formulas of size N

refutable in resolution in space g(N) and

refutable in size linear in N and space ≈ 3
√
N such that

any refutation in space � 3
√
N requires superpolynomial size

And an open problem:

Open Problem

Seems likely that 3
√
N above should be possible to improve to

√
N ,

but don’t know how to prove this. . .
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Proof Strategy for Size-Space Separations and Trade-offs

Both of these theorems proved in the same way

Want to sketch intuition and main ideas in proofs

For details, see survey [Nor13]

To prove the theorems, need to go back to the early days of
computer science. . .
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

A Detour into Combinatorial Games

Want to find formulas that

can be quickly refuted but require large space

have space-efficient refutations requiring much time

Such time-space trade-off questions well-studied for
pebble games modelling calculations described by DAGs
([CS76] and many others)

Time needed for calculation: # pebbling moves

Space needed for calculation: max # pebbles required
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Pebbling Formulas: Vanilla Version

CNF formulas encoding pebble games on DAGs

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

sources are true

truth propa-
gates upwards

but sink is false

Extensive literature on pebbling space and time-space trade-offs
from 1970s and 80s

Have been useful in proof complexity before in various contexts

Hope that pebbling properties of DAG somehow carry over to
resolution refutations of pebbling formulas
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Pebbling Formula Trade-offs

Reduction from resolution to pebbling [Ben02]

Pebbling time-space trade-offs ⇒ size-variable space
trade-offs in resolution [BN11]

In fact, size-variable space trade-offs for any “semantic” proof
system [BNT13]

But we want trade-offs for stronger space measures!

And pebbling formulas supereasy — can do constant (clause)
space and linear size simultaneously
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Key New (Old?) Idea: Variable Substitution

Make formula harder by substituting exclusive or x1 ⊕ x2 of two
new variables x1 and x2 for every variable x
(also works for other Boolean functions with “right” properties):

x ∨ y

⇓

¬(x1 ⊕ x2) ∨ (y1 ⊕ y2)

⇓

(x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2)
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

For such refutation of F [⊕]:

size ≥ size for F

clause space ≥ # variables
on board in proof for F

Prove that this is (sort of) best one can do for F [⊕]!
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow black-
board

For consecutive XOR black-
board configurations. . .

can get between correspond-
ing shadow blackboards by le-
gal resolution derivation steps

. . . (sort of) upper-bounded by
XOR derivation size

Size of shadow blackboard
derivation . . .

. . . is at most # clauses on
XOR blackboard

# variables mentioned on
shadow blackboard. . .
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If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow black-
board

For consecutive XOR black-
board configurations. . .

can get between correspond-
ing shadow blackboards by le-
gal resolution derivation steps

. . . (sort of) upper-bounded by
XOR derivation size

Size of shadow blackboard
derivation . . .

. . . is at most # clauses on
XOR blackboard

# variables mentioned on
shadow blackboard. . .
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Putting the Pieces Together

Making variable substitutions in pebbling formulas

lifts lower bound from number of variables to (clause) space

maintains upper bound in terms of space and size

Get our results by

using known pebbling results from literature of 70s and 80s

proving a couple of new pebbling results [Nor12]
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Some Philosophical Notes

Projections “on the wrong side” of adversary (we throw away
info and get weaker configuration)

Independent of history (always same projection from same
configuration)

Only technique for proving space lower bounds without
dependence on width lower bounds (pebbling formulas
refutable in constant width)

Is there a “safe side of adversary,” history-dependent space
lower bound proof for pebbling formulas?
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Projections v.s. Restrictions for Polynomial Calculus

Projections in [BN11] fail for polynomial calculus and PCR
(see [Nor13] for examples)

Use XOR-substitution + random restrictions

If refutation short⇒ restriction kills all high-degree monomials

If also monomial space small ⇒ get small variable space

But then size-variable space trade-off kicks in!

Obtain similar trade-offs as for resolution but with some loss in
parameters [BNT13]

No unconditional space lower bounds — inherent limitation due to
random restriction argument
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Space Complexity
Size-Space Trade-offs

Open Problems

Trade-offs for Resolution
Trade-offs for Polynomial Calculus
Trade-offs for Superlinear Space

Going Beyond Linear Space. . .

All formulas in [BN11] refutable in linear size (and hence
simultaneously also in linear space)

Could it be that optimal proof size sometimes requires larger
than linear space? (Which is worst-case space upper bound)

Yes! For Tseitin formulas over “long, skinny grids”
[BBI12, BNT13]

Holds even for PCR [BNT13]

Superlinear space regime more challenging than sublinear

Trade-offs not as dramatic as in [BN11] so in that sense
results are incomparable

Don’t have time to go into any details — topic for a separate
talk, probably. . .
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Space Complexity
Size-Space Trade-offs

Open Problems

Open Problems for Resolution
Open Problems for Polynomial Calculus
Open Problems for Cutting Planes

Some Open Problems for Resolution

Resolution arguably fairly well-understood by now, but several
good open questions remain

For instance:

Can we get (much) sharper trade-offs for superlinear space
than in [BBI12, BNT13]?

Are there trade-offs between proof size and proof width?
Or can both measures be minimized simultaneously?
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Space Complexity
Size-Space Trade-offs

Open Problems

Open Problems for Resolution
Open Problems for Polynomial Calculus
Open Problems for Cutting Planes

Some Open Problems for Polynomial Calculus/PCR

Long list of open problems — mentioned in this talk:

Show that PCR is strictly stronger than resolution w.r.t. space

Prove PCR space lower bounds for

Tseitin on any expander
ordering principle formulas
random 3-CNFs
Or any 3-CNF, really. . .

Is it true for PCR that space ≥ degree +O(1)?
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Space Complexity
Size-Space Trade-offs

Open Problems

Open Problems for Resolution
Open Problems for Polynomial Calculus
Open Problems for Cutting Planes

Definition of Cutting Planes [CCT87]

Clauses interpreted as linear inequalities over the reals with
integer coefficients

Example: x ∨ y ∨ z gets translated to x+ y + (1− z) ≥ 1

Derivation rules

Variable axioms
0 ≤ x ≤ 1

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai+bi)xi ≥ A+B
Division

∑
caixi ≥ A∑

aixi ≥ dA/ce

Goal: Derive 0 ≥ 1 ⇔ formula unsatisfiable
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Space Complexity
Size-Space Trade-offs

Open Problems

Open Problems for Resolution
Open Problems for Polynomial Calculus
Open Problems for Cutting Planes

Size, Length and Space

Length = total # lines/inequalities in refutation

Size = sum also size of coefficients

Space = max # lines in memory during refutation

No (useful) analogue of width/degree

Cutting planes

simulates resolution efficiently w.r.t. length/size and space
simultaneously

is strictly stronger w.r.t. length/size — can refute PHP
efficiently [CCT87]

Open Problem

Show cutting planes strictly stronger than resolution w.r.t. space
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Space Complexity
Size-Space Trade-offs

Open Problems

Open Problems for Resolution
Open Problems for Polynomial Calculus
Open Problems for Cutting Planes

Hard Formulas w.r.t Cutting Planes Space?

No space lower bounds known except conditional ones

All short cutting planes refutations of

Tseitin formulas on expanders require large space [GP14]
(But such short refutations probably don’t exist anyway)

(some) pebbling formulas require large space [HN12, GP14]
(and such short refutations do exist; hard to see how
exponential length could help bring down space)

Above results obtained via communication complexity

No (true) length-space trade-off results known
Although results above can also be phrased as trade-offs
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Summing up

Survey of space complexity and size-space trade-offs

Focus on resolution and polynomial calculus/PCR

Resolution fairly well understood

Polynomial calculus less so — several nice open problems

And cutting planes almost not at all understood!

Thank you for your attention!
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