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Preliminaries Pseudo-Boolean Functions and Constraints

Pseudo-Boolean?

Pseudo-Boolean function: f:{0,1}" — R

Studied since 1960s in operations research and 0-1 integer linear
programming [BHO02]

Restricted version: f represented as linear form [focus of this talk]

Many problems expressible as optimizing value of linear pseudo-Boolean
function under linear pseudo-Boolean constraints
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Pseudo-Boolean?

Pseudo-Boolean function: f:{0,1}" — R

Studied since 1960s in operations research and 0-1 integer linear
programming [BHO02]

Restricted version: f represented as linear form [focus of this talk]

Many problems expressible as optimizing value of linear pseudo-Boolean
function under linear pseudo-Boolean constraints

See Simons boot camp tutorial https://tinyurl.com/pbsolving for
(much) longer version of this talk
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Preliminaries Pseudo-Boolean Functions and Constraints

Pseudo-Boolean vs. SAT

@ Pseudo-Boolean format richer than conjunctive normal form (CNF)

Compare
1+ a2+ 3+ x4+ 25 +26 >3

and

1 Ve VsV Ty x1 Ve VrsVrs x1 Ve VsV xg

ANx1 Ve VsV xs
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( YA (21 Va2 VaeaVas) Az Vas VsV ze)
ANz1VasVaaVas)A(xiVasVaeaVas)A(xiVaes VeV aes)
( ) A( )A( )
( ) A ( )A( )

AN(x1VxaVasV xg x2 VI3V sV s x2 V3 VIV s

N(x2 V23V x5V T 2 VxeV a5V Te x3VxeV sV T
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@ And pseudo-Boolean reasoning exponentially stronger than
conflict-driven clause learning (CDCL)
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@ And pseudo-Boolean reasoning exponentially stronger than
conflict-driven clause learning (CDCL)

@ Yet close enough to SAT to benefit from SAT solving advances
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Preliminaries Pseudo-Boolean Functions and Constraints

Pseudo-Boolean vs. SAT

@ Pseudo-Boolean format richer than conjunctive normal form (CNF)

Compare
1+ a2+ 3+ x4+ 25 +26 >3

and

1 Ve VsV Ty x1 Ve VrsVrs x1 Ve VsV xg

( ) A( )A( )
ANz1iVazaVaaVas)A(xiVaeeVaeaVas) Az Ve VsV as)
ANz1VasVaaVas)A(xiVasVaeaVas)A(xiVaes VeV aes)
( ) A( )A( )
( ) A ( ) A( )

AN(x1VxaVasV xg x2 VI3V sV s x2 V3 VIV s

N(x2 V23V x5V T 2 VxeV a5V Te x3VxeV sV T

@ And pseudo-Boolean reasoning exponentially stronger than
conflict-driven clause learning (CDCL)

@ Yet close enough to SAT to benefit from SAT solving advances

@ Also possible synergies with 0-1 integer linear programming (ILP)
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Preliminaries Pseudo-Boolean Functions and Constraints

Pseudo-Boolean Constraints and Normalized Form

In this talk, pseudo-Boolean constraints are 0-1 integer linear constraints

Zai& > A
(]

exe{> <, => <}

0 a;,A€Z

e literals ¢;: z; or T; (where x; + T; = 1)

@ variables z; take values 0 = false or 1 = true
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Preliminaries Pseudo-Boolean Functions and Constraints

Pseudo-Boolean Constraints and Normalized Form

In this talk, pseudo-Boolean constraints are 0-1 integer linear constraints

Zai&- > A
(]

exe{> <, => <}

0 a;,A€Z

e literals ¢;: z; or T; (where x; + T; = 1)

@ variables z; take values 0 = false or 1 = true

Convenient to use normalized form [Bar95] (without loss of generality)

Z ai& Z A
(2
@ constraint always greater-than-or-equal
@ a;,,AeN
o A=deg(>;ail; > A) referred to as degree (of falsity)
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@ Clauses are pseudo-Boolean constraints

zVyVz & zz4+y+z2>1



Preliminaries Pseudo-Boolean Functions and Constraints

Some Types of Pseudo-Boolean Constraints

© Clauses are pseudo-Boolean constraints

zVYyVz & z+y+z2z22>1

@ Cardinality constraints

1+ T2+ 23+ 24+ 5+ 26 >3
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Some Types of Pseudo-Boolean Constraints

© Clauses are pseudo-Boolean constraints

zVYyVz & z+y+z2z22>1

@ Cardinality constraints

1+ T2+ 23+ 24+ 5+ 26 >3

© General constraints

r1 + 2To + 3x3 + 4T4 + b5 > 7
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Preliminaries Pseudo-Boolean Functions and Constraints

Some Types of Pseudo-Boolean Constraints

© Clauses are pseudo-Boolean constraints

zVYyVz & z+y+z2z22>1

@ Cardinality constraints

1+ T2+ 23+ 24+ 5+ 26 >3

© General constraints

r1 + 2To + 3x3 + 4T4 + b5 > 7

@ Reified constraints encoding z < x1 + 272 + 3x3 + 4T4 + bas > 7

7Z+ 11+ 2%T9 + 3x3 +4T4 + dxs > 7
924+ 71 + 229+ 3T3 +4x4 + 55 > 9
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Preliminaries Pseudo-Boolean Solving and Optimization

Formulas, Decision Problems, and Optimization Problems

Pseudo-Boolean (PB) formula
Conjunction of pseudo-Boolean constraints
F=CiNCoAN---NCy,

Pseudo-Boolean Solving (PBS)
Decide whether F' is satisfiable/feasible

Pseudo-Boolean Optimization (PBO)

Find satisfying assignment to F' that minimizes objective function >, w;/;
(Maximization: minimize — ), w;{;)
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Preliminaries Pseudo-Boolean Solving and Optimization

Approaches for Pseudo-Boolean Problems

© Pseudo-Boolean (PB) solving and optimization [main focus]
@ MaxSAT solving

© Integer linear programming (ILP) — or, more generally,
mixed integer linear programming (MIP)
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Pseudo-Boolean Solving

Two Approaches to Pseudo-Boolean Solving

Re-encode to CNF and run conflict-driven clause learning (CDCL)
e MiNISAT+ [ES06]
e OPEN-WBO [MML14]
o NAPS [SN15]
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Pseudo-Boolean Solving

Two Approaches to Pseudo-Boolean Solving

Re-encode to CNF and run conflict-driven clause learning (CDCL)
e MiNISAT+ [ES06]
e OPEN-WBO [MML14]
o NAPS [SN15]

Native reasoning with pseudo-Boolean constraints
e PRS [DGO02]
o GALENA [CKO5]
e PUEBLO [SS06]
e SaT4yJ [LP10]
e ROUNDINGSAT [EN18]
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Pseudo-Boolean Solving CDCL-Based Pseudo-Boolean Solving

Performance of CDCL-Based Pseudo-Boolean Solving

@ CDCL-based pseudo-Boolean can be very competitive
(sometimes beating native pseudo-Boolean solvers hands down)

@ Extension variables potentially gives solver lots of power

o Allows branching over complex statements
e Can learn clauses corresponding to polytopes in original problem

@ But performance gain from extension variables seems quite sensitive
to input order [EGNV18]

@ And sometimes extension variables cannot make up for CDCL being
exponentially weaker than pseudo-Boolean reasoning [EGNV18]
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Pseudo-Boolean Solving CDCL-Based Pseudo-Boolean Solving

Some Research Questions

@ How to find best CNF encodings of PB constraints for given problem?

e Trade-offs between propagation strength and encoding size?
e Rigorous mathematical insights?

@ How do CDCL-based and “native” cutting-planes-based PB solving
approaches compare?

e Theoretical results on computational complexity?
e Harness complementary strengths in applied solvers?
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Pseudo-Boolean Solving “Native” Cutting-Planes-Based Pseudo-Boolean Solving

“Native” Pseudo-Boolean Conflict-Driven Search

Want to do “same thing” as in conflict-driven clause learning (CDCL)
SAT solving [MS96, BS97, MMZ*01]

But with cutting planes reasoning on PB constraints without re-encoding

@ Variable assignments

@ Always propagate forced assignment if possible
© Otherwise make assignment using decision heuristic

o At conflict

© Do conflict analysis to derive new constraint
© Add new constraint to constraint database and backjump
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Pseudo-Boolean Solving  “Native” Cutting-Planes-Based Pseudo-Boolean Solving

The Cutting Planes Proof System [CCT87, CK05]

Literal axioms ——
£; >0

Yoilcaa; + cbi)l; > caA+ cpB

Linear combination

Division doiail; > A
>ilai/cll; > [A/c]
Saturation Zz al‘gz = A

Yo ;min{a;, A} - 0; > A
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Pseudo-Boolean Solving  “Native” Cutting-Planes-Based Pseudo-Boolean Solving

The Cutting Planes Proof System [CCT87, CK05]

Literal axioms W

Linear combination
>i(caa; + cpbi)l; > caA+ cpB

Division doiail; > A
>ilai/cll; > [A/c]
Saturation Zz al‘gz = A

Yo ;min{a;, A} - 0; > A

r+2y+4z>3 Saturation r+2y+4z>3

Division by 2
ivision by T ty+2:>2 T+2y+32>3
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Pseudo-Boolean Solving Challenges for “Native” Pseudo-Boolean Solving

Some PB Solving Challenges I: Input Format

@ CNF: PB solvers degenerate to CDCL for CNF inputs — how to
harness power of cutting planes in this setting?

e Cardinality constraint detection proposed as preprocessing [BLLM14] or
inprocessing [EN20]
o Not yet competitive in practice

@ Linear programming: Sometimes very poor performance even on
infeasible 0-1 LPs!

e Unclear why
e Very easy for cutting planes in theory

@ Preprocessing/presolving: Important in SAT solving and integer linear
programming, but not done in PB solvers — why?

e Follow up on preliminary work on PB preprocessing in [MLM09]?
o Use presolver PAPILO [PaP] from MIP solver SCIP [SCI]?
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Pseudo-Boolean Solving Challenges for “Native” Pseudo-Boolean Solving

Some PB Solving Challenges Il: Conflict Analysis

@ Many more degrees of freedom than in CDCL, e.g.:

e Choice of Boolean rule (division, saturation, or combination?)

o Learn general PB constraints or more limited form?

e How far to backjump when learned constraint asserting at many levels?
e How large precision to use in integer arithmetic?

@ How to assess quality of learned constraints?

© Theoretical potential and limitations poorly understood [VEG' 18]

e Separations of subsystems of cutting planes?
o In particular, is division reasoning stronger than saturation? [GNY19]

Jakob Nordstrém (UCPH & LU) Pseudo-Boolean Solving: In Between SAT and ILP Simons Institute Mar '21  14/27



Pseudo-Boolean Optimization  Linear Search SAT-UNSAT (LSU)

Linear Search SAT-UNSAT (LSU) Algorithm

@ Minimize Y ;" | wi/;
@ Subject to collection of PB constraints F =Cy A--- AC)y,

Set prest = 0 and repeat the following:
@ Run SAT/PB solver
@ |If solver returns UNSATISFIABLE, output ppest and terminate
© Otherwise, let ppegt := returned solution p
© Add constraint > wily < —1 4> w; - p(;)
© Start over from the top
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Pseudo-Boolean Optimization  Linear Search SAT-UNSAT (LSU)

More on Linear Search

Properties of linear search SAT-UNSAT:

@ Can get some decent solution quickly, even if not optimal one

@ Important for anytime solving (when time is limited and something is
better than nothing)

@ But get no estimate of how good the solution is
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Pseudo-Boolean Optimization Core-Guided Search

Core-Guided Pseudo-Boolean Search

@ Minimize > 7", wi¢;
@ Subject to collection of PB constraints F = Cy A---AC,

Core-guided PB search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible
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Pseudo-Boolean Optimization Core-Guided Search

Core-Guided Pseudo-Boolean Search

@ Minimize > 7", wi¢;

@ Subject to collection of PB constraints F = Cy A---AC,

Core-guided PB search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Set valpest = 0 and repeat the following:

@ Run pseudo-Boolean solver with assumptions (pre-made decisions)
£; = 0 for all £; in objective function
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Pseudo-Boolean Optimization Core-Guided Search

Core-Guided Pseudo-Boolean Search

@ Minimize > 7", wi¢;

@ Subject to collection of PB constraints F = Cy A---AC,

Core-guided PB search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible
Set valpest = 0 and repeat the following:

@ Run pseudo-Boolean solver with assumptions (pre-made decisions)
£; = 0 for all £; in objective function

@ |If solver returns SATISFIABLE, output valpest and terminate
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Pseudo-Boolean Optimization Core-Guided Search

Core-Guided Pseudo-Boolean Search

@ Minimize > 7", wi¢;
@ Subject to collection of PB constraints F = Cy A---AC,

Core-guided PB search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Set valpest = 0 and repeat the following:

@ Run pseudo-Boolean solver with assumptions (pre-made decisions)
£; = 0 for all £; in objective function

@ |If solver returns SATISFIABLE, output valpest and terminate

© Otherwise learn constraint E _, ¢; > A over assumption variables
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Pseudo-Boolean Optimization Core-Guided Search

Core-Guided Pseudo-Boolean Search

@ Minimize > 7", wi¢;
@ Subject to collection of PB constraints F = Cy A---AC,

Core-guided PB search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Set valpest = 0 and repeat the following:

@ Run pseudo-Boolean solver with assumptions (pre-made decisions)
£; = 0 for all £; in objective function

@ |If solver returns SATISFIABLE, output valpest and terminate
© Otherwise learn constraint E _, ¢; > A over assumption variables

© Update valpest and rewrite objective function using new variables
k .
zj & il >
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Pseudo-Boolean Optimization Core-Guided Search

Core-Guided Pseudo-Boolean Search

@ Minimize > 7", wi¢;
@ Subject to collection of PB constraints F = Cy A---AC,

Core-guided PB search: assume optimistically that objective can reach
best imaginable value; derive contradiction if not possible

Set valpest = 0 and repeat the following:

@ Run pseudo-Boolean solver with assumptions (pre-made decisions)
£; = 0 for all £; in objective function

@ |If solver returns SATISFIABLE, output valpest and terminate

© Otherwise learn constraint E _, ¢; > A over assumption variables

© Update valpest and rewrite objective function using new variables
2z e Tl

@ Start over from top (with modified objective function)
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Pseudo-Boolean Optimization Core-Guided Search

Properties of (Pure) Core-Guided Search

Can get decent lower bounds on solution quickly

Helps to cut off parts of search space that are “too good to be true”

But find no actual solution until the final, optimal one
@ Also, no estimate of how good the lower bound is

@ Linear search much better at finding solutions — so try to get the
best of both worlds by combining the two!

Jakob Nordstrém (UCPH & LU) Pseudo-Boolean Solving: In Between SAT and ILP Simons Institute Mar '21  18/27



Pseudo-Boolean Optimization Core-Guided Search

Evaluation of Core-Guided PB Solver in [DGD*21]

ROUNDINGSAT variants with core-guided (CG) and linear search (LSU)
#instances solved to optimality; highlighting 1st, 2nd, and 3rd best
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Pseudo-Boolean Optimization Core-Guided Search

Evaluation of Core-Guided PB Solver in [DGD*21]

ROUNDINGSAT variants with core-guided (CG) and linear search (LSU)
#instances solved to optimality; highlighting 1st, 2nd, and 3rd best

PB16opt | MIPopt | KNAP | CRAFT

(1600) | (291) | (783)| (985)

HYBRID (interleave CG & LSU) 968 78 306 639
HYBRIDCL (w/ clausal cores) 937 75 208 618
HYBRIDNL (w/ non-lazy variables) 936 70 186 607
HYBRIDCLNL (w/ both) 917 67 203 612
ROUNDINGSAT (only LSU) 853 75 341 309
COREGUIDED (only CG) 911 61 43 595
COREBOOSTED (10% CG, then LSU) 959 80| 344 580
SAT4) 773 61 373 105
NaPS 896 65 111 345
SCIP 1057 125 765 642
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Pseudo-Boolean Optimization Core-Guided Search

Evaluation of Core-Guided PB Solver in [DGD*21]

ROUNDINGSAT variants with core-guided (CG) and linear search (LSU)
#instances solved to optimality; highlighting 1st, 2nd, and 3rd best

PB16opt | MIPopt | KNAP | CRAFT

(1600) | (291) | (783)| (985)

HYBRID (interleave CG & LSU) 968 78 306 639
HYBRIDCL (w/ clausal cores) 937 75 208 618
HYBRIDNL (w/ non-lazy variables) 936 70 186 607
HYBRIDCLNL (w/ both) 917 67 203 612
ROUNDINGSAT (only LSU) 853 75 341 309
COREGUIDED (only CG) 911 61 43 595
COREBOOSTED (10% CG, then LSU) 959 80| 344 580
SAT4) 773 61 373 105
NaPS 896 65 111 345
SCIP 1057 125 765 642

Significant improvement over PB state of the art, but MIP still better
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Mixed Integer Linear Programming MIP and ILP Solving

Mixed Integer Linear Programming

Mixed integer linear program
e Minimize }; a;z;
@ Subject to } ;a5 < Aj,i=1,...,m
exjcNforj=1,...,n
@ x;jcRygforj=n+1,...,N

No real-valued variables:
Integer-valued variables integer linear program (ILP)
0<z; <1forall j: O-1ILP
Vacuous objective 3 ;0 - z;:
decision problem

Linear constraints

Real-valued variables

Linear objective function

@ But MIP best for optimization
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Mixed Integer Linear Programming ~ MIP and ILP Solving

MIP Solving at a High Level

@ Preprocessing (called presolving)
@ Linear programming relaxations + branch-and-bound

© Add cutting planes ruling out infeasible LP-solutions
(branch-and-cut method going back to [Gom58])

@ Heuristics for quickly finding good feasible solutions
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Mixed Integer Linear Programming Combining PB and MIP Techniques

Combining PB Solving and Mixed Integer Programming

Pseudo-Boolean solvers
@ Sophisticated conflict analysis using cutting planes method

@ Sometimes terrible performance even when LP relaxation
infeasible [EGNV18]
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Mixed Integer Linear Programming Combining PB and MIP Techniques

Combining PB Solving and Mixed Integer Programming

Pseudo-Boolean solvers
@ Sophisticated conflict analysis using cutting planes method

@ Sometimes terrible performance even when LP relaxation
infeasible [EGNV18]

Mixed integer linear programming solvers

Powerful search

@ Exploits information from LP relaxations
@ Rich variety of cut generation routines
o

But conflict analysis not so great. ..

Jakob Nordstrém (UCPH & LU) Pseudo-Boolean Solving: In Between SAT and ILP Simons Institute Mar '21 22/27



Mixed Integer Linear Programming Combining PB and MIP Techniques

Combining PB Solving and Mixed Integer Programming

Pseudo-Boolean solvers
@ Sophisticated conflict analysis using cutting planes method

@ Sometimes terrible performance even when LP relaxation
infeasible [EGNV18]

Mixed integer linear programming solvers

Powerful search

@ Exploits information from LP relaxations
@ Rich variety of cut generation routines
°

But conflict analysis not so great. ..

Why not merge the two to get the best of both worlds of SAT-style
conflict-driven search and MIP-style branch-and-cut?
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Mixed Integer Linear Programming  Combining PB and MIP Techniques

Experimental Results for Knapsack Benchmarks [Pis05]

Knapsack (higher is better, 783 instances)

ROUNDINGSAT (RS) 700 4
enhanced with

@ LP solver 600 1

SoPLEX (SPX)
(from SCIP)

@ Gomory cuts (GC)

500 A

400

@ shared learned PB

Number of solved instances

I
| - -
cuts (LC) 300 Pl _ —— SCIP (765 solved)
I s —-= RS (520)
as in [DGN21] 200 4| P RS+SPX (600)
| P -+ RS+SPX+GC (670)
compared to other i - RS+SPX+GC+LC (680)
1004} - e
solvers | L Sat4) (374)
e NaPS (111)
0 +H—= . . . .
107! 10° 10! 102 103

Timeout limit (s)

Jakob Nordstrém (UCPH & LU) Pseudo-Boolean Solving: In Between SAT and ILP Simons Institute Mar '21  23/27



Mixed Integer Linear Programming Combining PB and MIP Techniques

Experimental Results for PB and MIPLIB Benchmarks

ROUNDINGSAT (RS) run on PB and 0-1 ILP instances with
e LP solver (+SPX)
@ plus Gomory cuts (+GC)
@ plus sharing cuts learned by PB solver (+LC)

as in [DGN21] compared to other solvers

# instances solved (to optimality for optimization problems)
Highlighting 1st, 2nd, and 3rd best
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Mixed Integer Linear Programming Combining PB and MIP Techniques

Experimental Results for PB and MIPLIB Benchmarks

ROUNDINGSAT (RS) run on PB and 0-1 ILP instances with
e LP solver (+SPX)
@ plus Gomory cuts (+GC)
@ plus sharing cuts learned by PB solver (+LC)

as in [DGN21] compared to other solvers

# instances solved (to optimality for optimization problems)
Highlighting 1st, 2nd, and 3rd best

SCIP RS | +SPX | +GC | +LC | Sar4y | NAPS
PB16dec (1783) 1123 | 1472 1453 1452 1451 1432 1400
PB16opt (1600) | 1057 862 988 986 993 776 896
MIPdec (556) 264 203 263 261 259 169 170
MIPopt (291) 125 78 101 | 102 | 102 62 65
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Mixed Integer Linear Programming Combining PB and MIP Techniques

Experimental Results for PB and MIPLIB Benchmarks

ROUNDINGSAT (RS) run on PB and 0-1 ILP instances with
e LP solver (+SPX)
@ plus Gomory cuts (+GC)
@ plus sharing cuts learned by PB solver (+LC)

as in [DGN21] compared to other solvers

# instances solved (to optimality for optimization problems)
Highlighting 1st, 2nd, and 3rd best

SCIP RS | +SPX | +GC | +LC | Sar4y | NAPS
PB16dec (1783) 1123 | 1472 1453 1452 1451 1432 1400
PB16opt (1600) | 1057 862 988 986 993 776 896
MIPdec (556) 264 203 263 261 259 169 170
MIPopt (291) 125 78 101 | 102 | 102 62 65

Hybrid PB-LP solver well-rounded — always competitive with best solver
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Mixed Integer Linear Programming Combining PB and MIP Techniques

Some Future Research Directions for PB-LP Integration

@ Fine-tune heuristics

e Improved LP-based cut generation?
e Smarter sharing of PB constraints with LP solver?
e Dynamic allocation of PB and LP solving time based on contributions?
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Mixed Integer Linear Programming Combining PB and MIP Techniques

Some Future Research Directions for PB-LP Integration

@ Fine-tune heuristics

e Improved LP-based cut generation?
e Smarter sharing of PB constraints with LP solver?
e Dynamic allocation of PB and LP solving time based on contributions?

@ Make more intelligent use in PB solver of information from solutions
to LP relaxations

© Use MIP presolving in pseudo-Boolean solvers

@ Use MIP cut rules to improve pseudo-Boolean conflict analysis
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Mixed Integer Linear Programming Combining PB and MIP Techniques

Balancing the Picture

Cutting-planes-based pseudo-Boolean solvers sometimes outperform even
commercial MIP solvers by orders of magnitude:

@ Arithmetic circuit verification [LBD*20]

@ Matching of children with adoptive families (compared to [DGG119])

e Automated planning using neural networks (compared to [SS18], see
also [SDNS20] — reified constraints hard for MIP)
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Summing up

@ Pseudo-Boolean optimization powerful and expressive framework

@ Can be attacked with methods from
e SAT solving and MaxSAT solving

e “Native” cutting-planes-based pseudo-Boolean reasoning
e Mixed integer linear programming

@ Approaches with complementary strengths — room for synergies?

@ For cutting-planes-based reasoning, challenges regarding
e Algorithm design
e Efficient implementation
e Theoretical understanding

@ But cutting-planes-based solvers sometimes very powerful — worth
trying out if you have a MaxSAT /PB optimization problem!
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Summing up

@ Pseudo-Boolean optimization powerful and expressive framework

@ Can be attacked with methods from
e SAT solving and MaxSAT solving

e “Native” cutting-planes-based pseudo-Boolean reasoning
e Mixed integer linear programming

@ Approaches with complementary strengths — room for synergies?

@ For cutting-planes-based reasoning, challenges regarding
e Algorithm design
e Efficient implementation
e Theoretical understanding

@ But cutting-planes-based solvers sometimes very powerful — worth
trying out if you have a MaxSAT /PB optimization problem!

Thank you for your attention!
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