Supercritical Space-Width
 Trade-offs for Resolution

Jakob Nordström

KTH Royal Institute of Technology
Theory of Computing Seminar
Rutgers University
October 12, 2016

Joint work with Christoph Berkholz

Proof Complexity

$$
(x \vee y) \wedge(x \vee \bar{y} \vee z) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{z})
$$

Input: Unsatisfiable formula in conjunctive normal form (CNF) Output: Polynomial-time verifiable certificate of unsatisfiability

Proof of unsatifiability $=$ refutation of formula
Want to measure efficiency of proof system in terms of different complexity measures (size, space, et cetera)

Can be viewed as proving upper and lower bounds for weak nondeterministic models of computation

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

2. $\quad x \vee \bar{y} \vee z$
3. $\quad \bar{x} \vee z$
4. $\bar{y} \vee \bar{z}$
5. $\bar{x} \vee \bar{z}$

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z \quad$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z} \quad$ Axiom
6. $x \vee \bar{y} \quad \operatorname{Res}(2,4)$
7. $x \quad \operatorname{Res}(1,6)$
8. $\bar{x} \quad \operatorname{Res}(3,5)$
9.

\perp

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z} \quad$ Axiom
6. $x \vee \bar{y} \quad \operatorname{Res}(2,4)$
7. $x \quad \operatorname{Res}(1,6)$
8. $\bar{x} \quad \operatorname{Res}(3,5)$
9.

\perp

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z} \quad$ Axiom
6. $\boldsymbol{x} \vee \overline{\boldsymbol{y}} \quad \operatorname{Res}(2,4)$
7. $x \quad \operatorname{Res}(1,6)$
8. $\bar{x} \quad \operatorname{Res}(3,5)$
9.

\perp

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z \quad$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z} \quad$ Axiom
6. $x \vee \bar{y} \quad \operatorname{Res}(2,4)$
7. $\quad x \quad \operatorname{Res}(1,6)$
8. $\bar{x} \quad \operatorname{Res}(3,5)$
9.

\perp

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z \quad$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z} \quad$ Axiom
6. $\boldsymbol{x} \vee \overline{\boldsymbol{y}} \quad \operatorname{Res}(2,4)$
7. $\quad x \quad \operatorname{Res}(1,6)$
8. $\bar{x} \quad \operatorname{Res}(3,5)$
9.

$\operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z \quad$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z} \quad$ Axiom
6. $\boldsymbol{x} \vee \overline{\boldsymbol{y}} \quad \operatorname{Res}(2,4)$
7. x
$\operatorname{Res}(1,6)$
8. $\bar{x} \quad \operatorname{Res}(3,5)$
9.

$\operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1.	$x \vee y$	Axiom
2.	$x \vee \bar{y} \vee z$	Axiom
3.	$\bar{x} \vee z$	Axiom
4.	$\bar{y} \vee \bar{z}$	Axiom
5.	$\bar{x} \vee \bar{z}$	Axiom
6.	$x \vee \bar{y}$	$\operatorname{Res}(2,4)$
7.	x	$\operatorname{Res}(1,6)$
8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z \quad$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z}$

Axiom
6. $x \vee \bar{y} \quad \operatorname{Res}(2,4)$
7. $x \quad \operatorname{Res}(1,6)$
8. $\bar{x} \quad \operatorname{Res}(3,5)$
9.
\perp

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z \quad$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z}$

Axiom
6. $x \vee \bar{y} \quad \operatorname{Res}(2,4)$
7. $x \quad \operatorname{Res}(1,6)$
8. $\overline{\boldsymbol{x}} \quad \operatorname{Res}(3,5)$
9.
\perp

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z \quad$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z} \quad$ Axiom
6. $x \vee \bar{y} \quad \operatorname{Res}(2,4)$
7. $x \quad \operatorname{Res}(1,6)$
8. $\overline{\boldsymbol{x}} \quad \operatorname{Res}(3,5)$
9.

\perp

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1.	$x \vee y$	Axiom
2.	$x \vee \bar{y} \vee z$	Axiom
3.	$\bar{x} \vee z$	Axiom
4.	$\bar{y} \vee \bar{z}$	Axiom
5.	$\bar{x} \vee \bar{z}$	Axiom
6.	$x \vee \bar{y}$	$\operatorname{Res}(2,4)$
7.	x	$\operatorname{Res}(1,6)$
8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1.	$x \vee y$	Axiom
2.	$x \vee \bar{y} \vee z$	Axiom
3.	$\bar{x} \vee z$	Axiom
4.	$\bar{y} \vee \bar{z}$	Axiom
5.	$\bar{x} \vee \bar{z}$	Axiom
6.	$x \vee \bar{y}$	$\operatorname{Res}(2,4)$
7.	x	$\operatorname{Res}(1,6)$
8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule
$\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}$
- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

1. $x \vee y \quad$ Axiom
2. $x \vee \bar{y} \vee z \quad$ Axiom
3. $\bar{x} \vee z \quad$ Axiom
4. $\bar{y} \vee \bar{z} \quad$ Axiom
5. $\bar{x} \vee \bar{z} \quad$ Axiom
6. $\quad x \vee \bar{y} \quad \operatorname{Res}(2,4)$
7. $\quad x \quad \operatorname{Res}(1,6)$
8. $\bar{x} \quad \operatorname{Res}(3,5)$
9.

\perp

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

The Resolution Proof System

Goal: refute unsatisfiable CNF

- Start with axiom clauses in formula
- Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

- Done when empty clause \perp derived

Can represent refutation/proof as

- annotated list or
- directed acyclic graph (DAG)

Tree-like resolution if DAG is tree

Resolution Size/Length and Width

Length of proof $=\#$ clauses (9 in our example)
Length of refuting $F=\mathrm{min}$ length over all proofs for F

Resolution Size/Length and Width

Length of proof $=\#$ clauses (9 in our example)
Length of refuting $F=\mathrm{min}$ length over all proofs for F
Size should strictly speaking measure \# symbols But for resolution don't care too much about linear factors here Set size $=$ length

Resolution Size/Length and Width

Length of proof $=\#$ clauses (9 in our example)
Length of refuting $F=$ min length over all proofs for F
Size should strictly speaking measure \# symbols But for resolution don't care too much about linear factors here Set size $=$ length

Width of proof $=$ \# literals in largest clause (3 in our example)
Width of refuting $F=$ min width over all proofs for F
Width at most linear, so here obviously care about linear factors

Resolution Space

Space $=$ amount of memory needed

 when performing refutation| 1. | $x \vee y$ | Axiom |
| :--- | :---: | :--- |
| 2. | $x \vee \bar{y} \vee z$ | Axiom |
| 3. | $\bar{x} \vee z$ | Axiom |
| 4. | $\bar{y} \vee \bar{z}$ | Axiom |
| 5. | $\bar{x} \vee \bar{z}$ | Axiom |
| 6. | $x \vee \bar{y}$ | $\operatorname{Res}(2,4)$ |
| 7. | x | $\operatorname{Res}(1,6)$ |
| 8. | \bar{x} | $\operatorname{Res}(3,5)$ |
| 9. | \perp | $\operatorname{Res}(7,8)$ |

Resolution Space

Space $=$ amount of memory needed when performing refutation

Can be measured in different ways:
2. $x \vee \bar{y} \vee z \quad$ Axiom

- clause space (our focus)
- total space

1.	$x \vee y$	Axiom
2.	$x \vee \bar{y} \vee z$	Axiom
3.	$\bar{x} \vee z$	Axiom
4.	$\bar{y} \vee \bar{z}$	Axiom
5.	$\bar{x} \vee \bar{z}$	Axiom
6.	$x \vee \bar{y}$	$\operatorname{Res}(2,4)$
7.	x	$\operatorname{Res}(1,6)$
8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

Resolution Space

Space $=$ amount of memory needed when performing refutation

Can be measured in different ways:

- clause space (our focus)
- total space

Clause space at step t : \# clauses at steps $\leq t$ used at steps $\geq t$

1.	$x \vee y$	Axiom
2.	$x \vee \bar{y} \vee z$	Axiom
3.	$\bar{x} \vee z$	Axiom
4.	$\bar{y} \vee \bar{z}$	Axiom

Total space at step t : Count also literals
6

7.	x	$\operatorname{Res}(1,6)$
8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

Resolution Space

Space $=$ amount of memory needed when performing refutation

Can be measured in different ways:

- clause space (our focus)
- total space

Clause space at step t : \# clauses at steps $\leq t$ used at steps $\geq t$

1.	$x \vee y$	Axiom
2.	$x \vee \bar{y} \vee z$	Axiom
3.	$\bar{x} \vee z$	Axiom
4.	$\bar{y} \vee \bar{z}$	Axiom

Total space at step t : Count also literals
Example: Clause space at step 7

5.	$\bar{x} \vee \bar{z}$	Axiom
6.	$x \vee \bar{y}$	$\operatorname{Res}(2,4)$
7.	x	$\operatorname{Res}(1,6)$
8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

Resolution Space

Space $=$ amount of memory needed when performing refutation

Can be measured in different ways:

- clause space (our focus)
- total space

Clause space at step t : \# clauses at steps $\leq t$ used at steps $\geq t$
Total space at step t : Count also literals

Example: Clause space at step 7

Resolution Space

Space $=$ amount of memory needed when performing refutation

Can be measured in different ways:

- clause space (our focus)
- total space

Clause space at step t : \# clauses at steps $\leq t$ used at steps $\geq t$
Total space at step t : Count also literals

Example: Clause space at step 7 is 5

Resolution Space

Space $=$ amount of memory needed when performing refutation

Can be measured in different ways:

- clause space (our focus)
- total space

Clause space at step t : \# clauses at steps $\leq t$ used at steps $\geq t$
Total space at step t : Count also literals

Example: Clause space at step 7 is 5 Total space at step 7 is 9

Resolution Space

Space $=$ amount of memory needed when performing refutation

Can be measured in different ways:

- clause space (our focus)
- total space

Clause space at step t : \# clauses at steps $\leq t$ used at steps $\geq t$
Total space at step t : Count also literals

Example: Clause space at step 7 is 5 Total space at step 7 is 9

Space of proof $\quad=$ max over all steps
Space of refuting $F=$ min over all proofs

Upper Bounds on Resolution Complexity Measures

Worst-case upper bounds for resolution refutations of formula (from now on assume $n=$ \#variables):

Upper Bounds on Resolution Complexity Measures

Worst-case upper bounds for resolution refutations of formula (from now on assume $n=$ \#variables):

$$
\text { Size / length \# derivation steps } \mathcal{O}\left(2^{n}\right)
$$

Upper Bounds on Resolution Complexity Measures

Worst-case upper bounds for resolution refutations of formula (from now on assume $n=$ \#variables):

Size / length	\# derivation steps	$\mathcal{O}\left(2^{n}\right)$
Width	$\max \#$ literals in a clause	$\mathcal{O}(n)$

Upper Bounds on Resolution Complexity Measures

Worst-case upper bounds for resolution refutations of formula (from now on assume $n=$ \#variables):

Size / length	\# derivation steps	$\mathcal{O}\left(2^{n}\right)$
Width	$\max \#$ literals in a clause	$\mathcal{O}(n)$
Clause space	$\max \#$ clauses in memory	$\mathcal{O}(n)$

Upper Bounds on Resolution Complexity Measures

Worst-case upper bounds for resolution refutations of formula (from now on assume $n=$ \#variables):

Size / length	\# derivation steps	$\mathcal{O}\left(2^{n}\right)$
Width	max \# literals in a clause	$\mathcal{O}(n)$
Clause space	max \# clauses in memory	$\mathcal{O}(n)$
Total space	total size of memory	$\mathcal{O}\left(n^{2}\right)$

Upper Bounds on Resolution Complexity Measures

Worst-case upper bounds for resolution refutations of formula (from now on assume $n=$ \#variables):

Size / length	\# derivation steps	$\mathcal{O}\left(2^{n}\right)$
Width	max \# literals in a clause	$\mathcal{O}(n)$
Clause space	max \# clauses in memory	$\mathcal{O}(n)$
Total space	total size of memory	$\mathcal{O}\left(n^{2}\right)$

This talk: focus on width and clause space

Upper Bounds on Resolution Complexity Measures

Worst-case upper bounds for resolution refutations of formula (from now on assume $n=$ \#variables):

$$
\begin{array}{lll}
\text { Size / length } & \text { \# derivation steps } & \mathcal{O}\left(2^{n}\right) \\
\text { Width } & \text { max \# literals in a clause } & \mathcal{O}(n) \\
\text { Clause space } & \text { max \# clauses in memory } & \mathcal{O}(n) \\
\text { Total space } & \text { total size of memory } & \mathcal{O}\left(n^{2}\right)
\end{array}
$$

This talk: focus on width and clause space But results translate to total space by:

$$
\text { clause space } \leq \text { total space } \leq \text { clause space } \cdot \text { width }
$$

Lower Bounds via Resolution Width

For n-variable k-CNFs (k constant) it holds that:
width $\leq \Omega$ (clause space) [Atserias \& Dalmau '03]

Lower Bounds via Resolution Width

For n-variable k-CNFs (k constant) it holds that:

$$
\begin{array}{lll}
\text { width } & \leq \Omega(\text { clause space }) & \text { [Atserias \& Dalmau '03] } \\
\text { width }^{2} \leq \Omega(\text { total space }) & \text { [Bonacina '16] }
\end{array}
$$

Lower Bounds via Resolution Width

For n-variable k-CNFs (k constant) it holds that:

width	$\leq \Omega($ clause space $)$	[Atserias \& Dalmau '03]
width $^{2} \leq \Omega($ total space $)$	[Bonacina '16]	
width $^{2} \leq \Omega(n \log ($ size $))$	[Ben-Sasson \& Widgerson '99]	

Lower Bounds via Resolution Width

For n-variable k-CNFs (k constant) it holds that:

width	$\leq \Omega($ clause space $)$	[Atserias \& Dalmau '03]
width $^{2} \leq \Omega($ total space $)$	[Bonacina '16]	
width $^{2} \leq \Omega(n \log ($ size $))$	[Ben-Sasson \& Widgerson '99]	

In particular, width $=\Omega(n) \Longrightarrow$ size $=\Omega\left(2^{n}\right)$

Lower Bounds via Resolution Width

For n-variable k-CNFs (k constant) it holds that:

width	$\leq \Omega($ clause space $)$	[Atserias \& Dalmau '03]
width $^{2} \leq \Omega($ total space $)$	[Bonacina '16]	
width $^{2} \leq \Omega(n \log ($ size $))$	[Ben-Sasson \& Widgerson '99]	

In particular, width $=\Omega(n) \Longrightarrow$ size $=\Omega\left(2^{n}\right)$
So clearly width key measure-but not the answer to every question

Lower Bounds via Resolution Width

For n-variable k-CNFs (k constant) it holds that:

width	$\leq \Omega($ clause space $)$	[Atserias \& Dalmau '03]
width $^{2} \leq \Omega($ total space $)$	[Bonacina '16]	
width $^{2} \leq \Omega(n \log ($ size $))$	[Ben-Sasson \& Widgerson '99]	

In particular, width $=\Omega(n) \Longrightarrow$ size $=\Omega\left(2^{n}\right)$
So clearly width key measure-but not the answer to every question

- Can have width $\Theta(\sqrt{n})$ and still size poly (n) [Bonet \& Galesi '99]

Lower Bounds via Resolution Width

For n-variable k-CNFs (k constant) it holds that:

width	$\leq \Omega($ clause space $)$	[Atserias \& Dalmau '03]
width $^{2} \leq \Omega($ total space $)$	[Bonacina '16]	
width $^{2} \leq \Omega(n \log ($ size $))$	[Ben-Sasson \& Widgerson '99]	

In particular, width $=\Omega(n) \Longrightarrow$ size $=\Omega\left(2^{n}\right)$
So clearly width key measure-but not the answer to every question

- Can have width $\Theta(\sqrt{n})$ and still size poly (n) [Bonet \& Galesi '99]
- Can have width $\mathcal{O}(1)$ and still clause space $\Omega(n / \log n)$ [Ben-Sasson \& Nordström '08]

Upper Bounds via Resolution Width

$$
\text { size } \leq n^{\mathcal{O}(\text { width })}
$$

Upper Bounds via Resolution Width

size	$\leq n^{\mathcal{O} \text { (width) }}$
time to find refutation	$\leq n^{\mathcal{O} \text { (width) }}$

for $w \leftarrow 3 \ldots n$ do
Resolve all clauses \& keep resolvents with at most w literals If \perp has been derived, then output UNSAT
end for
Output Sat

Upper Bounds via Resolution Width

$\begin{aligned} \text { size } & \leq n^{\mathcal{O} \text { (width) }} \\ \text { time to find refutation } & \leq n^{\mathcal{O} \text { (width) }}\end{aligned}$
for $w \leftarrow 3 \ldots n$ do
Resolve all clauses \& keep resolvents with at most w literals If \perp has been derived, then output UNSAT
end for
Output Sat
Algorithm (and resolution proof) requires time/size $n^{\mathcal{O}}$ (width) Cannot do better in general [Atserias, Lauria, \& Nordström '14] What is the space of a small-width proof? Trivially at most $n^{\mathcal{O}}$ (width)

Upper Bounds via Resolution Width

$\begin{aligned} \text { size } & \leq n^{\mathcal{O} \text { (width) }} \\ \text { time to find refutation } & \leq n^{\mathcal{O} \text { (width) }}\end{aligned}$
for $w \leftarrow 3 \ldots n$ do
Resolve all clauses \& keep resolvents with at most w literals If \perp has been derived, then output UNSAT
end for
Output Sat
Algorithm (and resolution proof) requires time/size $n^{\mathcal{O} \text { (width) }}$ Cannot do better in general [Atserias, Lauria, \& Nordström '14] What is the space of a small-width proof? Trivially at most $n \mathcal{O}$ (width)
[Ben-Sasson '02] exhibited formulas

- refutable in width $\mathcal{O}(1)$ and clause space $\mathcal{O}(1)$
- width $\mathcal{O}(1) \Longrightarrow$ clause space $\Omega(n / \log n)$

Upper Bounds via Resolution Width

$\begin{aligned} \text { size } & \leq n^{\mathcal{O} \text { (width) }} \\ \text { time to find refutation } & \leq n^{\mathcal{O} \text { (width) }}\end{aligned}$
for $w \leftarrow 3 \ldots n$ do
Resolve all clauses \& keep resolvents with at most w literals If \perp has been derived, then output UNSAT
end for
Output Sat
Algorithm (and resolution proof) requires time/size $n^{\mathcal{O} \text { (width) }}$ Cannot do better in general [Atserias, Lauria, \& Nordström '14] What is the space of a small-width proof? Trivially at most $n \mathcal{O}$ (width)
[Ben-Sasson '02] exhibited formulas

- refutable in width $\mathcal{O}(1)$ and clause space $\mathcal{O}(1)$
- width $\mathcal{O}(1) \Longrightarrow$ clause space $\Omega(n / \log n)$

Which bound is closer to the truth?

Upper Bounds via Resolution Width

$\begin{aligned} \text { size } & \leq n^{\mathcal{O}(\text { width })} \\ \text { time to find refutation } & \leq n^{\mathcal{O}} \text { (width) }\end{aligned}$
for $w \leftarrow 3 \ldots n$ do
Resolve all clauses \& keep resolvents with at most w literals If \perp has been derived, then output UNSAT

end for

Output Sat
Algorithm (and resolution proof) requires time/size $n^{\mathcal{O} \text { (width) }}$ Cannot do better in general [Atserias, Lauria, \& Nordström '14] What is the space of a small-width proof? Trivially at most $n \mathcal{O}$ (width)
[Ben-Sasson '02] exhibited formulas

- refutable in width $\mathcal{O}(1)$ and clause space $\mathcal{O}(1)$
- width $\mathcal{O}(1) \Longrightarrow$ clause space $\Omega(n / \log n)$

Which bound is closer to the truth?
Recall: can always do clause space $\mathcal{O}(n)$

A Supercritical Space-Width Tradeoff

Theorem
For any $\varepsilon>0$ and $6 \leq w \leq n^{\frac{1}{2}-\varepsilon}$ exist n-variable CNFs F_{n} s.t.

1. Resolution can refute F_{n} in width w
2. Any width-w refutation of F_{n} requires clause space $n^{\Omega(w)}$

A Supercritical Space-Width Tradeoff

Theorem
For any $\varepsilon>0$ and $6 \leq w \leq n^{\frac{1}{2}-\varepsilon}$ exist n-variable CNFs F_{n} s.t.

1. Resolution can refute F_{n} in width w
2. Any width-w refutation of F_{n} requires clause space $n^{\Omega(w)}$

Space lower bound $n^{\Omega(w)}$ holds for all proofs up to width $o(w \log n)$

A Supercritical Space-Width Tradeoff

Theorem

For any $\varepsilon>0$ and $6 \leq w \leq n^{\frac{1}{2}-\varepsilon}$ exist n-variable CNFs F_{n} s.t.

1. Resolution can refute F_{n} in width w
2. Any width-w refutation of F_{n} requires clause space $n^{\Omega(w)}$

Space lower bound $n^{\Omega(w)}$ holds for all proofs up to width $o(w \log n)$

Proof outline

Use hardness condensation approach in [Razborov '16]:

1. Start with formula that requires nearly linear clause space
2. Reduce the number of variables from n to $n^{1 / w}$
3. But maintain space lower bound for small-width proofs

A Supercritical Space-Width Tradeoff

Theorem

For any $\varepsilon>0$ and $6 \leq w \leq n^{\frac{1}{2}-\varepsilon}$ exist n-variable CNFs F_{n} s.t.

1. Resolution can refute F_{n} in width w
2. Any width-w refutation of F_{n} requires clause space $n^{\Omega(w)}$

Space lower bound $n^{\Omega(w)}$ holds for all proofs up to width $o(w \log n)$

Proof outline

Use hardness condensation approach in [Razborov '16]:

1. Start with formula that requires nearly linear clause space
2. Reduce the number of variables from n to $n^{1 / w}$
3. But maintain space lower bound for small-width proofs

Key components:

- Expander graphs
- XORification (substitution with exclusive or)

What Do You Mean "Supercritical'??

Typical setting for trade-off results:

- Have two complexity measures φ and ψ

What Do You Mean "Supercritical'??

Typical setting for trade-off results:

- Have two complexity measures φ and ψ
- Worst-case (usually trivial) upper bounds $\varphi_{\text {crit }}$ and $\psi_{\text {crit }}$

What Do You Mean "Supercritical'?!

Typical setting for trade-off results:

- Have two complexity measures φ and ψ
- Worst-case (usually trivial) upper bounds $\varphi_{\text {crit }}$ and $\psi_{\text {crit }}$
- There are instances I_{n} such that:
- \exists solutions S_{1}, S_{2} with $\varphi\left(S_{1}\right)=$ small ${ }^{\prime}$ and $\psi\left(S_{2}\right)=$ small $^{\prime \prime}$

What Do You Mean "Supercritical'?!

Typical setting for trade-off results:

- Have two complexity measures φ and ψ
- Worst-case (usually trivial) upper bounds $\varphi_{\text {crit }}$ and $\psi_{\text {crit }}$
- There are instances I_{n} such that:
- \exists solutions S_{1}, S_{2} with $\varphi\left(S_{1}\right)=$ small ${ }^{\prime}$ and $\psi\left(S_{2}\right)=$ small $^{\prime \prime}$
- Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\text {crit }}$

What Do You Mean "Supercritical'?!

Typical setting for trade-off results:

- Have two complexity measures φ and ψ
- Worst-case (usually trivial) upper bounds $\varphi_{\text {crit }}$ and $\psi_{\text {crit }}$
- There are instances I_{n} such that:
- \exists solutions S_{1}, S_{2} with $\varphi\left(S_{1}\right)=$ small' $^{\prime}$ and $\psi\left(S_{2}\right)=$ small $^{\prime \prime}$
- Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\text {crit }}$
- Conversely, $\psi(S)$ medium-small $\Longrightarrow \varphi(S) \approx \varphi_{\text {crit }}$

What Do You Mean "Supercritical'?!

Typical setting for trade-off results:

- Have two complexity measures φ and ψ
- Worst-case (usually trivial) upper bounds $\varphi_{\text {crit }}$ and $\psi_{\text {crit }}$
- There are instances I_{n} such that:
- \exists solutions S_{1}, S_{2} with $\varphi\left(S_{1}\right)=$ small' $^{\prime}$ and $\psi\left(S_{2}\right)=$ small $^{\prime \prime}$
- Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\text {crit }}$
- Conversely, $\psi(S)$ medium-small $\Longrightarrow \varphi(S) \approx \varphi_{\text {crit }}$

Supercritical setting for trade-offs:

- Any S with $\varphi(S)$ medium-small must have $\psi(S) \gg \psi_{\text {crit }}$

What Do You Mean "Supercritical'?!

Typical setting for trade-off results:

- Have two complexity measures φ and ψ
- Worst-case (usually trivial) upper bounds $\varphi_{\text {crit }}$ and $\psi_{\text {crit }}$
- There are instances I_{n} such that:
- \exists solutions S_{1}, S_{2} with $\varphi\left(S_{1}\right)=$ small $^{\prime}$ and $\psi\left(S_{2}\right)=$ small $^{\prime \prime}$
- Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\text {crit }}$
- Conversely, $\psi(S)$ medium-small $\Longrightarrow \varphi(S) \approx \varphi_{\text {crit }}$

Supercritical setting for trade-offs:

- Any S with $\varphi(S)$ medium-small must have $\psi(S) \gg \psi_{\text {crit }}$
- Optimizing φ pushes ψ up into supercritical regime above worst case!

What Do You Mean "Supercritical'?!

Typical setting for trade-off results:

- Have two complexity measures φ and ψ
- Worst-case (usually trivial) upper bounds $\varphi_{\text {crit }}$ and $\psi_{\text {crit }}$
- There are instances I_{n} such that:
- \exists solutions S_{1}, S_{2} with $\varphi\left(S_{1}\right)=$ small $^{\prime}$ and $\psi\left(S_{2}\right)=$ small $^{\prime \prime}$
- Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\text {crit }}$
- Conversely, $\psi(S)$ medium-small $\Longrightarrow \varphi(S) \approx \varphi_{\text {crit }}$

Supercritical setting for trade-offs:

- Any S with $\varphi(S)$ medium-small must have $\psi(S) \gg \psi_{\text {crit }}$
- Optimizing φ pushes ψ up into supercritical regime above worst case!
- Very strong trade-offs—Razborov refers to them as "ultimate"

What Do You Mean "Supercritical'?!

Typical setting for trade-off results:

- Have two complexity measures φ and ψ
- Worst-case (usually trivial) upper bounds $\varphi_{\text {crit }}$ and $\psi_{\text {crit }}$
- There are instances I_{n} such that:
- \exists solutions S_{1}, S_{2} with $\varphi\left(S_{1}\right)=$ small $^{\prime}$ and $\psi\left(S_{2}\right)=$ small $^{\prime \prime}$
- Any solution S with $\varphi(S)$ even medium-small must have $\psi(S)$ approach critical value $\psi_{\text {crit }}$
- Conversely, $\psi(S)$ medium-small $\Longrightarrow \varphi(S) \approx \varphi_{\text {crit }}$

Supercritical setting for trade-offs:

- Any S with $\varphi(S)$ medium-small must have $\psi(S) \gg \psi_{\text {crit }}$
- Optimizing φ pushes ψ up into supercritical regime above worst case!
- Very strong trade-offs—Razborov refers to them as "ultimate"
- We feel "supercritical" is more descriptive

Expanders

Very well-connected so-called expander graphs play leading role in many proof complexity lower bounds

Expanders

Very well-connected so-called expander graphs play leading role in many proof complexity lower bounds

Clause-variable incidence graph (CVIG)

- Clauses on the left
- Variables on the right
- Edge if variable \in clause (ignore signs)

Expanders

Very well-connected so-called expander graphs play leading role in many proof complexity lower bounds

Clause-variable incidence graph (CVIG)

- Clauses on the left
- Variables on the right
- Edge if variable \in clause (ignore signs)

If CVIG well-connected, then lower bounds for

- width, size, and space in resolution [Ben-Sasson \& Wigderson '99, Ben-Sasson \& Galesi '03]
- degree and size in polynomial calculus [Impagliazzo et al. '99, Alekhnovich \& Razborov '01]

Expanders

Very well-connected so-called expander graphs play leading role in many proof complexity lower bounds

Clause-variable incidence graph (CVIG)

- Clauses on the left
- Variables on the right
- Edge if variable \in clause (ignore signs)

If CVIG well-connected, then lower bounds for

- width, size, and space in resolution [Ben-Sasson \& Wigderson '99, Ben-Sasson \& Galesi '03]
- degree and size in polynomial calculus
[Impagliazzo et al. '99, Alekhnovich \& Razborov '01]
Can also define more general graphs that capture "underlying combinatorial structure" and extend results [Mikša \& Nordström '15]

XORification

Modify F to $F\left[\oplus_{2}\right]$ by substituting $x_{1} \oplus x_{2}$ for every variable x

XORification

Modify F to $F\left[\oplus_{2}\right]$ by substituting $x_{1} \oplus x_{2}$ for every variable x

$$
\begin{gathered}
\bar{x} \vee y \\
\Downarrow \\
\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \\
\Downarrow \\
\left(x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right)
\end{gathered}
$$

XORification

Modify F to $F\left[\oplus_{2}\right]$ by substituting $x_{1} \oplus x_{2}$ for every variable x

$$
\begin{gathered}
\bar{x} \vee y \\
\Downarrow \\
\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \\
\Downarrow \\
\left(x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right)
\end{gathered}
$$

Used to prove, e.g.:

- width $\geq w$ for $F \Longrightarrow$ size $\geq \exp (\Omega(w))$ for $F\left[\oplus_{2}\right]$ [Ben-Sasson '02] (credited to [Alekhnovich \& Razborov])

XORification

Modify F to $F\left[\oplus_{2}\right]$ by substituting $x_{1} \oplus x_{2}$ for every variable x

$$
\begin{gathered}
\bar{x} \vee y \\
\Downarrow \\
\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \\
\Downarrow \\
\left(x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right)
\end{gathered}
$$

Used to prove, e.g.:

- width $\geq w$ for $F \Longrightarrow$ size $\geq \exp (\Omega(w))$ for $F\left[\oplus_{2}\right]$ [Ben-Sasson '02] (credited to [Alekhnovich \& Razborov])
- \# vars in memory $\geq s$ for $F \Longrightarrow$ clause space $\geq \Omega(s)$ for $F\left[\oplus_{2}\right]$
[Ben-Sasson \& Nordström '08]

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F\left[\oplus_{2}\right]$?

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F\left[\oplus_{2}\right]$?
Naive idea: Simulate resolution refutation π^{\prime} of F (using substitution on previous slide)

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F\left[\oplus_{2}\right]$?
Naive idea: Simulate resolution refutation π^{\prime} of F (using substitution on previous slide)

Seems like a bad idea-XORification causes bad blow-up

- linear in \# variables in memory
- exponential in width

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F\left[\oplus_{2}\right]$?
Naive idea: Simulate resolution refutation π^{\prime} of F (using substitution on previous slide)

Seems like a bad idea-XORification causes bad blow-up

- linear in \# variables in memory
- exponential in width

Nevertheless, can prove (sort of) this is the best resolution can do

Intuition for XORification Lower Bounds

How to construct resolution refutation π of $F\left[\oplus_{2}\right]$?
Naive idea: Simulate resolution refutation π^{\prime} of F (using substitution on previous slide)

Seems like a bad idea-XORification causes bad blow-up

- linear in \# variables in memory
- exponential in width

Nevertheless, can prove (sort of) this is the best resolution can do Intuition behind proof

- Given resolution refutation π of $F\left[\oplus_{2}\right]$
- Extract the refutation π^{\prime} of F that π is simulating
- Prove that extraction preserves complexity measures of interest

Pebbling Formulas

Encode pebble games on DAGs
[Ben-Sasson \& Wigderson '99]

$$
\begin{array}{ll}
\text { 1. } & u_{1} \oplus u_{2} \\
\text { 2. } & v_{1} \oplus v_{2} \\
\text { 3. } & w_{1} \oplus w_{2} \\
\text { 4. } & \left(u_{1} \oplus u_{2}\right) \wedge\left(v_{1} \oplus v_{2}\right) \rightarrow\left(x_{1} \oplus x_{2}\right) \\
\text { 5. } & \left(v_{1} \oplus v_{2}\right) \wedge\left(w_{1} \oplus w_{2}\right) \rightarrow\left(y_{1} \oplus y_{2}\right) \\
6 . & \left(x_{1} \oplus x_{2}\right) \wedge\left(y_{1} \oplus y_{2}\right) \rightarrow\left(z_{1} \oplus z_{2}\right) \\
\text { 7. } & \neg\left(z_{1} \oplus z_{2}\right)
\end{array}
$$

- sources are true
- truth propagates upwards
- but sink is false

Pebbling Formulas

Encode pebble games on DAGs [Ben-Sasson \& Wigderson '99]

```
1. }\mp@subsup{u}{1}{}\oplus\mp@subsup{u}{2}{
2. }\mp@subsup{v}{1}{}\oplus\mp@subsup{v}{2}{
3. }\mp@subsup{w}{1}{}\oplus\mp@subsup{w}{2}{
4. }(\mp@subsup{u}{1}{}\oplus\mp@subsup{u}{2}{})\wedge(\mp@subsup{v}{1}{}\oplus\mp@subsup{v}{2}{})->(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}
5. }(\mp@subsup{v}{1}{}\oplus\mp@subsup{v}{2}{})\wedge(\mp@subsup{w}{1}{}\oplus\mp@subsup{w}{2}{})->(\mp@subsup{y}{1}{}\oplus\mp@subsup{y}{2}{}
6. }(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{})\wedge(\mp@subsup{y}{1}{}\oplus\mp@subsup{y}{2}{})->(\mp@subsup{z}{1}{}\oplus\mp@subsup{z}{2}{}
7. }\neg(\mp@subsup{z}{1}{}\oplus\mp@subsup{z}{2}{}
```


- sources are true
- truth propagates upwards
- but sink is false

Pebbling Formulas

Encode pebble games on DAGs [Ben-Sasson \& Wigderson '99]

```
1. }\mp@subsup{u}{1}{}\oplus\mp@subsup{u}{2}{
2. }\mp@subsup{v}{1}{}\oplus\mp@subsup{v}{2}{
3. }\mp@subsup{w}{1}{}\oplus\mp@subsup{w}{2}{
4. }(\mp@subsup{u}{1}{}\oplus\mp@subsup{u}{2}{})\wedge(\mp@subsup{v}{1}{}\oplus\mp@subsup{v}{2}{})->(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}
5. (v
6. (}\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{})\wedge(\mp@subsup{y}{1}{}\oplus\mp@subsup{y}{2}{})->(\mp@subsup{z}{1}{}\oplus\mp@subsup{z}{2}{}
7. }\neg(\mp@subsup{z}{1}{}\oplus\mp@subsup{z}{2}{}
```


- sources are true
- truth propagates upwards
- but sink is false

Pebbling Formulas

Encode pebble games on DAGs
[Ben-Sasson \& Wigderson '99]

$$
\begin{array}{ll}
\text { 1. } & u_{1} \oplus u_{2} \\
\text { 2. } & v_{1} \oplus v_{2} \\
\text { 3. } & w_{1} \oplus w_{2} \\
\text { 4. } & \left(u_{1} \oplus u_{2}\right) \wedge\left(v_{1} \oplus v_{2}\right) \rightarrow\left(x_{1} \oplus x_{2}\right) \\
\text { 5. } & \left(v_{1} \oplus v_{2}\right) \wedge\left(w_{1} \oplus w_{2}\right) \rightarrow\left(y_{1} \oplus y_{2}\right) \\
6 . & \left(x_{1} \oplus x_{2}\right) \wedge\left(y_{1} \oplus y_{2}\right) \rightarrow\left(z_{1} \oplus z_{2}\right) \\
\text { 7. } & \neg\left(z_{1} \oplus z_{2}\right)
\end{array}
$$

- sources are true
- truth propagates upwards
- but sink is false

Pebbling Formulas

Encode pebble games on DAGs
[Ben-Sasson \& Wigderson '99]

$$
\begin{array}{ll}
\text { 1. } & u_{1} \oplus u_{2} \\
\text { 2. } & v_{1} \oplus v_{2} \\
\text { 3. } & w_{1} \oplus w_{2} \\
\text { 4. } & \left(u_{1} \oplus u_{2}\right) \wedge\left(v_{1} \oplus v_{2}\right) \rightarrow\left(x_{1} \oplus x_{2}\right) \\
\text { 5. } & \left(v_{1} \oplus v_{2}\right) \wedge\left(w_{1} \oplus w_{2}\right) \rightarrow\left(y_{1} \oplus y_{2}\right) \\
6 . & \left(x_{1} \oplus x_{2}\right) \wedge\left(y_{1} \oplus y_{2}\right) \rightarrow\left(z_{1} \oplus z_{2}\right) \\
\text { 7. } & \neg\left(z_{1} \oplus z_{2}\right)
\end{array}
$$

- sources are true
- truth propagates upwards
- but sink is false

Pebbling Formulas

Encode pebble games on DAGs

[Ben-Sasson \& Wigderson '99]

```
1. }\mp@subsup{u}{1}{}\oplus\mp@subsup{u}{2}{
2. }\mp@subsup{v}{1}{}\oplus\mp@subsup{v}{2}{
3. }\mp@subsup{w}{1}{}\oplus\mp@subsup{w}{2}{
4. }(\mp@subsup{u}{1}{}\oplus\mp@subsup{u}{2}{})\wedge(\mp@subsup{v}{1}{}\oplus\mp@subsup{v}{2}{})->(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}
5. (v
6. }(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{})\wedge(\mp@subsup{y}{1}{}\oplus\mp@subsup{y}{2}{})->(\mp@subsup{z}{1}{}\oplus\mp@subsup{z}{2}{}
7. }\neg(\mp@subsup{z}{1}{}\oplus\mp@subsup{z}{2}{}
```


- sources are true
- truth propagates upwards
- but sink is false

Pebbling Formulas

Encode pebble games on DAGs

[Ben-Sasson \& Wigderson '99]

$$
\begin{array}{ll}
\text { 1. } & u_{1} \oplus u_{2} \\
\text { 2. } & v_{1} \oplus v_{2}
\end{array}
$$

3. $w_{1} \oplus w_{2}$
4. $\left(u_{1} \oplus u_{2}\right) \wedge\left(v_{1} \oplus v_{2}\right) \rightarrow\left(x_{1} \oplus x_{2}\right)$
5. $\left(v_{1} \oplus v_{2}\right) \wedge\left(w_{1} \oplus w_{2}\right) \rightarrow\left(y_{1} \oplus y_{2}\right)$
6. $\left(x_{1} \oplus x_{2}\right) \wedge\left(y_{1} \oplus y_{2}\right) \rightarrow\left(z_{1} \oplus z_{2}\right)$
7. $\neg\left(z_{1} \oplus z_{2}\right)$

- sources are true
- truth propagates upwards
- but sink is false

Written in CNF as explained before, e.g.

$$
\begin{aligned}
u_{1} \oplus u_{2} & =\left(u_{1} \vee u_{2}\right) \wedge\left(\bar{u}_{1} \vee \bar{u}_{2}\right) \\
\neg\left(z_{1} \oplus z_{2}\right) & =\left(z_{1} \vee \bar{z}_{2}\right) \wedge\left(\bar{z}_{1} \vee z_{2}\right)
\end{aligned}
$$

Pebbling Formulas

Encode pebble games on DAGs

[Ben-Sasson \& Wigderson '99]

$$
\begin{array}{ll}
\text { 1. } & u_{1} \oplus u_{2} \\
\text { 2. } & v_{1} \oplus v_{2}
\end{array}
$$

3. $w_{1} \oplus w_{2}$
4. $\left(u_{1} \oplus u_{2}\right) \wedge\left(v_{1} \oplus v_{2}\right) \rightarrow\left(x_{1} \oplus x_{2}\right)$
5. $\left(v_{1} \oplus v_{2}\right) \wedge\left(w_{1} \oplus w_{2}\right) \rightarrow\left(y_{1} \oplus y_{2}\right)$
6. $\left(x_{1} \oplus x_{2}\right) \wedge\left(y_{1} \oplus y_{2}\right) \rightarrow\left(z_{1} \oplus z_{2}\right)$
7. $\neg\left(z_{1} \oplus z_{2}\right)$

- sources are true
- truth propagates upwards
- but sink is false

Written in CNF as explained before, e.g.

$$
\begin{aligned}
u_{1} \oplus u_{2} & =\left(u_{1} \vee u_{2}\right) \wedge\left(\bar{u}_{1} \vee \bar{u}_{2}\right) \\
\neg\left(z_{1} \oplus z_{2}\right) & =\left(z_{1} \vee \bar{z}_{2}\right) \wedge\left(\bar{z}_{1} \vee z_{2}\right)
\end{aligned}
$$

Easy to refute pebbling formulas in size $\mathcal{O}(n)$ and width $\mathcal{O}(1)$
Pebbling space lower bounds \Rightarrow clause space lower bounds
[Ben-Sasson \& Nordström '08, '11]

XOR Substitution with Recycling (1/2)

Suppose

- F CNF formula over variables U
- $\mathcal{G}=(U \dot{\cup} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

XOR Substitution with Recycling (1/2)

Suppose

- F CNF formula over variables U
- $\mathcal{G}=(U \dot{\cup} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

XOR Substitution with Recycling (1/2)

Suppose

- F CNF formula over variables U
- $\mathcal{G}=(U \dot{\cup} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

XOR Substitution with Recycling (1/2)

Suppose

- F CNF formula over variables U
- $\mathcal{G}=(U \dot{\cup} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

XOR Substitution with Recycling (1/2)

Suppose

- F CNF formula over variables U
- $\mathcal{G}=(U \dot{\cup} V, E)$ bipartite graph

Substituted formula $F[\mathcal{G}]$ over variables V :

- replace every $u \in U$ by $\bigoplus_{v \in N(u)} v$

XOR Substitution with Recycling (2/2)

XOR Substitution with Recycling (2/2)

$$
\bar{u}_{2} \vee u_{5} \quad \longrightarrow \quad \neg\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right)
$$

$F \quad F[\mathcal{G}]$

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$

XOR Substitution with Recycling (2/2)

$$
\bar{u}_{2} \vee u_{5} \quad \longrightarrow \quad \neg\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right)
$$

$F \quad F[\mathcal{G}]$

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$
- \mathcal{G} with left-degree $\leq w / 6,|U|=n$, and $|V|=n^{\mathcal{O}(1 / w)}$

XOR Substitution with Recycling (2/2)

$$
\bar{u}_{2} \vee u_{5} \quad \longrightarrow \quad \neg\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right)
$$

$F \quad F[\mathcal{G}]$

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$
- \mathcal{G} with left-degree $\leq w / 6,|U|=n$, and $|V|=n^{\mathcal{O}(1 / w)}$
- $F[\mathcal{G}]$ refutable in width $\leq w$

XOR Substitution with Recycling (2/2)

$$
\bar{u}_{2} \vee u_{5} \quad \longrightarrow \quad \neg\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right)
$$

$F \quad F[\mathcal{G}]$

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$
- \mathcal{G} with left-degree $\leq w / 6,|U|=n$, and $|V|=n^{\mathcal{O}(1 / w)}$
- $F[\mathcal{G}]$ refutable in width $\leq w$

XOR Substitution with Recycling (2/2)

$$
\bar{u}_{2} \vee u_{5} \quad \longrightarrow \quad \neg\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right)
$$

$F \quad F[\mathcal{G}]$

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$
- \mathcal{G} with left-degree $\leq w / 6,|U|=n$, and $|V|=n^{\mathcal{O}(1 / w)}$
- $F[\mathcal{G}]$ refutable in width $\leq w$
- space of width-w refutation of $F[\mathcal{G}] \gtrsim$ space of refutation of $F=\Omega(n / \log n)=|V|^{\Omega(w)}$

XOR Substitution with Recycling (2/2)

$$
\bar{u}_{2} \vee u_{5} \quad \longrightarrow \quad \neg\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right)
$$

$F \quad F[\mathcal{G}]$

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$
- \mathcal{G} with left-degree $\leq w / 6,|U|=n$, and $|V|=n^{\mathcal{O}(1 / w)}$
- $F[\mathcal{G}]$ refutable in width $\leq w$
- space of width-w refutation of $F[\mathcal{G}] \gtrsim$ space of refutation of $F=\Omega(n / \log n)=|V|^{\Omega(w)}$?

XOR Substitution with Recycling (2/2)

$$
\begin{aligned}
\bar{u}_{2} \vee u_{5} & \longrightarrow \neg\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right) \\
u_{6} & \longrightarrow \quad\left(v_{4} \oplus v_{5}\right)
\end{aligned}
$$

$F \quad F[\mathcal{G}]$

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$
- \mathcal{G} with left-degree $\leq w / 6,|U|=n$, and $|V|=n^{\mathcal{O}(1 / w)}$
- $F[\mathcal{G}]$ refutable in width $\leq w$
- space of width- w refutation of $F[\mathcal{G}] \gtrsim$ space of refutation of $F=\Omega(n / \log n)=|V|^{\Omega(w)}$?

XOR Substitution with Recycling (2/2)

$$
F \quad F[\mathcal{G}]
$$

$$
\begin{aligned}
\bar{u}_{2} \vee u_{5} & \longrightarrow \\
\longrightarrow & \left.\neg v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right) \\
u_{6} & \longrightarrow
\end{aligned}\left(v_{4} \oplus v_{5}\right) .
$$

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$
- \mathcal{G} with left-degree $\leq w / 6,|U|=n$, and $|V|=n^{\mathcal{O}(1 / w)}$
- $F[\mathcal{G}]$ refutable in width $\leq w$
- space of width-w refutation of $F[\mathcal{G}] \gtrsim$ space of refutation of $F=\Omega(n / \log n)=|V|^{\Omega(w)}$?

XOR Substitution with Recycling (2/2)

$$
\begin{aligned}
\bar{u}_{2} \vee u_{5} & \longrightarrow \neg\left(v_{1} \oplus v_{2} \oplus v_{3}\right) \vee\left(v_{3} \oplus v_{5}\right) \\
u_{6} & \longrightarrow\left(v_{4} \oplus v_{5}\right) \\
\bar{u}_{7} & \longrightarrow \neg\left(v_{4} \oplus v_{5}\right)
\end{aligned}
$$

Solution: Use expander graphs!

- Apply to pebbling formulas F in [Ben-Sasson \& Nordström '08]
- refutable in width 6
- require space $\Omega(n / \log n)$
- \mathcal{G} expander with left-degree $\leq w / 6,|U|=n$, and $|V|=n^{\mathcal{O}(1 / w)}$
- $F[\mathcal{G}]$ refutable in width $\leq w$
- space of width-w refutation of $F[\mathcal{G}] \gtrsim$ space of refutation of $F=\Omega(n / \log n)=|V|^{\Omega(w)}$

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right):=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right):=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$

Example

- left-degree $d=3$
- expanding set size $r=3$
- expansion factor $c=1$

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right):=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$
Example
- left-degree $d=3$
- expanding set size $r=3$
- expansion factor $c=1$

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right):=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$
Example
- left-degree $d=3$
- expanding set size $r=3$
- expansion factor $c=1$

Bipartite Boundary Expander

$\mathcal{G}=(U \dot{\cup} V, E)$ is (d, r, c)-boundary expander if

- left-degree $\leq d$
- for every $U^{\prime} \subseteq U,\left|U^{\prime}\right| \leq r$ it holds that $\left|\partial\left(U^{\prime}\right)\right| \geq c\left|U^{\prime}\right|$
$\partial\left(U^{\prime}\right):=\left\{v \in N\left(U^{\prime}\right):\left|N(v) \cap U^{\prime}\right|=1\right\}$

Example

- left-degree $d=3$
- expanding set size $r=3$
- expansion factor $c=1$

Lemma ([Razborov '16])
For $\varepsilon>0$ and n, d with $d \leq|V|^{\frac{1}{2}-\varepsilon},|U|=n,|V|=n^{\mathcal{O}(1 / d)}$ there are ($d, r, 2$)-boundary expanders \mathcal{G} with $r=d \log n$

Sketch of Proof Sketch

Look at clauses \mathcal{C} in memory in width- w refutation of $F[\mathcal{G}]$ Recover clauses \mathcal{D} in memory in "simulated refutation" of F

Sketch of Proof Sketch

Look at clauses \mathcal{C} in memory in width- w refutation of $F[\mathcal{G}]$
Recover clauses \mathcal{D} in memory in "simulated refutation" of F

Must have $N(\operatorname{Vars}(\mathcal{D})) \subseteq \operatorname{Vars}(\mathcal{C})$

$$
\operatorname{Ker}\left(V^{\prime}\right):=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}
$$

$$
\left|V^{\prime}\right| \leq r \quad \Longrightarrow \quad\left|\operatorname{Ker}\left(V^{\prime}\right)\right| \leq\left|V^{\prime}\right|
$$ (since left vertex sets expand a lot)

Sketch of Proof Sketch

Look at clauses \mathcal{C} in memory in width- w refutation of $F[\mathcal{G}]$
Recover clauses \mathcal{D} in memory in "simulated refutation" of F

Must have $N(\operatorname{Vars}(\mathcal{D})) \subseteq \operatorname{Vars}(\mathcal{C})$
$\operatorname{Ker}\left(V^{\prime}\right):=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$
$\left|V^{\prime}\right| \leq r \quad \Longrightarrow \quad\left|\operatorname{Ker}\left(V^{\prime}\right)\right| \leq\left|V^{\prime}\right|$
(since left vertex sets expand a lot)
Example

$$
V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}
$$

Sketch of Proof Sketch

Look at clauses \mathcal{C} in memory in width- w refutation of $F[\mathcal{G}]$
Recover clauses \mathcal{D} in memory in "simulated refutation" of F

Must have $N(\operatorname{Vars}(\mathcal{D})) \subseteq \operatorname{Vars}(\mathcal{C})$
$\operatorname{Ker}\left(V^{\prime}\right):=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$
$\left|V^{\prime}\right| \leq r \quad \Longrightarrow \quad\left|\operatorname{Ker}\left(V^{\prime}\right)\right| \leq\left|V^{\prime}\right|$
(since left vertex sets expand a lot)

Example

$$
V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}
$$

Sketch of Proof Sketch

Look at clauses \mathcal{C} in memory in width- w refutation of $F[\mathcal{G}]$
Recover clauses \mathcal{D} in memory in "simulated refutation" of F

Must have $N(\operatorname{Vars}(\mathcal{D})) \subseteq \operatorname{Vars}(\mathcal{C})$
$\operatorname{Ker}\left(V^{\prime}\right):=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$
$\left|V^{\prime}\right| \leq r \quad \Longrightarrow \quad\left|\operatorname{Ker}\left(V^{\prime}\right)\right| \leq\left|V^{\prime}\right|$
(since left vertex sets expand a lot)

Example

$V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}$
Locally looks almost like XORification without recycling, so previous proof might work...
And give bound in terms of $|U| \gg|V|$

Sketch of Proof Sketch

Look at clauses \mathcal{C} in memory in width- w refutation of $F[\mathcal{G}]$
Recover clauses \mathcal{D} in memory in "simulated refutation" of F

Must have $N(\operatorname{Vars}(\mathcal{D})) \subseteq \operatorname{Vars}(\mathcal{C})$
$\operatorname{Ker}\left(V^{\prime}\right):=\left\{u \in U: N(u) \subseteq V^{\prime}\right\}$
$\left|V^{\prime}\right| \leq r \quad \Longrightarrow \quad\left|\operatorname{Ker}\left(V^{\prime}\right)\right| \leq\left|V^{\prime}\right|$
(since left vertex sets expand a lot)

Example

$V^{\prime}=\left\{v_{3}, \ldots, v_{8}\right\}, \operatorname{Ker}\left(V^{\prime}\right)=\left\{u_{6}, u_{7}, u_{12}\right\}$
Locally looks almost like XORification without recycling, so previous proof might work...
And give bound in terms of $|U| \gg|V|$
Actual details very different

Some More Details

F and G simultaneously falsifiable if $\exists \alpha$ s.t. $\alpha(F)=\alpha(G)=0$

Some More Details

F and G simultaneously falsifiable if $\exists \alpha$ s.t. $\alpha(F)=\alpha(G)=0$
Associate "substituted clause" C over $\operatorname{Vars}(F[\mathcal{G}])$ with all consistent "original clauses" D over $\operatorname{Vars}(F)$

$$
\mathcal{G}^{-1}(C)=\left\{\begin{array}{l|l}
D & \begin{array}{l}
\operatorname{Vars}(D)=\operatorname{Ker}(\operatorname{Vars}(C)) \\
D[\mathcal{G}] \text { and } C \text { simultaneously falsifiable }
\end{array}
\end{array}\right\}
$$

Some More Details

F and G simultaneously falsifiable if $\exists \alpha$ s.t. $\alpha(F)=\alpha(G)=0$
Associate "substituted clause" C over $\operatorname{Vars}(F[\mathcal{G}])$ with all consistent "original clauses" D over $\operatorname{Vars}(F)$

$$
\mathcal{G}^{-1}(C)=\left\{\begin{array}{l|l}
D & \begin{array}{l}
\operatorname{Vars}(D)=\operatorname{Ker}(\operatorname{Vars}(C)) \\
D[\mathcal{G}] \text { and } C \text { simultaneously falsifiable }
\end{array}
\end{array}\right\}
$$

Let $\pi=\left(C_{1}, C_{2}, \ldots, C_{L}\right)$ width- w refutation of $F[\mathcal{G}]$ and argue

Some More Details

F and G simultaneously falsifiable if $\exists \alpha$ s.t. $\alpha(F)=\alpha(G)=0$
Associate "substituted clause" C over $\operatorname{Vars}(F[\mathcal{G}])$ with all consistent "original clauses" D over $\operatorname{Vars}(F)$

$$
\mathcal{G}^{-1}(C)=\left\{\begin{array}{l|l}
D & \begin{array}{l}
\operatorname{Vars}(D)=\operatorname{Ker}(\operatorname{Vars}(C)) \\
D[\mathcal{G}] \text { and } C \text { simultaneously falsifiable }
\end{array}
\end{array}\right\}
$$

Let $\pi=\left(C_{1}, C_{2}, \ldots, C_{L}\right)$ width- w refutation of $F[\mathcal{G}]$ and argue

1. $|D| \leq|C| \leq w$ because of expansion

Some More Details

F and G simultaneously falsifiable if $\exists \alpha$ s.t. $\alpha(F)=\alpha(G)=0$
Associate "substituted clause" C over $\operatorname{Vars}(F[\mathcal{G}])$ with all consistent "original clauses" D over $\operatorname{Vars}(F)$

$$
\mathcal{G}^{-1}(C)=\left\{\begin{array}{l|l}
D & \begin{array}{l}
\operatorname{Vars}(D)=\operatorname{Ker}(\operatorname{Vars}(C)) \\
D[\mathcal{G}] \text { and } C \text { simultaneously falsifiable }
\end{array}
\end{array}\right\}
$$

Let $\pi=\left(C_{1}, C_{2}, \ldots, C_{L}\right)$ width- w refutation of $F[\mathcal{G}]$ and argue

1. $|D| \leq|C| \leq w$ because of expansion
2. $\left|\mathcal{G}^{-1}(C)\right| \leq 2^{|C|} \leq 2^{w}$ because of simultaneous satisfiability

Some More Details

F and G simultaneously falsifiable if $\exists \alpha$ s.t. $\alpha(F)=\alpha(G)=0$
Associate "substituted clause" C over $\operatorname{Vars}(F[\mathcal{G}])$ with all consistent "original clauses" D over $\operatorname{Vars}(F)$

$$
\mathcal{G}^{-1}(C)=\left\{\begin{array}{l|l}
D & \begin{array}{l}
\operatorname{Vars}(D)=\operatorname{Ker}(\operatorname{Vars}(C)) \\
D[\mathcal{G}] \text { and } C \text { simultaneously falsifiable }
\end{array}
\end{array}\right\}
$$

Let $\pi=\left(C_{1}, C_{2}, \ldots, C_{L}\right)$ width- w refutation of $F[\mathcal{G}]$ and argue

1. $|D| \leq|C| \leq w$ because of expansion
2. $\left|\mathcal{G}^{-1}(C)\right| \leq 2^{|C|} \leq 2^{w}$ because of simultaneous satisfiability
3. $\left(\mathcal{G}^{-1}\left(C_{1}\right), \mathcal{G}^{-1}\left(C_{2}\right), \ldots, \mathcal{G}^{-1}\left(C_{L}\right)\right)$ "backbone" of refutation of F in clause space roughly $s 2^{w}$

Some More Details

F and G simultaneously falsifiable if $\exists \alpha$ s.t. $\alpha(F)=\alpha(G)=0$
Associate "substituted clause" C over $\operatorname{Vars}(F[\mathcal{G}])$ with all consistent "original clauses" D over $\operatorname{Vars}(F)$

$$
\mathcal{G}^{-1}(C)=\left\{\begin{array}{l|l}
D & \begin{array}{l}
\operatorname{Vars}(D)=\operatorname{Ker}(\operatorname{Vars}(C)) \\
D[\mathcal{G}] \text { and } C \text { simultaneously falsifiable }
\end{array}
\end{array}\right\}
$$

Let $\pi=\left(C_{1}, C_{2}, \ldots, C_{L}\right)$ width- w refutation of $F[\mathcal{G}]$ and argue

1. $|D| \leq|C| \leq w$ because of expansion
2. $\left|\mathcal{G}^{-1}(C)\right| \leq 2^{|C|} \leq 2^{w}$ because of simultaneous satisfiability
3. $\left(\mathcal{G}^{-1}\left(C_{1}\right), \mathcal{G}^{-1}\left(C_{2}\right), \ldots, \mathcal{G}^{-1}\left(C_{L}\right)\right)$ "backbone" of refutation of F in clause space roughly $s 2^{w}$

Some further technical twists needed, but this is main idea of proof

On the Method of Hardness Condensation

Introduced in [Razborov JACM '16] to show that treelike resolution refutations of width w can require doubly exponential size $2^{n^{\Omega(w)}}$

On the Method of Hardness Condensation

Introduced in [Razborov JACM '16] to show that treelike resolution refutations of width w can require doubly exponential size $2^{n^{\Omega(w)}}$

Has also been used to establish

- Tradeoffs between width and rank for Lovász-Schrijver linear programming hierarchy [Razborov ECCC '16]

On the Method of Hardness Condensation

Introduced in [Razborov JACM '16] to show that treelike resolution refutations of width w can require doubly exponential size $2^{n^{\Omega(w)}}$

Has also been used to establish

- Tradeoffs between width and rank for Lovász-Schrijver linear programming hierarchy [Razborov ECCC '16]
- Quantifier depth lower bounds for finite variable fragments of first-order logic [Berkholz \& Nordström LICS '16]

On the Method of Hardness Condensation

Introduced in [Razborov JACM '16] to show that treelike resolution refutations of width w can require doubly exponential size $2^{n^{\Omega(w)}}$

Has also been used to establish

- Tradeoffs between width and rank for Lovász-Schrijver linear programming hierarchy [Razborov ECCC '16]
- Quantifier depth lower bounds for finite variable fragments of first-order logic [Berkholz \& Nordström LICS '16]

Where else can this technique be useful?

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1
Similar tradeoffs for degree vs. space in polynomial calculus?

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1
Similar tradeoffs for degree vs. space in polynomial calculus?

- Weaknesses: non-constant width and huge size blow-up

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1
Similar tradeoffs for degree vs. space in polynomial calculus?

- Weaknesses: non-constant width and huge size blow-up
- Inherent for XORification with large arity

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1
Similar tradeoffs for degree vs. space in polynomial calculus?

- Weaknesses: non-constant width and huge size blow-up
- Inherent for XORification with large arity

Open question 2
Are there supercritical tradeoffs for $3-\mathrm{CNF}$?

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1
Similar tradeoffs for degree vs. space in polynomial calculus?

- Weaknesses: non-constant width and huge size blow-up
- Inherent for XORification with large arity

Open question 2
Are there supercritical tradeoffs for $3-\mathrm{CNF}$?

- Probably yes, unless PSPACE = EXPTIME

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1
Similar tradeoffs for degree vs. space in polynomial calculus?

- Weaknesses: non-constant width and huge size blow-up
- Inherent for XORification with large arity

Open question 2
Are there supercritical tradeoffs for $3-\mathrm{CNF}$?

- Probably yes, unless PSPACE = EXPTIME
- Can search for small-space refutations in PSPACE, but finding refutations in given width EXPTIME-complete [Berkholz '12]

Concluding Remarks

- We exhibit supercritical space-width trade-offs for resolution
- Minimizing width can make space go way above linear (worst-case "critical" bound)

Open question 1
Similar tradeoffs for degree vs. space in polynomial calculus?

- Weaknesses: non-constant width and huge size blow-up
- Inherent for XORification with large arity

Open question 2
Are there supercritical tradeoffs for $3-\mathrm{CNF}$?

- Probably yes, unless PSPACE = EXPTIME
- Can search for small-space refutations in PSPACE, but finding refutations in given width EXPTIME-complete [Berkholz '12]

Thank you for your attention!

