Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler-Leman Refinement Steps

Jakob Nordström
KTH Royal Institute of Technology
Stockholm, Sweden
Datalogisk Institut på Københavns Universitet September 6, 2018
Joint work with Christoph Berkholz

k-Variable Fragments of First-Order Logic

Two vertices are connected by a path of length 4 :

$$
\varphi_{\text {dist-4 }}(x, y)=\exists z_{1} \exists z_{2} \exists z_{3}\left(E x z_{1} \wedge E z_{1} z_{2} \wedge E z_{2} z_{3} \wedge E z_{3} y\right)
$$

k-Variable Fragments of First-Order Logic

Two vertices are connected by a path of length 4 :

$$
\varphi_{\text {dist-4 }}(x, y)=\exists z_{1} \exists z_{2} \exists z_{3}\left(E x z_{1} \wedge E z_{1} z_{2} \wedge E z_{2} z_{3} \wedge E z_{3} y\right)
$$

Equivalent \mathcal{L}^{3} formula:

$$
\varphi_{\mathrm{dist}-4}^{\prime}(x, y)=\exists z(E x z \wedge \exists x(E z x \wedge \exists z(E x z \wedge E z y)))
$$

k-Variable Fragments of First-Order Logic

Two vertices are connected by a path of length 4 :

$$
\varphi_{\text {dist-4 }}(x, y)=\exists z_{1} \exists z_{2} \exists z_{3}\left(E x z_{1} \wedge E z_{1} z_{2} \wedge E z_{2} z_{3} \wedge E z_{3} y\right)
$$

Equivalent \mathcal{L}^{3} formula:

$$
\varphi_{\mathrm{dist}-4}^{\prime}(x, y)=\exists z(E x z \wedge \exists x(E z x \wedge \exists z(E x z \wedge E z y)))
$$

\mathcal{C}^{k} extends \mathcal{L}^{k} by counting quantifiers $\exists \geq i x$

k-Variable Fragments of First-Order Logic

Two vertices are connected by a path of length 4 :

$$
\varphi_{\text {dist-4 }}(x, y)=\exists z_{1} \exists z_{2} \exists z_{3}\left(E x z_{1} \wedge E z_{1} z_{2} \wedge E z_{2} z_{3} \wedge E z_{3} y\right)
$$

Equivalent \mathcal{L}^{3} formula:

$$
\varphi_{\mathrm{dist}-4}^{\prime}(x, y)=\exists z(E x z \wedge \exists x(E z x \wedge \exists z(E x z \wedge E z y)))
$$

\mathcal{C}^{k} extends \mathcal{L}^{k} by counting quantifiers $\exists \geq i x$
Vertex has degree ≥ 7 :

$$
\varphi_{\operatorname{deg}-7}(x)=\exists y_{1} \cdots \exists y_{7} \bigwedge_{i \neq j} y_{i} \neq y_{j} \bigwedge_{i} E x y_{i}
$$

k-Variable Fragments of First-Order Logic

Two vertices are connected by a path of length 4 :

$$
\varphi_{\text {dist-4 }}(x, y)=\exists z_{1} \exists z_{2} \exists z_{3}\left(E x z_{1} \wedge E z_{1} z_{2} \wedge E z_{2} z_{3} \wedge E z_{3} y\right)
$$

Equivalent \mathcal{L}^{3} formula:

$$
\varphi_{\mathrm{dist}-4}^{\prime}(x, y)=\exists z(E x z \wedge \exists x(E z x \wedge \exists z(E x z \wedge E z y)))
$$

\mathcal{C}^{k} extends \mathcal{L}^{k} by counting quantifiers $\exists \geq i x$
Vertex has degree ≥ 7 :

$$
\varphi_{\operatorname{deg}-7}(x)=\exists y_{1} \cdots \exists y_{7} \bigwedge_{i \neq j} y_{i} \neq y_{j} \bigwedge_{i} E x y_{i}
$$

Equivalent \mathcal{C}^{2} formula:

$$
\varphi_{\operatorname{deg}-7}^{\prime}(x)=\exists \geq 7 y \text { Exy }
$$

Finite Relational Structures

- Structure \mathcal{A}
- Domain $V(\mathcal{A})=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
- Relations R_{ℓ} of arity r_{ℓ}
- Interpretation $R_{\ell}^{\mathcal{A}}=\left\{\left(u_{j_{1}}, \ldots, u_{j_{\ell}}\right) \mid\right.$ relation $R_{\ell} u_{j_{1}}, \ldots, u_{j_{\ell}}$ holds $\}$
- $\mathcal{A} \models \varphi$ if sentence φ true in structure \mathcal{A}
- Running example: graphs
- Elements: vertices
- Relations: edges

Why Bounded Variable Fragments of First Order Logic?

Numerous applications in finite model theory and related areas [Gro98]

Why Bounded Variable Fragments of First Order Logic?

Numerous applications in finite model theory and related areas [Gro98]
Model checking problem
Given finite relational structure \mathcal{A} and sentence φ, does \mathcal{A} satisfy φ ?
Decidable in polynomial time [Imm82, Var95]

Why Bounded Variable Fragments of First Order Logic?

Numerous applications in finite model theory and related areas [Gro98]

Model checking problem

Given finite relational structure \mathcal{A} and sentence φ, does \mathcal{A} satisfy φ ?
Decidable in polynomial time [Imm82, Var95]

Equivalence problem

Given two finite relational structures \mathcal{A} and \mathcal{B}, do they satisfy the same \mathcal{L}^{k} or \mathcal{C}^{k} sentences?

Decidable in time $n^{O(k)}$ [IL90] (i.e., polynomial for constant k)

Connections to Weisfeiler-Leman

- Equivalence problem for \mathcal{C}^{k+1} closely related to k-dimensional Weisfeiler-Leman algorithm (k-WL) for testing non-isomorphism of
- graphs
- more general relational structures
- \mathcal{A} and \mathcal{B} distinguished by k-dimensional Weisfeiler-Leman \Leftrightarrow $\exists \mathcal{C}^{k+1}$ sentence differentiating between \mathcal{A} and \mathcal{B} [CFI92]
- Quantifier depth of distinguishing \mathcal{C}^{k+1} sentence $=$ $=\#$ iterations $k-\mathrm{WL}$ needs to tell \mathcal{A} and \mathcal{B} apart

The Weisfeiler-Leman Algorithm

- Introduced by Babai in 1979 and Immerman and Lander [IL90]
- Iteratively refines colouring of element set
- Ends with canonical stable colouring classifying similar elements
- For parameter k, runs in time $n^{O(k)}$
- Reduces search space (isomorphisms preserve similar elements)
- In particular: different stable colourings \Rightarrow non-isomorphic structures

The Weisfeiler-Leman Algorithm

- Introduced by Babai in 1979 and Immerman and Lander [IL90]
- Iteratively refines colouring of element set
- Ends with canonical stable colouring classifying similar elements
- For parameter k, runs in time $n^{O(k)}$
- Reduces search space (isomorphisms preserve similar elements)
- In particular: different stable colourings \Rightarrow non-isomorphic structures

Graph isomorphism for minor-free graphs [Gro12]

For every nontrivial graph class excluding some minor (e.g., planar graphs; graphs of bounded treewidth) $\exists k$ such that k-WL decides isomorphism

The Weisfeiler-Leman Algorithm

- Introduced by Babai in 1979 and Immerman and Lander [IL90]
- Iteratively refines colouring of element set
- Ends with canonical stable colouring classifying similar elements
- For parameter k, runs in time $n^{O(k)}$
- Reduces search space (isomorphisms preserve similar elements)
- In particular: different stable colourings \Rightarrow non-isomorphic structures

Graph isomorphism for minor-free graphs [Gro12]
For every nontrivial graph class excluding some minor (e.g., planar graphs; graphs of bounded treewidth) $\exists k$ such that k-WL decides isomorphism

Babai's general graph isomorphism algorithm [Bab16]
Applies k-dimensional Weisfeiler-Leman for polylogarithmic k
\Rightarrow quasipolynomial running time

Quantifier Depth of \mathcal{C}^{k}

Definition

$\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})$: minimal quantifier depth of \mathcal{C}^{k} sentence distinguishing two n-element structures \mathcal{A} and \mathcal{B} (with $\mathcal{A} \not \equiv_{\mathcal{C}^{k}} \mathcal{B}$)

Quantifier Depth of \mathcal{C}^{k}

Definition

$\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})$: minimal quantifier depth of \mathcal{C}^{k} sentence distinguishing two n-element structures \mathcal{A} and \mathcal{B} (with $\mathcal{A} \not \equiv_{\mathcal{C}^{k}} \mathcal{B}$)

- $\mathrm{D}^{n}(\mathcal{A}, \mathcal{B}) \leq n$

$$
\exists x_{1} \cdots \exists x_{n}\left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \bigwedge_{\substack{R \in \sigma,\left(v_{i_{1}}, \ldots, v_{i_{r}}\right) \in R^{\mathcal{A}}}} R x_{i_{1}} \cdots x_{i_{r}} \wedge \bigwedge_{\substack{R \in \sigma,\left(v_{i_{1}}, \ldots, v_{i_{r}}\right) \notin R^{\mathcal{A}}}} \neg R x_{i_{1}} \cdots x_{i_{r}}\right)
$$

Quantifier Depth of \mathcal{C}^{k}

Definition

$\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})$: minimal quantifier depth of \mathcal{C}^{k} sentence distinguishing two n-element structures \mathcal{A} and \mathcal{B} (with $\mathcal{A} \not \equiv_{\mathcal{C}^{k}} \mathcal{B}$)

- $\mathrm{D}^{n}(\mathcal{A}, \mathcal{B}) \leq n$

$$
\exists x_{1} \cdots \exists x_{n}\left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \bigwedge_{\substack{R \in \sigma,\left(v_{i_{1}}, \ldots, v_{i_{r}}\right) \in R^{\mathcal{A}}}} R x_{i_{1}} \cdots x_{i_{r}} \wedge \bigwedge_{\substack{R \in \sigma,\left(v_{i_{1}}, \ldots, v_{i_{r}}\right) \notin R^{\mathcal{A}}}} \neg R x_{i_{1}} \cdots x_{i_{r}}\right)
$$

- $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \leq n^{k-1}$

Quantifier Depth of \mathcal{C}^{k}

Definition

$\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})$: minimal quantifier depth of \mathcal{C}^{k} sentence distinguishing two n-element structures \mathcal{A} and \mathcal{B} (with $\mathcal{A} \not \equiv_{\mathcal{C}^{k}} \mathcal{B}$)

- $\mathrm{D}^{n}(\mathcal{A}, \mathcal{B}) \leq n$

$$
\exists x_{1} \cdots \exists x_{n}\left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \bigwedge_{\substack{R \in \sigma,\left(v_{i_{1}}, \ldots, v_{i_{r}}\right) \in R^{\mathcal{A}}}} R x_{i_{1}} \cdots x_{i_{r}} \wedge \bigwedge_{\substack{R \in \sigma,\left(v_{i_{1}}, \ldots, v_{i_{r}}\right) \notin R^{\mathcal{A}}}} \neg R x_{i_{1}} \cdots x_{i_{r}}\right)
$$

- $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \leq n^{k-1}$

$$
\mathrm{D}^{3}(\mathcal{A}, \mathcal{B}) \leq \mathcal{O}\left(n^{2} / \log n\right)[\mathrm{KS} 16]
$$

Quantifier Depth of \mathcal{C}^{k}

Definition

$\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})$: minimal quantifier depth of \mathcal{C}^{k} sentence distinguishing two n-element structures \mathcal{A} and \mathcal{B} (with $\mathcal{A} \not \equiv_{\mathcal{C}^{k}} \mathcal{B}$)

- $\mathrm{D}^{n}(\mathcal{A}, \mathcal{B}) \leq n$

$$
\exists x_{1} \cdots \exists x_{n}\left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \bigwedge_{\substack{R \in \sigma,\left(v_{i_{1}}, \ldots, v_{i_{r}}\right) \in R^{\mathcal{A}}}} R x_{i_{1}} \cdots x_{i_{r}} \wedge \bigwedge_{\substack{R \in \sigma,\left(v_{i_{1}}, \ldots, v_{i_{r}}\right) \notin R^{\mathcal{A}}}} \neg R x_{i_{1}} \cdots x_{i_{r}}\right)
$$

- $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \leq n^{k-1}$

$$
\mathrm{D}^{3}(\mathcal{A}, \mathcal{B}) \leq \mathcal{O}\left(n^{2} / \log n\right)[\mathrm{KS} 16]
$$

- k constant: $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \geq \Omega(n)$ [Gro99, Für01, KV15]

Quantifier Depth of \mathcal{C}^{k}

Definition

$\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})$: minimal quantifier depth of \mathcal{C}^{k} sentence distinguishing two n-element structures \mathcal{A} and \mathcal{B} (with $\mathcal{A} \not \equiv_{\mathcal{C}^{k}} \mathcal{B}$)

- $\mathrm{D}^{n}(\mathcal{A}, \mathcal{B}) \leq n$

$$
\exists x_{1} \cdots \exists x_{n}\left(\bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \bigwedge_{R \in \sigma,} R x_{i_{1}} \cdots x_{i_{r}} \wedge \bigwedge_{R \in \sigma,} \neg R x_{i_{1}} \cdots x_{i_{r}}\right)
$$

- $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \leq n^{k-1}$

$$
\mathrm{D}^{3}(\mathcal{A}, \mathcal{B}) \leq \mathcal{O}\left(n^{2} / \log n\right)[\mathrm{KS} 16]
$$

- k constant: $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \geq \Omega(n)$ [Gro99, Für01, KV15]

Theorem [BN16a]

For every $k \leq n^{0.01}$ there are n-element relational structures \mathcal{A}, \mathcal{B} of arity $k-1$ such that $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \geq n^{\Omega(k / \log k)}$

\mathcal{C}^{k} and Weisfeiler-Leman

Theorem [BN16a]
For every $k \leq n^{0.01}$ there are n-element relational structures \mathcal{A}, \mathcal{B} of arity $k-1$ such that $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \geq n^{\Omega(k / \log k)}$

\mathcal{C}^{k} and Weisfeiler-Leman

Theorem [BN16a]
For every $k \leq n^{0.01}$ there are n-element relational structures \mathcal{A}, \mathcal{B} of arity $k-1$ such that $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \geq n^{\Omega(k / \log k)}$

Theorem [CFI92]
$\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})=$ \#refinement steps $(k-1)$-dimensional Weisfeiler-Leman needs to distinguish \mathcal{A} and \mathcal{B}

\mathcal{C}^{k} and Weisfeiler-Leman

Theorem [BN16a]

For every $k \leq n^{0.01}$ there are n-element relational structures \mathcal{A}, \mathcal{B} of arity $k-1$ such that $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B}) \geq n^{\Omega(k / \log k)}$

Theorem [CFI92]
$\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})=$ \#refinement steps $(k-1)$-dimensional Weisfeiler-Leman needs to distinguish \mathcal{A} and \mathcal{B}

Application for non-constant k

- Babai's quasipolynomial graph isomorphism test uses $k=\log ^{c} n$ on ($k-1$)-ary relational structures [Bab16]
- Our result implies $\Omega\left(n^{\log ^{c-1} n}\right)$ lower bound in this setting

Overview of proof

Essence of Proof

In one sentence, a novel combination of methods from

Descriptive complexity
Proof complexity

Essence of Proof

In one sentence, a novel combination of methods from

Descriptive complexity
Proof complexity

Essence of Proof

In one sentence, a novel combination of methods from

Descriptive complexity

Proof complexity

hardness condensation
Razborov [Raz16a]

Essence of Proof

In one sentence, a novel combination of methods from

Descriptive complexity

Proof complexity

hardness condensation
Razborov [Raz16a]

Connection made via XOR formulas as source of hard instances

Spoiler-Duplicator Game for \mathcal{L}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}

Spoiler-Duplicator Game for \mathcal{L}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)

Spoiler-Duplicator Game for \mathcal{L}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)
- In each round:
(1) Spoiler chooses $p^{\prime} \subseteq p$ with $\left|p^{\prime}\right|<k$

Spoiler-Duplicator Game for \mathcal{L}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)
- In each round:
(1) Spoiler chooses $p^{\prime} \subseteq p$ with $\left|p^{\prime}\right|<k$
(2) Spoiler selects $u \in V(\mathcal{A})$ or $v \in V(\mathcal{B})$

Spoiler-Duplicator Game for \mathcal{L}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)
- In each round:
(1) Spoiler chooses $p^{\prime} \subseteq p$ with $\left|p^{\prime}\right|<k$
(2) Spoiler selects $u \in V(\mathcal{A})$ or $v \in V(\mathcal{B})$
(3) Duplicator responds by choosing element v or u in other structure

Spoiler-Duplicator Game for \mathcal{L}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)
- In each round:
(1) Spoiler chooses $p^{\prime} \subseteq p$ with $\left|p^{\prime}\right|<k$
(2) Spoiler selects $u \in V(\mathcal{A})$ or $v \in V(\mathcal{B})$
(3) Duplicator responds by choosing element v or u in other structure
(4) New position is $p^{\prime} \cup\{(u, v)\}$

Spoiler-Duplicator Game for \mathcal{L}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)
- In each round:
(1) Spoiler chooses $p^{\prime} \subseteq p$ with $\left|p^{\prime}\right|<k$
(2) Spoiler selects $u \in V(\mathcal{A})$ or $v \in V(\mathcal{B})$
(3) Duplicator responds by choosing element v or u in other structure
(c) New position is $p^{\prime} \cup\{(u, v)\}$
- Spoiler winning position: p isn't isomorphism on induced substructures

Spoiler-Duplicator Game for \mathcal{L}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)
- In each round:
(1) Spoiler chooses $p^{\prime} \subseteq p$ with $\left|p^{\prime}\right|<k$
(2) Spoiler selects $u \in V(\mathcal{A})$ or $v \in V(\mathcal{B})$
(3) Duplicator responds by choosing element v or u in other structure
(c) New position is $p^{\prime} \cup\{(u, v)\}$
- Spoiler winning position: p isn't isomorphism on induced substructures

Characterization of \mathcal{L}^{k} [Bar77, Imm82]

Spoiler wins this game for size- k mappings in R rounds \Leftrightarrow
\exists sentence $\varphi \in \mathcal{L}^{k}$ of quantifier depth R such that $\mathcal{A} \models \varphi$ and $\mathcal{B} \not \models \varphi$

Spoiler-Duplicator Game for \mathcal{C}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)
- In each round:
(1) Spoiler chooses $p^{\prime} \subseteq p$ with $\left|p^{\prime}\right|<k$
(2) Duplicator selects global bijection $f: V(\mathcal{A}) \rightarrow V(\mathcal{B})$
(3) Spoiler chooses pair $(u, v) \in f$
(1) New position is $p^{\prime} \cup\{(u, v)\}$
- Spoiler winning position: p isn't isomorphism on induced substructures

Spoiler-Duplicator Game for \mathcal{C}^{k}

- Spoiler and Duplicator play on structures \mathcal{A} and \mathcal{B}
- Positions: partial mappings $p=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{i}, v_{i}\right)\right\}$ from $V(\mathcal{A})$ to $V(\mathcal{B})$ of size $\leq k$ (start with empty mapping)
- In each round:
(1) Spoiler chooses $p^{\prime} \subseteq p$ with $\left|p^{\prime}\right|<k$
(2) Duplicator selects global bijection $f: V(\mathcal{A}) \rightarrow V(\mathcal{B})$
(3) Spoiler chooses pair $(u, v) \in f$
(1) New position is $p^{\prime} \cup\{(u, v)\}$
- Spoiler winning position: p isn't isomorphism on induced substructures

Characterization of \mathcal{C}^{k} [CFI92, Hel96]

Spoiler wins this game for size- k mappings in R rounds \Leftrightarrow
\exists sentence $\varphi \in \mathcal{C}^{k}$ of quantifier depth R such that $\mathcal{A} \models \varphi$ and $\mathcal{B} \not \models \varphi$

XOR Formulas

s-XOR formula F over Boolean variables x_{1}, \ldots, x_{n} : set of parity constraints $x_{i_{1}} \oplus \cdots \oplus x_{i_{r}}=a, r \leq s, a \in\{0,1\}$

XOR Formulas

s-XOR formula F over Boolean variables x_{1}, \ldots, x_{n} : set of parity constraints $x_{i_{1}} \oplus \cdots \oplus x_{i_{r}}=a, r \leq s, a \in\{0,1\}$

Let $\mathcal{A}(F)$ and $\mathcal{B}(F)$ relational structures with

- 2 vertices x_{i}^{0}, x_{i}^{1} for every $x_{i} \in \operatorname{Vars}(F)$
- relations

$$
\begin{aligned}
X_{i}^{\mathcal{A}} & =X_{i}^{\mathcal{B}}=\left\{x_{i}^{0}, x_{i}^{1}\right\} \\
R_{r}^{\mathcal{A}} & =\left\{\left(x_{i_{1}}^{a_{1}}, \ldots, x_{i_{r}}^{a_{r}}\right) \mid\left(x_{i_{1}} \oplus \cdots \oplus x_{i_{r}}=a\right) \in F, \bigoplus_{i} a_{i}=0\right\} \\
R_{r}^{\mathcal{B}} & =\left\{\left(x_{i_{1}}^{a_{1}}, \ldots, x_{i_{r}}^{a_{r}}\right) \mid\left(x_{i_{1}} \oplus \cdots \oplus x_{i_{r}}=a\right) \in F, \bigoplus_{i} a_{i}=a\right\}
\end{aligned}
$$

XOR Formulas

s-XOR formula F over Boolean variables x_{1}, \ldots, x_{n} : set of parity constraints $x_{i_{1}} \oplus \cdots \oplus x_{i_{r}}=a, r \leq s, a \in\{0,1\}$

Let $\mathcal{A}(F)$ and $\mathcal{B}(F)$ relational structures with

- 2 vertices x_{i}^{0}, x_{i}^{1} for every $x_{i} \in \operatorname{Vars}(F)$
- relations

$$
\begin{aligned}
X_{i}^{\mathcal{A}} & =X_{i}^{\mathcal{B}}=\left\{x_{i}^{0}, x_{i}^{1}\right\} \\
R_{r}^{\mathcal{A}} & =\left\{\left(x_{i_{1}}^{a_{1}}, \ldots, x_{i_{r}}^{a_{r}}\right) \mid\left(x_{i_{1}} \oplus \cdots \oplus x_{i_{r}}=a\right) \in F, \bigoplus_{i} a_{i}=0\right\} \\
R_{r}^{\mathcal{B}} & =\left\{\left(x_{i_{1}}^{a_{1}}, \ldots, x_{i_{r}}^{a_{r}}\right) \mid\left(x_{i_{1}} \oplus \cdots \oplus x_{i_{r}}=a\right) \in F, \bigoplus_{i} a_{i}=a\right\}
\end{aligned}
$$

Isomorphism $I: \mathcal{A}(F) \rightarrow \mathcal{B}(F)$ corresponds to satisfying assignment α for F via

$$
\begin{aligned}
& \alpha\left(x_{i}\right)=0 \Longleftrightarrow I\left(x_{i}^{0}\right)=x_{i}^{0} \Leftrightarrow I\left(x_{i}^{1}\right)=x_{i}^{1} \\
& \alpha\left(x_{i}\right)=1 \Longleftrightarrow I\left(x_{i}^{0}\right)=x_{i}^{1} \Leftrightarrow I\left(x_{i}^{1}\right)=x_{i}^{0}
\end{aligned}
$$

$x_{7} \oplus x_{8}=1$	
$x_{7}^{0} x_{7}^{1}$	$x_{7}^{0} x_{7}^{1}$
$i \quad i$	
$x_{8}^{0} \quad x_{8}^{1}$	$x_{8}^{0} x_{8}^{1}$

A Pebble Game on XOR Formulas

The k-pebble game on XOR formula F is played by two players

- Positions: partial assignments $\alpha,|\alpha| \leq k$
- Starting position $\alpha_{0}=\emptyset$

A Pebble Game on XOR Formulas

The k-pebble game on XOR formula F is played by two players

- Positions: partial assignments $\alpha,|\alpha| \leq k$
- Starting position $\alpha_{0}=\emptyset$

In round i starting from α_{i-1} :

- Player 1 chooses $\alpha \subseteq \alpha_{i-1},|\alpha|<k$
- Player 1 asks for value of variable x
- Player 2 answers with $a \in\{0,1\}$
- $\alpha_{i}=\alpha \cup\{x \mapsto a\}$

A Pebble Game on XOR Formulas

The k-pebble game on XOR formula F is played by two players

- Positions: partial assignments $\alpha,|\alpha| \leq k$
- Starting position $\alpha_{0}=\emptyset$

In round i starting from α_{i-1} :

- Player 1 chooses $\alpha \subseteq \alpha_{i-1},|\alpha|<k$
- Player 1 asks for value of variable x
- Player 2 answers with $a \in\{0,1\}$
- $\alpha_{i}=\alpha \cup\{x \mapsto a\}$

Player 1 wins game in R rounds if α_{R} falsifies some XOR-constraint

Equivalent Characterizations of the Pebble Game

Let

- $F s$-XOR formula
- $R, k \in \mathbb{N}^{+}, k>s$

Equivalent Characterizations of the Pebble Game

Let

- $F s$-XOR formula
- $R, k \in \mathbb{N}^{+}, k>s$

Then the following statements are equivalent:
(a) Player 1 wins R-round k-pebble game on F

Equivalent Characterizations of the Pebble Game

Let

- $F s$-XOR formula
- $R, k \in \mathbb{N}^{+}, k>s$

Then the following statements are equivalent:
(a) Player 1 wins R-round k-pebble game on F
(b) $\exists k$-variable sentence $\varphi \in \mathcal{L}^{k}$ of quantifier depth R such that $\mathcal{A}(F) \models \varphi$ and $\mathcal{B}(F) \not \models \varphi$

Equivalent Characterizations of the Pebble Game

Let

- $F s$-XOR formula
- $R, k \in \mathbb{N}^{+}, k>s$

Then the following statements are equivalent:
(a) Player 1 wins R-round k-pebble game on F
(b) $\exists k$-variable sentence $\varphi \in \mathcal{L}^{k}$ of quantifier depth R such that $\mathcal{A}(F) \models \varphi$ and $\mathcal{B}(F) \not \models \varphi$
(c) $\exists k$-variable sentence $\varphi \in \mathcal{C}^{k}$ of quantifier depth R such that $\mathcal{A}(F) \models \varphi$ and $\mathcal{B}(F) \not \models \varphi$

Equivalent Characterizations of the Pebble Game

Let

- $F s$-XOR formula
- $R, k \in \mathbb{N}^{+}, k>s$

Then the following statements are equivalent:
(a) Player 1 wins R-round k-pebble game on F
(b) $\exists k$-variable sentence $\varphi \in \mathcal{L}^{k}$ of quantifier depth R such that $\mathcal{A}(F) \models \varphi$ and $\mathcal{B}(F) \not \models \varphi$
(c) $\exists k$-variable sentence $\varphi \in \mathcal{C}^{k}$ of quantifier depth R such that $\mathcal{A}(F) \models \varphi$ and $\mathcal{B}(F) \not \models \varphi$
(d) The s-CNF-formula $\operatorname{cnf}(F)$ has a resolution refutation of

- depth R
- width $k-1$ [AD08]

Outline of Proof

[Imm81]

There are \mathcal{A}, \mathcal{B} such that $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})=\Omega\left(2^{\sqrt{\log n}}\right)$ for all $k \geq 3$

Outline of Proof

[Imm81]

There are \mathcal{A}, \mathcal{B} such that $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})=\Omega\left(2^{\sqrt{\log n}}\right)$ for all $k \geq 3$

Part I (pyramid construction):

For every k there are n-variable 3 -XOR formulas such that Player 1

- wins 3 -pebble game for $3 \leq \ell \leq k$
- needs $n^{\Omega(1 / \log k)}$ rounds to win the ℓ-pebble game for $3 \leq \ell \leq k$

Outline of Proof

[Imm81]

There are \mathcal{A}, \mathcal{B} such that $\mathrm{D}^{k}(\mathcal{A}, \mathcal{B})=\Omega\left(2^{\sqrt{\log n}}\right)$ for all $k \geq 3$

Part I (pyramid construction):

For every k there are n-variable 3 -XOR formulas such that Player 1

- wins 3 -pebble game for $3 \leq \ell \leq k$
- needs $n^{\Omega(1 / \log k)}$ rounds to win the ℓ-pebble game for $3 \leq \ell \leq k$

Part II (hardness condensation):

Reduce the number of variables without destroying the lower bound Transform n-variable 3 -XOR into m-variable k-XOR for $m \approx n^{1 / k}$
Lower bound remains $n^{\Omega(1 / \log k)}=m^{\Omega(k / \log k)}$

PART I: An $n^{\Omega\left(\frac{1}{\log k}\right)}$ lower bound

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 2-Dimensional Pyramid

XORs from DAGs

Let \mathcal{G} directed acyclic graph with unique sink z XOR-formula $\operatorname{xor}(\mathcal{G})$ over variables $v \in V(\mathcal{G})$ contains constraints:
(i) $v \oplus \bigoplus_{w \in N^{-}(v)} w=0$
(ii) $s=0$ for every source s
(iii) $z=1$ for unique sink z

A 3-Dimensional Pyramid

A 3-Dimensional Pyramid

A 3-Dimensional Pyramid

PART II: Hardness condensation

XOR Substitution with Recycling (1/2)

Suppose

- F XOR formula over variables U
- $\mathcal{G}=(U \dot{U} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

XOR Substitution with Recycling (1/2)

Suppose

- F XOR formula over variables U
- $\mathcal{G}=(U \dot{\cup} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

$$
u_{1} \oplus u_{3}=1 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2}\right) \oplus\left(v_{5} \oplus v_{6}\right)=1
$$

XOR Substitution with Recycling (1/2)

Suppose

- F XOR formula over variables U
- $\mathcal{G}=(U \dot{\cup} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

$u_{1} \oplus u_{3}=1 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2}\right) \oplus\left(v_{5} \oplus v_{6}\right)=1$
Player 2 survives R-round k-pebble game on F
\Rightarrow survives $2 R$-round $2 k$-pebble game on $F[\mathcal{G}]$
But \#variables in instance goes up

XOR Substitution with Recycling (1/2)

Suppose

- F XOR formula over variables U
- $\mathcal{G}=(U \dot{U} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

XOR Substitution with Recycling (1/2)

Suppose

- F XOR formula over variables U
- $\mathcal{G}=(U \dot{U} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

$u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0$
Now \#variables in instance goes down
Possible to maintain hardness?

XOR Substitution with Recycling (2/2)

$$
u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0
$$

XOR Substitution with Recycling (2/2)

$$
u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds

XOR Substitution with Recycling (2/2)

$$
u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds
- \mathcal{G} with left-degree $\leq k / 3,|U|=n$, and $|V|=n^{\mathcal{O}(1 / k)}$

XOR Substitution with Recycling (2/2)

$$
u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds
- \mathcal{G} with left-degree $\leq k / 3,|U|=n$, and $|V|=n^{\mathcal{O}(1 / k)}$
- Player 1 wins with k pebbles on $F[\mathcal{G}]$

XOR Substitution with Recycling (2/2)

$$
u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds
- \mathcal{G} with left-degree $\leq k / 3,|U|=n$, and $|V|=n^{\mathcal{O}(1 / k)}$
- Player 1 wins with k pebbles on $F[\mathcal{G}]$

XOR Substitution with Recycling (2/2)

$$
u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds
- \mathcal{G} with left-degree $\leq k / 3,|U|=n$, and $|V|=n^{\mathcal{O}(1 / k)}$
- Player 1 wins with k pebbles on $F[\mathcal{G}]$
- \#rounds needed for $F[\mathcal{G}] \gtrsim$
\#rounds needed for $F=\Omega\left(|U|^{1 / \log k}\right)=\Omega\left(|V|^{k / \log k}\right)$

XOR Substitution with Recycling (2/2)

$$
u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds
- \mathcal{G} with left-degree $\leq k / 3,|U|=n$, and $|V|=n^{\mathcal{O}(1 / k)}$
- Player 1 wins with k pebbles on $F[\mathcal{G}]$
- \#rounds needed for $F[\mathcal{G}] \gtrsim$
\#rounds needed for $F=\widetilde{\Omega}\left(|U|^{1 / \log k}\right)=\Omega\left(|V|^{k / \log k}\right)$?

XOR Substitution with Recycling (2/2)

$$
\begin{aligned}
u_{2} \oplus u_{5}=0 & \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0 \\
u_{6}=1 & \longrightarrow \quad v_{4} \oplus v_{5}=1
\end{aligned}
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds
- \mathcal{G} with left-degree $\leq k / 3,|U|=n$, and $|V|=n^{\mathcal{O}(1 / k)}$
- Player 1 wins with k pebbles on $F[\mathcal{G}]$
- \#rounds needed for $F[\mathcal{G}] \gtrsim$
\#rounds needed for $F=\widetilde{\Omega}\left(|U|^{1 / \log k}\right)=\Omega\left(|V|^{k / \log k}\right)$?

XOR Substitution with Recycling (2/2)

$$
\begin{aligned}
& \text { 洨 } \\
& F \quad F[\mathcal{G}] \\
& u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0 \\
& u_{6}=1 \quad \longrightarrow \quad v_{4} \oplus v_{5}=1 \\
& u_{7}=0 \quad \longrightarrow \quad v_{4} \oplus v_{5}=0
\end{aligned}
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds
- \mathcal{G} with left-degree $\leq k / 3,|U|=n$, and $|V|=n^{\mathcal{O}(1 / k)}$
- Player 1 wins with k pebbles on $F[\mathcal{G}]$
- \#rounds needed for $F[\mathcal{G}] \gtrsim$
\#rounds needed for $F=\widetilde{\Omega}\left(|U|^{1 / \log k}\right)=\Omega\left(|V|^{k / \log k}\right)$?

XOR Substitution with Recycling (2/2)

$$
\begin{aligned}
& u_{2} \oplus u_{5}=0 \quad \longrightarrow \quad\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \oplus\left(v_{3} \oplus v_{5}\right)=0 \\
& u_{6}=1 \quad \longrightarrow \quad v_{4} \oplus v_{5}=1 \\
& u_{7}=0 \quad \longrightarrow \quad v_{4} \oplus v_{5}=0
\end{aligned}
$$

Solution: Use expander graphs!

$$
F \quad F[\mathcal{G}]
$$

- Apply to XOR formulas over Immerman's pyramids [Imm81]
- Player 1 wins with 3 pebbles
- but needs $n^{\Omega(1 / \log k)}$ rounds
- \mathcal{G} expander with left-degree $\leq k / 3,|U|=n$, and $|V|=n^{\mathcal{O}(1 / k)}$
- Player 1 wins with k pebbles on $F[\mathcal{G}]$
- \#rounds needed for $F[\mathcal{G}] \gtrsim$
\#rounds needed for $F=\Omega\left(|U|^{1 / \log k}\right)=\Omega\left(|V|^{k / \log k}\right)$

Bipartite Boundary Expander

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right)=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$
Example
- left-degree $d=3$
- expanding set size $r=3$
- boundary expansion factor $c=1$

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right)=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$
Example
- left-degree $d=3$
- expanding set size $r=3$
- boundary expansion factor $c=1$

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right)=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$
Example
- left-degree $d=3$
- expanding set size $r=3$
- boundary expansion factor $c=1$

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right)=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$
Example
- left-degree $d=3$
- expanding set size $r=3$
- boundary expansion factor $c=1$

Lemma ([Raz16a])

For $\varepsilon>0$ and n, d with $|U|=n,|V|=n^{\mathcal{O}(1 / d)}, d \leq|V|^{\frac{1}{2}-\varepsilon}$, there are ($d, r, 2$)-boundary expanders \mathcal{G} with $r=d \log n$

Sketch of Proof Sketch

To play on $F[\mathcal{G}]$, Player 2 simulates game on F \forall position β on $F[\mathcal{G}]$, maintain position α on F

Sketch of Proof Sketch

To play on $F[\mathcal{G}]$, Player 2 simulates game on F \forall position β on $F[\mathcal{G}]$, maintain position α on F Key concept: $\operatorname{Ker}\left(V^{\prime}\right)=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$

Example

$V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}$

Sketch of Proof Sketch

To play on $F[\mathcal{G}]$, Player 2 simulates game on F \forall position β on $F[\mathcal{G}]$, maintain position α on F Key concept: $\operatorname{Ker}\left(V^{\prime}\right)=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$

Example

$V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}$

Sketch of Proof Sketch

To play on $F[\mathcal{G}]$, Player 2 simulates game on F \forall position β on $F[\mathcal{G}]$, maintain position α on F Key concept: $\operatorname{Ker}\left(V^{\prime}\right)=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$

Example

$V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}$
Make sure u determined by β gets right value $\alpha(u)=\bigoplus_{v \in N(u)} v$ - by unique neighbours

Sketch of Proof Sketch

To play on $F[\mathcal{G}]$, Player 2 simulates game on F \forall position β on $F[\mathcal{G}]$, maintain position α on F Key concept: $\operatorname{Ker}\left(V^{\prime}\right)=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$

Example

$V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}$
Make sure u determined by β gets right value $\alpha(u)=\bigoplus_{v \in N(u)} v$ - by unique neighbours $\left|V^{\prime}\right| \leq r \Longrightarrow\left|\operatorname{Ker}\left(V^{\prime}\right)\right| \leq\left|V^{\prime}\right|$ by expansion, so not too many pebbles in simulated game

Sketch of Proof Sketch

To play on $F[\mathcal{G}]$, Player 2 simulates game on F \forall position β on $F[\mathcal{G}]$, maintain position α on F Key concept: $\operatorname{Ker}\left(V^{\prime}\right)=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$

Example

$V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}$
Make sure u determined by β gets right value $\alpha(u)=\bigoplus_{v \in N(u)} v$ - by unique neighbours $\left|V^{\prime}\right| \leq r \Longrightarrow\left|\operatorname{Ker}\left(V^{\prime}\right)\right| \leq\left|V^{\prime}\right|$ by expansion, so not too many pebbles in simulated game

Locally looks almost like XORification without recycling, so previous approach might work... And give bound in terms of $|U| \gg|V|$

Hardness Condensation

Actual details more involved, but work out as follows:

Main Technical Lemma

If

- Player 2 survives R of k-game on F
- \mathcal{G} is $(d, 2 k, 2)$-boundary expander then
- Player 2 survives $\frac{R}{2 k}$ rounds of k-game on $F[\mathcal{G}]$

Hardness Condensation

Actual details more involved, but work out as follows:

Main Technical Lemma

If

- Player 2 survives R of k-game on F
- \mathcal{G} is $(d, 2 k, 2)$-boundary expander
then
- Player 2 survives $\frac{R}{2 k}$ rounds of k-game on $F[\mathcal{G}]$

More about hardness condensation

- Method introduced in [Raz16a] to show that treelike resolution in bounded width k can require doubly exponential length $2^{n^{\Omega(k)}}$
- Also applied to linear programming hierarchies [Raz16c]
- Space/width trade-offs in resolution [BN16b]
- Variable space/length trade-offs [Raz16b]

Concluding Remarks

Summary

- $n^{\Omega(k / \log k)}$ lower bound on the quantifier depth of \mathcal{L}^{k} and \mathcal{C}^{k}

Concluding Remarks

Summary

- $n^{\Omega(k / \log k)}$ lower bound on the quantifier depth of \mathcal{L}^{k} and \mathcal{C}^{k}
- nearly matches the trivial n^{k-1} upper bound

Concluding Remarks

Summary

- $n^{\Omega(k / \log k)}$ lower bound on the quantifier depth of \mathcal{L}^{k} and \mathcal{C}^{k}
- nearly matches the trivial n^{k-1} upper bound
- also implies near-optimal lower bound on the number of refinement steps for k-Weisfeiler-Leman

Concluding Remarks

Summary

- $n^{\Omega(k / \log k)}$ lower bound on the quantifier depth of \mathcal{L}^{k} and \mathcal{C}^{k}
- nearly matches the trivial n^{k-1} upper bound
- also implies near-optimal lower bound on the number of refinement steps for k-Weisfeiler-Leman

Open questions

- Our result are for k-ary relational structures-prove similar lower bounds for graphs?
- Better lower bounds for XOR formulas?
- Where else can hardness condensation be useful?

Concluding Remarks

Summary

- $n^{\Omega(k / \log k)}$ lower bound on the quantifier depth of \mathcal{L}^{k} and \mathcal{C}^{k}
- nearly matches the trivial n^{k-1} upper bound
- also implies near-optimal lower bound on the number of refinement steps for k-Weisfeiler-Leman

Open questions

- Our result are for k-ary relational structures-prove similar lower bounds for graphs?
- Better lower bounds for XOR formulas?
- Where else can hardness condensation be useful?

Thank you for your attention!

References I

[AD08] Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution width. Journal of Computer and System Sciences, 74(3):323-334, May 2008. Preliminary version in CCC '03.
[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC '16), pages 684-697, June 2016.
[Bar77] Jon Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42(2):292-296, June 1977.
[BN16a] Christoph Berkholz and Jakob Nordström. Near-optimal lower bounds on quantifier depth and Weisfeiler-Leman refinement steps. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '16), pages 267-276, July 2016.
[BN16b] Christoph Berkholz and Jakob Nordström. Supercritical space-width trade-offs for resolution. In Proceedings of the 43rd International Colloquium on Automata, Languages and Programming (ICALP '16), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 57:1-57:14, July 2016.

References II

[CFI92] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identifications. Combinatorica, 12(4):389-410, 1992. Preliminary version in FOCS '89.
[Für01] Martin Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations. In Proceedings of the 28th International Colloquium on Automata, Languages, and Programming (ICALP '01), volume 2076 of Lecture Notes in Computer Science, pages 322-333. Springer, July 2001.
[Gro98] Martin Grohe. Finite variable logics in descriptive complexity theory. Bulletin of Symbolic Logic, 4(4):345-398, 1998.
[Gro99] Martin Grohe. Equivalence in finite-variable logics is complete for polynomial time. Combinatorica, 19(4):507-532, October 1999.
[Gro12] Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors. Journal of the ACM, 59(5):27:1-27:64, October 2012. Preliminary version in LICS '10.
[Hel96] Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129:1-19, August 1996.

References III

[IL90] Neil Immerman and Eric Lander. Describing graphs: a first-order approach to graph canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the Occasion of His Sixtieth Birthday, pages 59-81. Springer, 1990.
[Imm81] Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer and System Sciences, 22(3):384-406, June 1981.
[Imm82] Neil Immerman. Upper and lower bounds for first order expressibility. Journal of Computer and System Sciences, 25(1):76-98, August 1982.
[KS16] Sandra Kiefer and Pascal Schweitzer. Upper bounds on the quantifier depth for graph differentiation in first order logic. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '16), pages 287-296, July 2016.
[KV15] Andreas Krebs and Oleg Verbitsky. Universal covers, color refinement, and two-variable counting logic: Lower bounds for the depth. In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '15), pages 689-700, July 2015.
[Raz16a] Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity. Journal of the ACM, 63(2):16:1-16:14, April 2016.

References IV

[Raz16b] Alexander A. Razborov. On space and depth in resolution. Technical Report TR16-184, Electronic Colloquium on Computational Complexity (ECCC), November 2016.
[Raz16c] Alexander A. Razborov. On the width of semi-algebraic proofs and algorithms. Technical Report TR16-010, Electronic Colloquium on Computational Complexity (ECCC), January 2016.
[Var95] Moshe Y. Vardi. On the complexity of bounded-variable queries (Extended abstract). In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS '95), pages 266-276, May 1995.

