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Proof Complexity

(x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z)

Input: Unsatis�able formula in conjunctive normal form (CNF)
Output: Polynomial-time veri�able certi�cate of unsatis�ability

Proof of unsati�ability = refutation of formula

Want to measure e�ciency of proof system in terms of di�erent
complexity measures (size, space, et cetera)

Can be viewed as proving upper and lower bounds for weak
nondeterministic models of computation
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The Resolution Proof System

Goal: refute unsatis�able CNF

I Start with axiom clauses in formula

I Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

I Done when empty clause ⊥ derived

Can represent refutation/proof as

I annotated list or

I directed acyclic graph (DAG)

Tree-like resolution if DAG is tree
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Resolution Size/Length and Width

Length of proof = # clauses (9 in our example)

Length of refuting F = min length over all proofs for F

Size should strictly speaking measure # symbols
But for resolution don't care too much about linear factors here
Set size = length

Width of proof = # literals in largest clause (3 in our example)

Width of refuting F = min width over all proofs for F

Width at most linear, so here obviously care about linear factors
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Resolution Space

Space = amount of memory needed
when performing refutation

Can be measured in di�erent ways:

I clause space (our focus)

I total space

Clause space at step t: # clauses at
steps ≤ t used at steps ≥ t
Total space at step t: Count also literals

Example: Clause space at step 7

Total space at step 7 is 9

Space of proof = max over all steps
Space of refuting F = min over all proofs
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Upper Bounds on Resolution Complexity Measures

Worst-case upper bounds for resolution refutations of formula
(from now on assume n = #variables):

Size / length # derivation steps O
(
2n
)

Width max # literals in a clause O(n)

Clause space max # clauses in memory O(n)

Total space total size of memory O
(
n2
)

This talk: focus on width and clause space
But results translate to total space by:

clause space ≤ total space ≤ clause space · width
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Lower Bounds via Resolution Width

For n-variable k-CNFs (k constant) it holds that:

width ≤ Ω
(
clause space

)
[Atserias & Dalmau '03]

width2 ≤ Ω
(
total space

)
[Bonacina '16]

width2 ≤ Ω
(
n log(size)

)
[Ben-Sasson & Widgerson '99]

In particular, width = Ω(n) =⇒ size = Ω
(
2n
)

So clearly width key measure�but not the answer to every question

I Can have width Θ
(√
n
)
and still size poly(n)

[Bonet & Galesi '99]

I Can have width O(1) and still clause space Ω(n/ log n)
[Ben-Sasson & Nordström '08]
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Upper Bounds via Resolution Width

size ≤ nO(width)

time to �nd refutation ≤ nO(width)

for w ← 3 . . . n do

Resolve all clauses & keep resolvents with at most w literals
If ⊥ has been derived, then output UNSAT

end for

Output SAT

Algorithm (and resolution proof) requires time/size nO(width)

Cannot do better in general [Atserias, Lauria, & Nordström '14]

What is the space of a small-width proof? Trivially at most nO(width)

[Ben-Sasson '02] exhibited formulas
I refutable in width O(1) and clause space O(1)
I width O(1) =⇒ clause space Ω(n/ log n)

Which bound is closer to the truth?
Recall: can always do clause space O(n)
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A Supercritical Space-Width Tradeo�

Theorem
For any ε > 0 and 6 ≤ w ≤ n

1
2
−ε exist n-variable CNFs Fn s.t.

1. Resolution can refute Fn in width w

2. Any width-w refutation of Fn requires clause space nΩ(w)

Space lower bound nΩ(w) holds for all proofs up to width o(w log n)

Proof outline
Use hardness condensation approach in [Razborov '16]:

1. Start with formula that requires nearly linear clause space

2. Reduce the number of variables from n to n1/w

3. But maintain space lower bound for small-width proofs

Key components:

I Expander graphs

I XORi�cation (substitution with exclusive or)
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What Do You Mean �Supercritical�?!

Typical setting for trade-o� results:

I Have two complexity measures ϕ and ψ

I Worst-case (usually trivial) upper bounds ϕcrit and ψcrit

I There are instances In such that:

I ∃ solutions S1, S2 with ϕ(S1) = small′ and ψ(S2) = small′′

I Any solution S with ϕ(S) even medium-small must have
ψ(S) approach critical value ψcrit

I Conversely, ψ(S) medium-small =⇒ ϕ(S) ≈ ϕcrit

Supercritical setting for trade-o�s:

I Any S with ϕ(S) medium-small must have ψ(S)� ψcrit

I Optimizing ϕ pushes ψ up into supercritical regime above
worst case!

I Very strong trade-o�s�Razborov refers to them as �ultimate�

I We feel �supercritical� is more descriptive
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Expanders

Very well-connected so-called expander graphs play leading role in
many proof complexity lower bounds
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Clause-variable incidence graph (CVIG)

I Clauses on the left

I Variables on the right

I Edge if variable ∈ clause (ignore signs)

If CVIG well-connected, then lower bounds for

I width, size, and space in resolution
[Ben-Sasson&Wigderson '99, Ben-Sasson&Galesi '03]

I degree and size in polynomial calculus
[Impagliazzo et al. '99, Alekhnovich&Razborov '01]

Can also de�ne more general graphs that capture
�underlying combinatorial structure� and extend
results [Mik²a & Nordström '15]
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XORi�cation

Modify F to F [⊕2] by substituting x1 ⊕ x2 for every variable x

x ∨ y
⇓

¬ (x1 ⊕ x2) ∨ (y1 ⊕ y2)

⇓
(x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Used to prove, e.g.:

I width ≥ w for F =⇒ size ≥ exp(Ω(w)) for F [⊕2]
[Ben-Sasson '02] (credited to [Alekhnovich & Razborov])

I # vars in memory ≥s forF =⇒ clause space ≥Ω(s) forF [⊕2]
[Ben-Sasson & Nordström '08]
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Intuition for XORi�cation Lower Bounds

How to construct resolution refutation π of F [⊕2]?

Naive idea: Simulate resolution refutation π′ of F
(using substitution on previous slide)

Seems like a bad idea�XORi�cation causes bad blow-up

I linear in # variables in memory

I exponential in width

Nevertheless, can prove (sort of) this is the best resolution can do

Intuition behind proof

I Given resolution refutation π of F [⊕2]

I Extract the refutation π′ of F that π is simulating

I Prove that extraction preserves complexity measures of interest

Jakob Nordström (KTH) Supercritical Space-Width Trade-o�s Rutgers Oct '16 13/21
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Pebbling Formulas

Encode pebble games on DAGs
[Ben-Sasson & Wigderson '99]

1. u1 ⊕ u2

2. v1 ⊕ v2

3. w1 ⊕ w2

4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

I sources are true

I truth propa-
gates upwards

I but sink is false

Written in CNF as explained before, e.g.

u1 ⊕ u2 = (u1 ∨ u2) ∧ (u1 ∨ u2)

¬(z1 ⊕ z2) = (z1 ∨ z2) ∧ (z1 ∨ z2)

Easy to refute pebbling formulas in size O(n) and width O(1)
Pebbling space lower bounds ⇒ clause space lower bounds
[Ben-Sasson & Nordström '08, '11]
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XOR Substitution with Recycling (1/2)

Suppose

I F CNF formula over variables U

I G = (U
.
∪ V,E) bipartite graph

Substituted formula F [G] over variables V :

I replace every u ∈ U by
⊕

v∈N(u) v
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u1 ∨ u3 −→ ¬ (v1 ⊕ v2) ∨ (v5 ⊕ v6)
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u2 ∨ u5 −→ ¬ (v1 ⊕ v2 ⊕ v3) ∨ (v3 ⊕ v5)



XOR Substitution with Recycling (2/2)

u1
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u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]
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u2 ∨ u5 −→ ¬ (v1 ⊕ v2 ⊕ v3) ∨ (v3 ⊕ v5)

u6 −→

¬

(v4 ⊕ v5)

u7 −→ ¬ (v4 ⊕ v5)



XOR Substitution with Recycling (2/2)

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

F F [G]

I Apply to pebbling formulas F in [Ben-Sasson & Nordström '08]
I refutable in width 6
I require space Ω(n/ log n)

I G with left-degree≤w/6, |U |=n, and |V |=nO(1/w)

I F [G] refutable in width ≤ w

X

I space of width-w refutation of F [G] '

space of refutation of F = Ω(n/ log n) = |V |Ω(w)

? X
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u2 ∨ u5 −→ ¬ (v1 ⊕ v2 ⊕ v3) ∨ (v3 ⊕ v5)

u6 −→

¬

(v4 ⊕ v5)

u7 −→ ¬ (v4 ⊕ v5)

Solution: Use expander graphs!



Bipartite Boundary Expander
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Lemma ([Razborov '16])

For ε > 0 and n, d with d ≤ |V |
1
2
−ε, |U | = n, |V | = nO(1/d) there

are (d, r, 2)-boundary expanders G with r = d log n
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G = (U
.
∪V,E) is (d, r, c)-boundary expander if

I left-degree ≤ d
I for every U ′ ⊆ U , |U ′| ≤ r it holds that
|∂(U ′)| ≥ c|U ′|

∂(U ′) :=
{
v ∈ N(U ′) : |N(v) ∩ U ′| = 1

}

Example

I left-degree d = 3

I expanding set size r = 3

I expansion factor c = 1
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Sketch of Proof Sketch

Look at clauses C in memory in width-w refutation of F [G]

Recover clauses D in memory in �simulated refutation� of F
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Must have N(Vars(D)) ⊆ Vars(C)

Ker(V ′) := {u ∈ U : N(u) ⊆ V ′}

|V ′| ≤ r =⇒ |Ker(V ′)| ≤ |V ′|
(since left vertex sets expand a lot)

Example

V ′ = {v3, . . . , v8}, Ker(V ′) = {u6, u7, u12}

Locally looks almost like XORi�cation without
recycling, so previous proof might work. . .
And give bound in terms of |U | � |V |

Actual details very di�erent
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Some More Details

F and G simultaneously falsi�able if ∃α s.t. α(F ) = α(G) = 0

Associate �substituted clause� C over Vars(F [G]) with all
consistent �original clauses� D over Vars(F )

G−1(C) =

{
D

∣∣∣∣∣ Vars(D) = Ker(Vars(C))

D[G] and C simultaneously falsi�able

}

Let π = (C1, C2, . . . , CL) width-w refutation of F [G] and argue

1. |D| ≤ |C| ≤ w because of expansion

2.
∣∣G−1(C)

∣∣ ≤ 2|C| ≤ 2w because of simultaneous satis�ability

3.
(
G−1(C1),G−1(C2), . . . ,G−1(CL)

)
�backbone� of refutation

of F in clause space roughly s2w

Some further technical twists needed, but this is main idea of proof
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On the Method of Hardness Condensation

Introduced in [Razborov JACM '16] to show that treelike resolution

refutations of width w can require doubly exponential size 2n
Ω(w)

Has also been used to establish

I Tradeo�s between width and rank for Lovász-Schrijver linear
programming hierarchy [Razborov ECCC '16]

I Quanti�er depth lower bounds for �nite variable fragments of
�rst-order logic [Berkholz & Nordström LICS '16]

Where else can this technique be useful?
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Concluding Remarks

I We exhibit supercritical space-width trade-o�s for resolution

I Minimizing width can make space go way above linear
(worst-case �critical� bound)

Open question 1

Similar tradeo�s for degree vs. space in polynomial calculus?

I Weaknesses: non-constant width and huge size blow-up
I Inherent for XORi�cation with large arity

Open question 2

Are there supercritical tradeo�s for 3-CNFs?

I Probably yes, unless PSPACE = EXPTIME
I Can search for small-space refutations in PSPACE, but �nding

refutations in given width EXPTIME-complete [Berkholz '12]

Thank you for your attention!
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