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Two vertices are connected by a path of length 4:

Odist-a(x,y) = 21329323 (Emzl NEz129 N Ezoz3 A E23y)
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Two vertices are connected by a path of length 4:
Odist-a(x,y) = 21329323 (Emzl NEz129 N Ezoz3 A E23y)
Equivalent £3 formula:

Olista(T,y) = 32 (Emz A3z (Eza A3z (Exz A Ezy)))
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Two vertices are connected by a path of length 4:
Odist-a(x,y) = 21329323 (E:rzl NEz129 N Ezoz3 A E23y)
Equivalent £3 formula:

Olista(T,y) = 32 (Emz A3z (Eza A3z (Exz A Ezy)))

C" extends LF by counting quantifiers 3=z
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Two vertices are connected by a path of length 4:
Odist-a(x,y) = 21329323 (E:rzl NEz129 N Ezoz3 A E23y)
Equivalent £3 formula:

Olista(T,y) = 32 (Emz A3z (Eza A3z (Exz A Ezy)))

C" extends LF by counting quantifiers 3=z

Vertex has degree > 7:

Pdeg-7(¥) = Fy1 -+ - yr /\i;éj vi # y; \i Evy;
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Two vertices are connected by a path of length 4:
Odist-a(x,y) = 21329323 (E:rzl NEz129 N Ezoz3 A E23y)
Equivalent £3 formula:

Olista(T,y) = 32 (Emz A3z (Eza A3z (Exz A Ezy)))

C* extends £F by counting quantifiers 3=z

Vertex has degree > 7:
Pdeg-7(¥) = Fy1 -+ 3yr Nigj vi # Y5 \; Exyi

Equivalent C? formula:
=327

wéeg# (SC) Yy Exy
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@ Structure A

e Domain V(A) = {u,ug,...,un}

@ Relations Ry of arity 7y

o Interpretation R7' = {(uj,, ..., u;,)|relation Ryuj,...,uj, holds}
e A |= ¢ if sentence ¢ true in structure A

Running example: graphs
> Elements: vertices
> Relations: edges
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Numerous applications in finite model theory and related areas [Gro98]
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Numerous applications in finite model theory and related areas [Gro98]

Model checking problem

Given finite relational structure A and sentence ¢, does A satisfy ¢?

Decidable in polynomial time [Imm82, Var95]
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Why Bounded Variable Fragments of First Order Logic?

Numerous applications in finite model theory and related areas [Gro98]

Given finite relational structure A and sentence ¢, does A satisfy ¢?

Model checking problem J

Decidable in polynomial time [Imm82, Var95]

Equivalence problem

Given two finite relational structures A and B, do they satisfy the same £F
or C* sentences?

Decidable in time n°®*) [IL90] (i.e., polynomial for constant k)
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Connections to Weisfeiler—Leman

e Equivalence problem for C**! closely related to k-dimensional
Weisfeiler-Leman algorithm (k-WL) for testing non-isomorphism of

> graphs
> more general relational structures

o A and B distinguished by k-dimensional Weisfeiler—Leman <
3 C*+1 sentence differentiating between A and B [CF192]

o Quantifier depth of distinguishing C**1 sentence =
= #iterations k-WL needs to tell A and B apart
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Introduced by Babai in 1979 and Immerman and Lander [IL90]
Iteratively refines colouring of element set

Ends with canonical stable colouring classifying similar elements
For parameter k, runs in time n@%)

Reduces search space (isomorphisms preserve similar elements)

In particular: different stable colourings = non-isomorphic structures
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The Weisfeiler—Leman Algorithm

@ Introduced by Babai in 1979 and Immerman and Lander [IL90]
o lteratively refines colouring of element set

@ Ends with canonical stable colouring classifying similar elements
o For parameter k, runs in time n@%)

@ Reduces search space (isomorphisms preserve similar elements)

@ In particular: different stable colourings = non-isomorphic structures

Graph isomorphism for minor-free graphs [Gro12]

For every nontrivial graph class excluding some minor (e.g., planar graphs;
graphs of bounded treewidth) 3 &k such that k-WL decides isomorphism
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The Weisfeiler—Leman Algorithm

@ Introduced by Babai in 1979 and Immerman and Lander [IL90]
o lteratively refines colouring of element set

@ Ends with canonical stable colouring classifying similar elements
@ For parameter k, runs in time nO k)

@ Reduces search space (isomorphisms preserve similar elements)

@ In particular: different stable colourings = non-isomorphic structures

Graph isomorphism for minor-free graphs [Gro12]

For every nontrivial graph class excluding some minor (e.g., planar graphs;
graphs of bounded treewidth) 3 k such that k-WL decides isomorphism

Babai's general graph isomorphism algorithm [Bab16]

Applies k-dimensional Weisfeiler—Leman for polylogarithmic &
= quasipolynomial running time
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Definition
Dk(A, B): minimal quantifier depth of C* sentence distinguishing two
n-element structures A and B (with A #.r B)
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Definition
Dk(A, B): minimal quantifier depth of C* sentence distinguishing two
n-element structures A and B (with A #.r B)

e D"(A,B)<n

dxq---dxy, T T A /\ Rx;, -2, A /\ ﬁinl---xiT)
i£] Reo, Reo,
(’uil,...,vir)eR'A (’Uilv-ny’Ui?.)éRA
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Definition
Dk(A, B): minimal quantifier depth of C* sentence distinguishing two
n-element structures A and B (with A #.r B)

e D"(A,B)<n

dxq---dxy, T T A /\ Rx;, -2, A /\ ﬁinl---xiT)
i£] Reo, Reo,
(’uil,...,vir)eR'A (’Uilwny’Ui?.)éRA

o DF(A,B) < nk!
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Definition
Dk(A, B): minimal quantifier depth of C* sentence distinguishing two
n-element structures A and B (with A #.x B)

e D"(A,B)<n

Elxl---EI:cn( T T A /\ Rx;, -2, A /\ —'Rﬂﬁil"'ﬂ%)
i

Reo, Reo,
(’Uil,...,vi,r)ER'A (’l)il,...,’lji?.)éR'A
o DF(A,B) < nk! D3(A,B) < O(n?/logn) [KS16]
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Definition
Dk(A, B): minimal quantifier depth of C* sentence distinguishing two
n-element structures A and B (with A #.x B)

e D"(A,B)<n

</\x17éxj A /\ Rz -y, /\ —'Rﬂﬁil"'ﬂ%)

i£] Reo, Reo,
(Vig yeees vir)eRA (Vigseesvi, )@ RA
o DF(A,B) < nk! D3(A,B) < O(n?/logn) [KS16]

o k constant: D*(A, B) > Q(n) [Gro99, Fiir01, KV15]
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Quantifier Depth of C*

Definition

D*(A, B): minimal quantifier depth of C* sentence distinguishing two
n-element structures A and B (with A #.x B)

e D"(A,B)<n
3x1~~-3mn</\xi7§xj A /\ Rx;, -2, A /\ _‘R%‘l"'ﬂ?u)
i#£] Reo, Reo,
(Vig yeesvi,. ) ERA (Vig yeesvip ) ERA
o DF(A,B) <nk1 D3(A,B) < O(n?/logn) [KS16]

o k constant: D*(A, B) > Q(n) [Gro99, Fiir01, KV15]

Theorem [BN16a]

For every k < n%01 there are n-element relational structures A, B of arity
k — 1 such that Dk(A, B) > nSi(k/ log k)
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Theorem [BN16a]

For every k < n%O9! there are n-element relational structures A, B of arity
k — 1 such that D*(A, B) > nf(k/logk)
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C* and Weisfeiler—Leman

23 e() n®
— S

k

Theorem [BN16a]

For every k < n%0! there are n-element relational structures A, B of arity
k — 1 such that D’“(.A7 B) > nSi(k/logk)

Theorem [CFI92]

D*(A, B) = #trefinement steps (k — 1)-dimensional Weisfeiler-Leman
needs to distinguish A and B
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C* and Weisfeiler—Leman

2 3 O(1) log®n no
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Theorem [BN16a]

For every k < n%9! there are n-element relational structures A, B of arity
k — 1 such that Dk(A, B) > nSi(k/logk)

Theorem [CFI92]
D*(A, B) = #trefinement steps (k — 1)-dimensional Weisfeiler-Leman

needs to distinguish A and B

Application for non-constant &

@ Babai's quasipolynomial graph isomorphism test uses k& = log®n on
(k — 1)-ary relational structures [Bab16]

o o c—1 o o 0
@ Our result implies Q(nlog ”) lower bound in this setting
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Overview of proof



In one sentence, a novel combination of methods from

Descriptive complexity Proof complexity
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In one sentence, a novel combination of methods from

Descriptive complexity Proof complexity

pyramid construction
Immerman [Imm81]
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of methods from

In one sentence, a novel combination

Descriptive complexity

pyramid construction
Immerman [Imm81]
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Proof complexity

ur
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uz U3
U VU2
uy

F F[g]

hardness condensation
Razborov [Raz16a]
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In one sentence, a novel combination of methods from

Descriptive complexity Proof complexity
. v
l‘l Ug Ve
lll/’\l'l/‘\fl Us Us
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pyramid construction hardness condensation
Immerman [Imm81] Razborov [Raz16a]

Connection made via XOR formulas as source of hard instances
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@ Spoiler and Duplicator play on structures A and B
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@ Spoiler and Duplicator play on structures A and B

e Positions: partial mappings p = {(u1,v1),..., (u;,v;)} from V(A) to
V(B) of size < k (start with empty mapping)
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@ Spoiler and Duplicator play on structures A and B
e Positions: partial mappings p = {(ul,vl), R (ui,vi)} from V(A) to
V(B) of size < k (start with empty mapping)
@ In each round:
@ Spoiler chooses p’ C p with |p| < k
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@ Spoiler and Duplicator play on structures A and B

e Positions: partial mappings p = {(ul,vl), R (ui,vi)} from V(A) to
V(B) of size < k (start with empty mapping)

@ In each round:

@ Spoiler chooses p’ C p with |p| < k
@ Spoiler selects u € V(A) or v € V(B)
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@ Spoiler and Duplicator play on structures A and B
e Positions: partial mappings p = {(ul,vl), R (ui,vi)} from V(A) to
V(B) of size < k (start with empty mapping)
@ In each round:
@ Spoiler chooses p’ C p with |p| < k
@ Spoiler selects u € V(A) or v € V(B)
@ Duplicator responds by choosing element v or u in other structure
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@ Spoiler and Duplicator play on structures A and B
e Positions: partial mappings p = {(ul,vl), R (ui,vi)} from V(A) to
V(B) of size < k (start with empty mapping)
@ In each round:
@ Spoiler chooses p’ C p with |p| < k
@ Spoiler selects u € V(A) or v € V(B)

@ Duplicator responds by choosing element v or u in other structure
@ New position is p' U {(u,v)}
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Spoiler-Duplicator Game for £F

Spoiler and Duplicator play on structures A and B

Positions: partial mappings p = {(ul,vl), A (ui,vi)} from V(A) to
V(B) of size < k (start with empty mapping)
In each round:

@ Spoiler chooses p’ C p with |p'| < k

@ Spoiler selects u € V(A) or v € V(B)

© Duplicator responds by choosing element v or u in other structure

@ New position is p’ U {(u,v)}

Spoiler winning position: p isn't isomorphism on induced
substructures
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Spoiler-Duplicator Game for £F

Spoiler and Duplicator play on structures A and B

Positions: partial mappings p = {(ul,vl), A (ui,vi)} from V(A) to
V(B) of size < k (start with empty mapping)
In each round:

@ Spoiler chooses p’ C p with |p'| < k

@ Spoiler selects u € V(A) or v € V(B)

© Duplicator responds by choosing element v or u in other structure

@ New position is p’ U {(u,v)}

Spoiler winning position: p isn't isomorphism on induced
substructures

Characterization of £* [Bar77, Imm82]

Spoiler wins this game for size-k mappings in R rounds <
3 sentence ¢ € LF of quantifier depth R such that A = ¢ and B [~ ¢
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@ Spoiler and Duplicator play on structures A and B
e Positions: partial mappings p = {(ul,vl), el (ui,vi)} from V(A) to
V(B) of size < k (start with empty mapping)
@ In each round:
@ Spoiler chooses p' C p with |p| < k
@ Duplicator selects global bijection f: V(A) = V(B)
© Spoiler chooses pair (u,v) € f
@ New position is p' U {(u,v)}
@ Spoiler winning position: p isn't isomorphism on induced
substructures
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Spoiler-Duplicator Game for C*

Spoiler and Duplicator play on structures A and B

Positions: partial mappings p = {(ul,vl), el (ui,vi)} from V(A) to
V(B) of size < k (start with empty mapping)
In each round:

@ Spoiler chooses p’ C p with |p'| < k

@ Duplicator selects global bijection f: V(A) = V(B)

© Spoiler chooses pair (u,v) € f

@ New position is p’ U {(u,v)}

Spoiler winning position: p isn't isomorphism on induced
substructures

Characterization of C* [CFI92, Hel96]

Spoiler wins this game for size-k mappings in R rounds <
3 sentence ¢ € C* of quantifier depth R such that A = ¢ and B [~ ¢
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5-XOR formula F' over Boolean variables x1, ..., x,:
set of parity constraints x;, ®---@®x;. =a, r < s, a € {0,1}
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5-XOR formula F' over Boolean variables x1, ..., x,:
set of parity constraints x;;, @ @ x;. =a,r <s,a€ {0,1}

Let A(F) and B(F) relational structures with

0

e 2 vertices 29, z} for every z; € Vars(F)

@ relations
X = XB = (a0, 01}
R'A = {( ?11,...,37,?:)

RE = {(2f, ..., a8 |(zi, @ - @ x4,

(i, & Dz, =a)€F, @iaiZO}
a) € F, @iai:a}
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XOR Formulas

5-XOR formula F' over Boolean variables x1, ..., xy:
set of parity constraints z;, @ --- @ x;, =a, r <s, a € {0,1}
Let A(F) and B(F') relational structures with
e 2 vertices ¥, z} for every z; € Vars(F)
@ relations
XH = XP = {29, 21}
RA = {8, i) (v & B xy, =a) € F, @;a; =0}

117
sz{(qu .._7x?r> (.’L‘ZIEB---@QZ”ZG)EF, @iai:a}

217

Isomorphism I : A(F') — B(F') corresponds r7 Dag =1
to satisfying assignment « for F via @7 o7 o7

8
~o

a(z))=0 = 1)) =2 & I(z}) =} l l ><
alr) =1 = 1Y) =2} & I(z}) =2? 0 ol 0wl
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The k-pebble game on XOR formula F'is played by two players

e Positions: partial assignments «, o] < k

@ Starting position oy = ()

Jakob Nordstrém (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements



The k-pebble game on XOR formula F'is played by two players
e Positions: partial assignments «, o] < k

@ Starting position oy = ()

In round 7 starting from «;_1:
@ Player 1 chooses o C a1, || < k
@ Player 1 asks for value of variable z
e Player 2 answers with a € {0,1}
o a; =aU{zr—a}
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The k-pebble game on XOR formula F'is played by two players
e Positions: partial assignments «, o] < k

@ Starting position oy = ()

In round 7 starting from «;_1:
@ Player 1 chooses o C a1, || < k
@ Player 1 asks for value of variable z
e Player 2 answers with a € {0,1}
o a; =aU{zr—a}

Player 1 wins game in R rounds if ap falsifies some XOR-constraint

Jakob Nordstrém (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements



Let
@ I 5-XOR formula
e REeNt k>s
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Let
@ I 5-XOR formula
e REeNt k>s

Then the following statements are equivalent:

(a) Player 1 wins R-round k-pebble game on F’
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Let
@ I 5-XOR formula
e REeNt k>s

Then the following statements are equivalent:

(a) Player 1 wins R-round k-pebble game on F’

(b) 3 k-variable sentence ¢ € LF of quantifier depth R such that
A(F) = ¢ and B(F) = ¢
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Let
@ I 5-XOR formula
e REeNt k>s

Then the following statements are equivalent:

(a) Player 1 wins R-round k-pebble game on F’

(b) 3 k-variable sentence ¢ € LF of quantifier depth R such that
A(F) = ¢ and B(F) = ¢

(c) 3 k-variable sentence ¢ € C* of quantifier depth R such that
A(F) = ¢ and B(F) I ¢
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Equivalent Characterizations of the Pebble Game

Let
@ F s-XOR formula
e RkeNt k>s

Then the following statements are equivalent:

(a) Player 1 wins R-round k-pebble game on F’

(b) 3 k-variable sentence ¢ € L of quantifier depth R such that
A(F) = p and B(F) I ¢

(c) 3 k-variable sentence ¢ € C* of quantifier depth R such that
A(F) = and B(F) I ¢

(d) The s-CNF-formula cnf(F) has a resolution refutation of

> depth R
» width & — 1 [ADO0S]
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[Imm81]
There are A, B such that D¥(A, B) = 9(2\/1"@") for all k >3
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23 k n0-01 Qn) n
1
I

L] 1 [l [l ]
u L) 1

[Imm81]
There are A, B such that D*(A, B) = Q(2V"°8") for all k > 3 J

Part | (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1
@ wins 3-pebble game for 3 < ¢ < k
o needs n2(1/192k) rounds to win the ¢-pebble game for 3 < ¢ < k
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QOutline of Proof

=N
S
=

2 3
1 [l
I 1

D

[Imm81]
There are A, B such that D¥(A, B) = Q(2VI°e") for all k > 3

Part | (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1
@ wins 3-pebble game for 3 </ <k
o needs n(1/19¢%) rounds to win the /-pebble game for 3 < ¢ < k

Part Il (hardness condensation):

Reduce the number of variables without destroying the lower bound

Transform n-variable 3-XOR into m-variable k-XOR for m ~ nl/*

Lower bound remains nX(1/logk) — ), Q(k/logk)
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PART I: An n¥&%) lower bound



A 2-Dimensional Pyramid

XORs from DAGs

Let G directed acyclic graph with
. unique sink z
I\ XOR-formula xor(G) over variables
/,<><>,\ v € V(G) contains constraints:
AAAA () 0 Buen—rw =0

FAVAVAVAVAN (i) s =0 for every source s
VAVAVAVAVAVAN (iii) 2 =1 for unique sink z
VAVAVAVAVAVAVAN

/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
AVAVAVAVAVAVAVAVAVAN

6 6 6 6 o 6 o ¢ o o o
000O0OOOOOOTO OO
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A 2-Dimensional Pyramid

XORs from DAGs

Let G directed acyclic graph with
1 unique sink z
. XOR-formula xor(G) over variables
/,<><>,\ v € V(G) contains constraints:

./4'\./4'\./4'\./4'\. (') v D @weN_(v) w =1
VAVAVAVAVAN (i) s =0 for every source s

VAVAVAVAVAVAN (iii) 2 =1 for unique sink z

VAVAVAVAVAVAVAN

/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
TAVAVAVAVAVAVAVAVAVAN

6 6 6 6 o 6 o ¢ o o o
000O0OOOOOOTO OO
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A 2-Dimensional Pyramid

XORs from DAGs

Let G directed acyclic graph with
1 unique sink z
. XOR-formula xor(G) over variables
/,<><>,\ v € V(G) contains constraints:

./4'\./4'\./4'\./4'\. (') v D @weN_(v) w =1
VAVAVAVAVAN (i) s =0 for every source s

VAVAVAVAVAVAN (iii) 2 =1 for unique sink z

VAVAVAVAVAVAVAN

/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
TAVAVAVAVAVAVAVAVAVAN

6 6 6 6 o 6 o ¢ o o o
000O0OOOOOOTO OO
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A 2-Dimensional Pyramid

XORs from DAGs

Let G directed acyclic graph with
unique sink z
XOR-formula xor(G) over variables
NN v € V(G) contains constraints:
AXAN ()) v & Buen-w =0
FAVAVAVAVAN (i) s =0 for every source s
VAVAVAVAVAVAN (iii) 2 =1 for unique sink z
VAVAVAVAVAVAVAN
/\/\/\/\/\/\/\/\
/\/\/\/\/\/\/\/\/\
AVAVAVAVAVAVAVAVAVAN

6 6 6 6 o 6 o ¢ o o o
000O0OOOOOOTO OO
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A 2-Dimensional Pyramid

XORs from DAGs

Let G directed acyclic graph with
unique sink z
. XOR-formula xor(G) over variables
'/;ié\' v € V(G) contains constraints:
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A 2-Dimensional Pyramid

XORs from DAGs

Let G directed acyclic graph with
. unique sink z
I\ XOR-formula xor(G) over variables
/./‘\<>.\ v € V(G) contains constraints:
AEAR () v® Buen-w =0
FAVAVAVAVAN (i) s =0 for every source s
AVAVAVAVAVA (iii) z = 1 for unique sink z

NAVAVAVSLVAVAN
FAVAVAVAVEAVAVAN
FAVAVAVAVAVAVAVAVAN
FAVAVAVAVAVAVAVAVAVAN
0 00O0OOOOOOOQ OO
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XORs from DAGs

Let G directed acyclic graph with
. unique sink z
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/./‘\<>.\ v € V(G) contains constraints:
\ : _
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. unique sink z
I\ XOR-formula xor(G) over variables
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A 2-Dimensional Pyramid

XORs from DAGs

Let G directed acyclic graph with
. unique sink z
I\ XOR-formula xor(G) over variables
/,<><>,\ v € V(G) contains constraints:
AAAA () 0 Buen—rw =0

FAVAVAVAVAN (i) s =0 for every source s
VAVAVAVAVAVAN (iii) 2 =1 for unique sink z
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A 3-Dimensional Pyramid

1 On d-dimensional pyramid of height h

/\ @ Player 1 wins the k-pebble game,
‘ 3 <k <291 in ©(h) rounds
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A 3-Dimensional Pyramid

1 On d-dimensional pyramid of height h
/\ @ Player 1 wins the k-pebble game,

3 <k <291 in ©(h) rounds
‘

m((uu

N\\//N\\/&
ik

o pyramid has n ~ h? vertices

1
= n®es®) vounds in k-pebble game
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PART Il: Hardness condensation



Suppose
@ F XOR formula over variables U
e G = (UUYV,E) bipartite graph
Substituted formula F'[G] over variables V:
@ replace every u € U by @veN(u) v

Us

% "
Ug Ve
us ’4: Vs
U9 V4
U7 U3
X: -

U1

F FlY
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Suppose
@ F XOR formula over variables U
e G = (UUYV,E) bipartite graph
Substituted formula F'[G] over variables V:
@ replace every u € U by @veN(u) v

%:i upuz=1 — (v1Dv2) P (vsPvg) =1
s e
e

N

F FI[G]
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Suppose
@ F' XOR formula over variables U
e G = (UUYV,E) bipartite graph
Substituted formula F'[G] over variables V:
@ replace every u € U by @veN(u) v

Ug
%w wBuz=1 — (11 ®v2) P (v5Pve) =1
U4 :‘. Vs Player 2 survives R-round k-pebble game on F’
u3 Vs = survives 2R-round 2k-pebble game on F[G]
U9 V4
u ~ vs But #variables in instance goes up
x .
U1
F F(g]
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Suppose
@ F XOR formula over variables U
e G = (UUYV,E) bipartite graph
Substituted formula F'[G] over variables V:
@ replace every u € U by @veN(u) v

us
ur
Ug Us
Us V4
Uy U3
us U2
Uz U1
Uy

F F[g]
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Suppose
@ F XOR formula over variables U
e G = (UUYV,E) bipartite graph
Substituted formula F'[G] over variables V:
@ replace every u € U by @veN(u) v

Uus

wr usPus =0 — (1)1@?]2@'1)3)@(’1]3@'05) =0
Us Us Now #variables in instance goes down
Us V4
u Possible to maintain hardness?
4 U3
us (%]
u9 (%1
Ui
F F[g]
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Uy U Pus =0 — (’01@1)2@’1)3)@(1)3@’05):0

Ug Vs
Us V4
Uyg U3
u3 V2
U2 U1
Uy

F F[g]
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ug
uz up®us =0 — (11 ®v2Dv3) D (V3B 5) =0
Ug Vs
Us V4
Uy U3
us V2
us vy
uy
F Fg]

e Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs nf2(1/1°8k) rounds
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ug
uz up®us =0 — (L1 @V Dv3) D (V3B 5) =0
Ug Vs
Us V4
Uy U3
us V2
us vy
uy
F Fg]

e Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs nf2(1/1°8k) rounds

e G with left-degree <k/3, |U|=n, and |V|:n0(1/k)
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ug
uz up®us =0 — (L1 ®v2Dv3) D (V3B 5) =0
Ug Vs
Us V4
Uy U3
us V2
us vy
U
F Fg]

e Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs nf2(1/1°¢k) rounds

o G with left-degree <k/3, |U|=n, and |V|=nC01/k)
» Player 1 wins with k pebbles on F[G]
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ug
uz up®us =0 — (11 ®v2Dv3) D (V3B 5) =0
Ug Vs
Us V4
Uy U3
us V2
us vy
U
F Fg]

e Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs nf2(1/1°¢k) rounds
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ug
uz up®us =0 — (11 BV Dv3) D (V3B 5) =0
Ug Vs
Us V4
Uy U3
Uus V2
us vy
U
F Fg]

e Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs nf2(1/1°¢k) rounds
o G with left-degree <k/3, |U|=n, and |V|=nC01/k)
» Player 1 wins with k pebbles on F[G] v
> #rounds needed for F[G] £
#rounds needed for ' = Q(|U[Y/1°8%) = Q(|V/|+/ 18 k)
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ug
uz up®us =0 — (11 BV Dv3) D (V3B 5) =0
Ug Vs
Us V4
Uy U3
Uus V2
us vy
U
F Fg]

e Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs nf2(1/1°¢k) rounds
o G with left-degree <k/3, |U|=n, and |V|=nC01/k)
» Player 1 wins with k pebbles on F[G] v
> #rounds needed for F[G] £
#rounds needed for FF = Q(|U|"/108%) = (|| loak) ?
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XOR Substitution with Recycling (2/2)

us
wr uy®us =0 — (v PV2BV3)d (v3Bvs) =0
Ug Us
us vy ug =1 — v4Pv5=1
Uy U3
u3 V2
U2 U1
Uy
F FI[G]

@ Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs n*(1/1°8¥) rounds
o G with left-degree <k/3, |U|=n, and |V|=n®0/k)
> Player 1 wins with k pebbles on F[G] v’
» #rounds needed for F[G]
#rounds needed for F = Q(|U[V/1°8%) = Q(|V/ |/ losk) 7
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XOR Substitution with Recycling (2/2)

us
wr uy®us =0 — (v PV2BV3)d (v3Bvs) =0
Ue Us
Us Vg u6:1 — '1)4@'1)5:1
Uy U3
us Vo ur=0 — v4Pv5=0
U2 U1
U
F FI[G] ‘;

@ Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs n*(1/1°8¥) rounds
o G with left-degree <k/3, |U|=n, and |V|=n®0/k)
> Player 1 wins with k pebbles on F[G] v’
» #rounds needed for F[G]
#rounds needed for F = Q(|U[V/1°8%) = Q(|V/ |/ losk) 7
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XOR Substitution with Recycling (2/2)

us
uy ur®us; =0 — (v BvaBu3) D (v3Dus) =0
Ue Us
us vy ug =1 — v4Pv5=1
Uy U3
us Vo ur=0 — v4Pv5=0
Uz U1
w Solution: Use expander graphs!
F FI[G]

@ Apply to XOR formulas over Immerman’s pyramids [Imm81]
> Player 1 wins with 3 pebbles
> but needs nf*(1/1°8 %) rounds
o G expander with left-degree <k/3, |U|=n, and |V|=n®1/k)
> Player 1 wins with k pebbles on F[G] v’
» #rounds needed for F[G] £
#rounds needed for F = Q(|U['/18k) = Q(|V[¥/1eek)
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Ui2

G = (UUV,E) is (d,r,c)-boundary expander if

U11

Uu10 o left-degree < d

U9 e for every U’ C U, |U’| < r it holds that
s < 10(U")] = c|U'|

uz

Ug 8(U’)={UGN(U’) : |N(v)r‘|U’|:1}
Us

Uy

us

U2

Uy
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Bipartite Boundary Expander

U2

w11 ” G = (UUV,E) is (d,r,c)-boundary expander if
9

(30 A, v o left-degree < d

w9 Ly vy o for every U’ C U, |U’| < r it holds that

<\

Uy = v |0(U")| > ¢|U'|

ur

ug < ° oU)={veNU): [INw)NU|=1}
Vg

s v3 Example

34 vy o left-degree d = 3

3
s U1 @ expanding set size r = 3
U @ boundary expansion factor ¢ =1
U 1%
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Bipartite Boundary Expander

U2 e

U1 G = (UUV,E) is (d,r, c)-boundary expander if
(30 o left-degree < d

w9 o for every U’ C U, |U’| < r it holds that
us 0U)] = U]

uy

ug OU)={veNU): [Nw)NU'|=1}
Us Example

34 o left-degree d = 3

uz @ expanding set size r = 3

Uy @ boundary expansion factor c =1
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ui2
Uil
u1io
Uug
us
ur
Ug
Us
Ug
us
U2
Uy

/e Vg

G = (UUV,E) is (d,r,c)-boundary expander if
o left-degree < d

v e for every U’ C U, |U’| < r it holds that
0(U")| > U

Vg

U6

AU () = {ve N(U') : [N@)NU'| =1}

AN o
v3 Example

v o left-degree d = 3
U1 @ expanding set size r = 3

@ boundary expansion factor c =1

Jakob Nordstrém (KTH)
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Bipartite Boundary Expander

U2 e

Uil
)

U10
o Ug

4o e U7
us V6
uy vs
Ug 4
s e U3
Uy Vs
us 1
U2 @

Uy e

Lemma ([Razl6a])

Fore > 0 and n,d with |U| = n,

G = (UUV,E) is (d,r,c)-boundary expander if
o left-degree < d
o for every U’ C U, |U’| < r it holds that

0(U)] = U]
o’ = {v eENU) : [Nw)NU'| = 1}
Example
o left-degree d = 3
@ expanding set size r = 3
@ boundary expansion factor c =1

V| =nCW/d) 4 < |V|%_€, there are

(d,r,2)-boundary expanders G with r = dlogn
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12 To play on F[G], Player 2 simulates game on F'

U1 V position 5 on F[G], maintain position o on F

uio

Jakob Nordstrém (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements



12 To play on F[G], Player 2 simulates game on F'
U1 V position 5 on F[G], maintain position o on F
U10

o Key concept: Ker(V')={ueU: N(u) CV'}
us Example

ur V/ = {1)3, 55 ,’Us}, Ker(V’) = {ug, U7, ulg} J
ug

us

Ug
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U12 To play on F[G], Player 2 simulates game on F'
U1 V position 5 on F[G], maintain position o on F
U10

o Key concept: Ker(V')={ueU: N(u) CV'}
us Example

ur V/ = {Ug, 000 ,’Us}, Ker(V’) = {ug, U7,U12} J
ug

us
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Sketch of Proof Sketch

12 To play on F[G], Player 2 simulates game on F'
u11 V position 5 on F[G], maintain position o on F
U1
o Key concept: Ker(V')={ueU: N(u) CV'}
us Example
ur V/ = {U3, coo ,1)8}, Ker(V’) = {u6, U7, U12} J
ug
Us Make sure u determined by 3 gets right value
(2 a(u) = Dyen(u) v — by unique neighbours
us
Uz
Uy o
U~F V ~ F[G]
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Sketch of Proof Sketch

12 To play on F[G], Player 2 simulates game on F'
u11 V position 5 on F[G], maintain position o on F
U1

o Key concept: Ker(V')={ueU: N(u) CV'}
us Example

ur V= {U3, 55 ,US}, Ker(V’) = {u6, U7, ulz} J
ug

Us Make sure u determined by 3 gets right value
(2 a(u) = Dyen(u) v — by unique neighbours

us

s V| <r = |Ker(V')| < |V’| by expansion,
ur e so not too many pebbles in simulated game
U~F V ~ F[g]
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Sketch of Proof Sketch

12 To play on F[G], Player 2 simulates game on F'
u11 V position 5 on F[G], maintain position o on F
uio

o Key concept: Ker(V')={ueU: N(u) CV'}
us Example

b V= {1}3, 55 ,US}, Ker(V’) = {u6, U7, U12} J
ug

Us Make sure u determined by 3 gets right value
(2 a(u) = Dyen(u) v — by unique neighbours

us

s V| <r = |Ker(V')| < |V’| by expansion,
ur e so not too many pebbles in simulated game
U~F V ~ F[G] Locally looks almost like XORification without

recycling, so previous approach might work. ..
And give bound in terms of |U| > |V|
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Actual details more involved, but work out as follows:

Main Technical Lemma
If

@ Player 2 survives R of k-game on F’
e G is (d,2k,2)-boundary expander
then

o Player 2 survives £ rounds of k-game on F[g]
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Hardness Condensation

Actual details more involved, but work out as follows:

Main Technical Lemma
If

o Player 2 survives R of k-game on F

e G is (d,2k,2)-boundary expander
then

o Player 2 survives 4 rounds of k-game on F[G]

More about hardness condensation

@ Method introduced in [Razl6a] to show that treelike resolution in
bounded width & can require doubly exponential length n®

@ Also applied to linear programming hierarchies [Raz16¢]

@ Space/width trade-offs in resolution [BN16b]

@ Variable space/length trade-offs [Raz16b]
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Summary
o nfik/1ogk) |ower bound on the quantifier depth of £* and C*
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Summary
o nfik/1ogk) |ower bound on the quantifier depth of £* and C*

e nearly matches the trivial n*~1 upper bound
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Summary
o nfik/1ogk) |ower bound on the quantifier depth of £* and C*
e nearly matches the trivial n*~1 upper bound

@ also implies near-optimal lower bound on the number of refinement
steps for k-Weisfeiler—Leman
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Open questions

@ Our result are for k-ary relational structures—prove similar lower
bounds for graphs?

@ Better lower bounds for XOR formulas?

@ Where else can hardness condensation be useful?
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o nfik/1ogk) |ower bound on the quantifier depth of £* and C*
e nearly matches the trivial n*~1 upper bound

@ also implies near-optimal lower bound on the number of refinement
steps for k-Weisfeiler—Leman

Open questions

@ Our result are for k-ary relational structures—prove similar lower
bounds for graphs?

@ Better lower bounds for XOR formulas?

@ Where else can hardness condensation be useful?

Thank you for your attention!
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