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k-Variable Fragments of First-Order Logic

Two vertices are connected by a path of length 4:

ϕdist-4(x, y) = ∃z1∃z2∃z3

(
Exz1 ∧ Ez1z2 ∧ Ez2z3 ∧ Ez3y

)
Equivalent L3 formula:

ϕ′dist-4(x, y) = ∃z
(
Exz ∧ ∃x

(
Ezx ∧ ∃z (Exz ∧ Ezy)

))
Ck extends Lk by counting quantifiers ∃≥ix

Vertex has degree ≥ 7:

ϕdeg-7(x) = ∃y1 · · · ∃y7
∧

i 6=j yi 6= yj
∧

iExyi

Equivalent C2 formula:

ϕ′deg-7(x) = ∃≥7y Exy
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Finite Relational Structures

Structure A

Domain V (A) = {u1, u2, . . . , un}

Relations R` of arity r`

Interpretation RA` =
{

(uj1 , . . . , uj`)
∣∣relation R`uj1 , . . . , uj` holds

}
A |= ϕ if sentence ϕ true in structure A

Running example: graphs
I Elements: vertices
I Relations: edges
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Why Bounded Variable Fragments of First Order Logic?

Numerous applications in finite model theory and related areas [Gro98]

Model checking problem

Given finite relational structure A and sentence ϕ, does A satisfy ϕ?

Decidable in polynomial time [Imm82, Var95]

Equivalence problem

Given two finite relational structures A and B, do they satisfy the same Lk
or Ck sentences?

Decidable in time nO(k) [IL90] (i.e., polynomial for constant k)
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Connections to Weisfeiler–Leman

Equivalence problem for Ck+1 closely related to k-dimensional
Weisfeiler–Leman algorithm (k-WL) for testing non-isomorphism of

I graphs
I more general relational structures

A and B distinguished by k-dimensional Weisfeiler–Leman ⇔
∃ Ck+1 sentence differentiating between A and B [CFI92]

Quantifier depth of distinguishing Ck+1 sentence =
= #iterations k-WL needs to tell A and B apart
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The Weisfeiler–Leman Algorithm

Introduced by Babai in 1979 and Immerman and Lander [IL90]

Iteratively refines colouring of element set

Ends with canonical stable colouring classifying similar elements

For parameter k, runs in time nO(k)

Reduces search space (isomorphisms preserve similar elements)

In particular: different stable colourings ⇒ non-isomorphic structures

Graph isomorphism for minor-free graphs [Gro12]

For every nontrivial graph class excluding some minor (e.g., planar graphs;
graphs of bounded treewidth) ∃ k such that k-WL decides isomorphism

Babai’s general graph isomorphism algorithm [Bab16]

Applies k-dimensional Weisfeiler–Leman for polylogarithmic k
⇒ quasipolynomial running time
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Quantifier Depth of Ck

Definition

Dk(A,B): minimal quantifier depth of Ck sentence distinguishing two
n-element structures A and B (with A 6≡Ck B)

Dn(A,B) ≤ n

∃x1 · · · ∃xn

(∧
i6=j

xi 6= xj ∧
∧
R∈σ,

(vi1 ,...,vir )∈RA

Rxi1 · · ·xir ∧
∧
R∈σ,

(vi1 ,...,vir )/∈RA

¬Rxi1 · · ·xir

)

Dk(A,B) ≤ nk−1 D3(A,B) ≤ O
(
n2/ log n

)
[KS16]

k constant: Dk(A,B) ≥ Ω
(
n
)

[Gro99, Für01, KV15]

Theorem [BN16a]

For every k ≤ n0.01 there are n-element relational structures A, B of arity
k − 1 such that Dk(A,B) ≥ nΩ(k/ log k)
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Ck and Weisfeiler–Leman

k

2 3 Θ(1) n0.01 Ω(n) n

Theorem [BN16a]

For every k ≤ n0.01 there are n-element relational structures A, B of arity
k − 1 such that Dk(A,B) ≥ nΩ(k/ log k)

Theorem [CFI92]

Dk(A,B) = #refinement steps (k − 1)-dimensional Weisfeiler–Leman
needs to distinguish A and B

Application for non-constant k

Babai’s quasipolynomial graph isomorphism test uses k = logc n on
(k − 1)-ary relational structures [Bab16]

Our result implies Ω
(
nlogc−1 n

)
lower bound in this setting
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Overview of proof



Essence of Proof

In one sentence, a novel combination of methods from

Connection made via XOR formulas as source of hard instances
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Spoiler-Duplicator Game for Lk

Spoiler and Duplicator play on structures A and B
Positions: partial mappings p =

{
(u1, v1), . . . , (ui, vi)

}
from V (A) to

V (B) of size ≤ k (start with empty mapping)

In each round:
1 Spoiler chooses p′ ⊆ p with |p′| < k
2 Spoiler selects u ∈ V (A) or v ∈ V (B)
3 Duplicator responds by choosing element v or u in other structure
4 New position is p′ ∪ {(u, v)}

Spoiler winning position: p isn’t isomorphism on induced
substructures

Characterization of Lk [Bar77, Imm82]

Spoiler wins this game for size-k mappings in R rounds ⇔
∃ sentence ϕ ∈ Lk of quantifier depth R such that A |= ϕ and B 6|= ϕ
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XOR Formulas

s-XOR formula F over Boolean variables x1, . . . , xn:
set of parity constraints xi1 ⊕ · · · ⊕ xir = a, r ≤ s, a ∈ {0, 1}

Let A(F ) and B(F ) relational structures with

2 vertices x0
i , x1

i for every xi ∈ Vars(F )

relations

XAi = XBi = {x0
i , x

1
i }

RAr =
{

(xa1
i1
, . . . , xarir )

∣∣(xi1 ⊕ · · · ⊕ xir = a) ∈ F,
⊕

i ai = 0
}

RBr =
{

(xa1
i1
, . . . , xarir )

∣∣(xi1 ⊕ · · · ⊕ xir = a) ∈ F,
⊕

i ai = a
}

Isomorphism I : A(F )→ B(F ) corresponds
to satisfying assignment α for F via

α(xi) = 0 ⇐⇒ I(x0
i ) = x0

i ⇔ I(x1
i ) = x1

i

α(xi) = 1 ⇐⇒ I(x0
i ) = x1

i ⇔ I(x1
i ) = x0

i
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A Pebble Game on XOR Formulas

The k-pebble game on XOR formula F is played by two players

Positions: partial assignments α, |α| ≤ k
Starting position α0 = ∅

In round i starting from αi−1:

Player 1 chooses α ⊆ αi−1, |α| < k

Player 1 asks for value of variable x

Player 2 answers with a ∈ {0, 1}
αi = α ∪ {x 7→ a}

Player 1 wins game in R rounds if αR falsifies some XOR-constraint
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Equivalent Characterizations of the Pebble Game

Let

F s-XOR formula

R, k ∈ N+, k > s

Then the following statements are equivalent:

(a) Player 1 wins R-round k-pebble game on F

(b) ∃ k-variable sentence ϕ ∈ Lk of quantifier depth R such that
A(F ) |= ϕ and B(F ) 6|= ϕ

(c) ∃ k-variable sentence ϕ ∈ Ck of quantifier depth R such that
A(F ) |= ϕ and B(F ) 6|= ϕ

(d) The s-CNF-formula cnf(F ) has a resolution refutation of
I depth R
I width k − 1 [AD08]
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Outline of Proof

2 3 k n0.01 Ω(n) n

[Imm81]

There are A, B such that Dk(A,B) = Ω
(
2
√

logn
)

for all k ≥ 3

Part I (pyramid construction):

For every k there are n-variable 3-XOR formulas such that Player 1

wins 3-pebble game for 3 ≤ ` ≤ k
needs nΩ(1/log k) rounds to win the `-pebble game for 3 ≤ ` ≤ k

Part II (hardness condensation):

Reduce the number of variables without destroying the lower bound

Transform n-variable 3-XOR into m-variable k-XOR for m ≈ n1/k

Lower bound remains nΩ(1/log k) = mΩ(k/log k)
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PART I: An nΩ( 1
log k ) lower bound



A 2-Dimensional Pyramid

0 0 0 0 0 0 0 0 0 0 0

1
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XORs from DAGs

Let G directed acyclic graph with
unique sink z
XOR-formula xor(G) over variables
v ∈ V (G) contains constraints:

(i) v ⊕
⊕

w∈N−(v)w = 0

(ii) s = 0 for every source s

(iii) z = 1 for unique sink z
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A 3-Dimensional Pyramid
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1 On d-dimensional pyramid of height h

Player 1 wins the k-pebble game,
3 ≤ k ≤ 2d−1, in Θ(h) rounds

pyramid has n ≈ hd vertices

⇒ n
Θ( 1

log k
) rounds in k-pebble game
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PART II: Hardness condensation



XOR Substitution with Recycling (1/2)

Suppose

F XOR formula over variables U

G = (U
.
∪ V,E) bipartite graph

Substituted formula F [G] over variables V :

replace every u ∈ U by
⊕

v∈N(u) v

u1

u2

u3

u4

v1

v2

v3

v4

v5

v6

v7

v8

F F [G]
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u1 ⊕ u3 = 1 −→ (v1 ⊕ v2)⊕ (v5 ⊕ v6) = 1

Player 2 survives R-round k-pebble game on F
⇒ survives 2R-round 2k-pebble game on F [G]

But #variables in instance goes up



XOR Substitution with Recycling (1/2)

Suppose

F XOR formula over variables U

G = (U
.
∪ V,E) bipartite graph

Substituted formula F [G] over variables V :

replace every u ∈ U by
⊕

v∈N(u) v

u1

u2

u3

u4

v1

v2

v3

v4

v5

v6

v7

v8

F F [G]

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 21/26

u1 ⊕ u3 = 1 −→ (v1 ⊕ v2)⊕ (v5 ⊕ v6) = 1

Player 2 survives R-round k-pebble game on F
⇒ survives 2R-round 2k-pebble game on F [G]

But #variables in instance goes up



XOR Substitution with Recycling (1/2)

Suppose

F XOR formula over variables U

G = (U
.
∪ V,E) bipartite graph

Substituted formula F [G] over variables V :

replace every u ∈ U by
⊕

v∈N(u) v

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 21/26



XOR Substitution with Recycling (1/2)

Suppose

F XOR formula over variables U

G = (U
.
∪ V,E) bipartite graph

Substituted formula F [G] over variables V :

replace every u ∈ U by
⊕

v∈N(u) v

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 21/26
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Possible to maintain hardness?
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Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G with left-degree≤k/3, |U |=n, and |V |=nO(1/k)

I Player 1 wins with k pebbles on F [G] X
I #rounds needed for F [G] '

#rounds needed for F = Ω
(
|U |1/ log k

)
= Ω

(
|V |k/ log k

)
? X

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G with left-degree≤k/3, |U |=n, and |V |=nO(1/k)

I Player 1 wins with k pebbles on F [G] X
I #rounds needed for F [G] '

#rounds needed for F = Ω
(
|U |1/ log k

)
= Ω

(
|V |k/ log k

)
? X

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G with left-degree≤k/3, |U |=n, and |V |=nO(1/k)

I Player 1 wins with k pebbles on F [G] X
I #rounds needed for F [G] '

#rounds needed for F = Ω
(
|U |1/ log k

)
= Ω

(
|V |k/ log k

)
? X

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G with left-degree≤k/3, |U |=n, and |V |=nO(1/k)

I Player 1 wins with k pebbles on F [G] X
I #rounds needed for F [G] '

#rounds needed for F = Ω
(
|U |1/ log k

)
= Ω

(
|V |k/ log k

)
? X

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G with left-degree≤k/3, |U |=n, and |V |=nO(1/k)

I Player 1 wins with k pebbles on F [G] X
I #rounds needed for F [G] '

#rounds needed for F = Ω
(
|U |1/ log k

)
= Ω

(
|V |k/ log k

)
? X

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G with left-degree≤k/3, |U |=n, and |V |=nO(1/k)

I Player 1 wins with k pebbles on F [G] X
I #rounds needed for F [G] '

#rounds needed for F = Ω
(
|U |1/ log k

)
= Ω

(
|V |k/ log k

)
? X

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G with left-degree≤k/3, |U |=n, and |V |=nO(1/k)

I Player 1 wins with k pebbles on F [G] X
I #rounds needed for F [G] '

#rounds needed for F = Ω
(
|U |1/ log k

)
= Ω

(
|V |k/ log k

)
? X

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G with left-degree≤k/3, |U |=n, and |V |=nO(1/k)

I Player 1 wins with k pebbles on F [G] X
I #rounds needed for F [G] '

#rounds needed for F = Ω
(
|U |1/ log k

)
= Ω

(
|V |k/ log k

)
? X

Jakob Nordström (KTH) Near-Optimal Lower Bounds on Quantifier Depth and WL Refinements DIKU Sep ’18 22/26

u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0

E



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

Apply to XOR formulas over Immerman’s pyramids [Imm81]
I Player 1 wins with 3 pebbles
I but needs nΩ(1/ log k) rounds

G expander with left-degree≤k/3, |U |=n, and |V |=nO(1/k)
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u2 ⊕ u5 = 0 −→ (v1 ⊕ v2 ⊕ v3)⊕ (v3 ⊕ v5) = 0

u6 = 1 −→ v4 ⊕ v5 = 1

u7 = 0 −→ v4 ⊕ v5 = 0

Solution: Use expander graphs!



Bipartite Boundary Expander
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Lemma ([Raz16a])

For ε > 0 and n, d with |U | = n, |V | = nO(1/d), d ≤ |V |
1
2
−ε, there are

(d, r, 2)-boundary expanders G with r = d log n
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G = (U
.
∪V,E) is (d, r, c)-boundary expander if

left-degree ≤ d
for every U ′ ⊆ U , |U ′| ≤ r it holds that
|∂(U ′)| ≥ c|U ′|

∂(U ′) =
{
v ∈ N(U ′) : |N(v) ∩ U ′| = 1

}
Example

left-degree d = 3

expanding set size r = 3

boundary expansion factor c = 1
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Sketch of Proof Sketch
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To play on F [G], Player 2 simulates game on F
∀ position β on F [G], maintain position α on F

Key concept: Ker(V ′) = {u ∈ U : N(u) ⊆ V ′}

Example

V ′ = {v3, . . . , v8}, Ker(V ′) = {u6, u7, u12}

Make sure u determined by β gets right value
α(u) =

⊕
v∈N(u) v — by unique neighbours∣∣V ′∣∣ ≤ r =⇒

∣∣Ker(V ′)
∣∣ ≤ ∣∣V ′∣∣ by expansion,

so not too many pebbles in simulated game

Locally looks almost like XORification without
recycling, so previous approach might work. . .
And give bound in terms of |U | � |V |
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Hardness Condensation

Actual details more involved, but work out as follows:

Main Technical Lemma

If

Player 2 survives R of k-game on F

G is (d, 2k, 2)-boundary expander

then

Player 2 survives R
2k rounds of k-game on F [G]

More about hardness condensation

Method introduced in [Raz16a] to show that treelike resolution in

bounded width k can require doubly exponential length 2n
Ω(k)

Also applied to linear programming hierarchies [Raz16c]

Space/width trade-offs in resolution [BN16b]

Variable space/length trade-offs [Raz16b]
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Concluding Remarks

Summary

nΩ(k/ log k) lower bound on the quantifier depth of Lk and Ck

nearly matches the trivial nk−1 upper bound

also implies near-optimal lower bound on the number of refinement
steps for k-Weisfeiler–Leman

Open questions

Our result are for k-ary relational structures—prove similar lower
bounds for graphs?

Better lower bounds for XOR formulas?

Where else can hardness condensation be useful?

Thank you for your attention!
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