A (Biased) Proof Complexity Survey for SAT Practitioners

Jakob Nordström
KTH Royal Institute of Technology
Stockholm, Sweden

17th International Conference on Theory and Applications of Satisfiability Testing

Vienna, Austria
July 14-17, 2014

Proof Complexity and SAT Solving

Proof complexity

- Satsifiability fundamental problem in theoretical computer science
- SAT proven NP-complete by Stephen Cook in 1971
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

Proof Complexity and SAT Solving

Proof complexity

- Satsifiability fundamental problem in theoretical computer science
- SAT proven NP-complete by Stephen Cook in 1971
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT solving

- Enormous progress in performance last two decades
- State-of-the-art solvers deal with millions of variables
- But best solvers still based on methods from early 60s
- Tiny formulas known that are totally beyond reach

Proof Complexity and SAT Solving

Proof complexity

- Satsifiability fundamental problem in theoretical computer science
- SAT proven NP-complete by Stephen Cook in 1971
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT solving

- Enormous progress in performance last two decades
- State-of-the-art solvers deal with millions of variables
- But best solvers still based on methods from early 60s
- Tiny formulas known that are totally beyond reach

When and why do SAT solvers work well or badly?

Proof Complexity and SAT Solving

Proof complexity

- Satsifiability fundamental problem in theoretical computer science
- SAT proven NP-complete by Stephen Cook in 1971
- Hence totally intractable in worst case (probably)
- One of the million dollar "Millennium Problems"

SAT solving

- Enormous progress in performance last two decades
- State-of-the-art solvers deal with millions of variables
- But best solvers still based on methods from early 60s
- Tiny formulas known that are totally beyond reach

When and why do SAT solvers work well or badly?
What can proof complexity say about SAT solving?

Focus of This Survey

Proof systems behind some current approaches to SAT solving:

- Conflict-driven clause learning - resolution
- Gröbner basis computations - polynomial calculus
- Pseudo-Boolean solvers - cutting planes

Survey (some of) what is known about these proof systems
Show some of the "benchmark formulas" used
By necessity, selective and somewhat subjective coverage apologies in advance for omissions

Some Notation and Terminology

- Literal a : variable x or its negation \bar{x}
- Clause $C=a_{1} \vee \cdots \vee a_{k}$: disjunction of literals (Consider as sets, so no repetitions and order irrelevant)
- CNF formula $F=C_{1} \wedge \cdots \wedge C_{m}$: conjunction of clauses
- k-CNF formula: CNF formula with clauses of size $\leq k$ (where k is some constant)
- Mostly assume formulas k-CNFs (for simplicity of exposition) Conversion to 3-CNF (most often) doesn't change much
- N denotes size of formula (\# literals, which is $\approx \#$ clauses)

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

| 8. | \bar{x} | $\operatorname{Res}(3,5)$ |
| :--- | :--- | :--- | :--- |
| 9. | \perp | $\operatorname{Res}(7,8)$ |

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

| 8. | \bar{x} | $\operatorname{Res}(3,5)$ |
| :--- | :--- | :--- | :--- |
| 9. | \perp | $\operatorname{Res}(7,8)$ |

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

| 8. | \bar{x} | $\operatorname{Res}(3,5)$ |
| :--- | :--- | :--- | :--- |
| 9. | \perp | $\operatorname{Res}(7,8)$ |

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

| 8. | \bar{x} | $\operatorname{Res}(3,5)$ |
| :--- | :--- | :--- | :--- |
| 9. | \perp | $\operatorname{Res}(7,8)$ |

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

| 8. | \bar{x} | $\operatorname{Res}(3,5)$ |
| :--- | :--- | :--- | :--- |
| 9. | \perp | $\operatorname{Res}(7,8)$ |

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

8.

\bar{x}
$\operatorname{Res}(3,5)$
9. $\quad \perp \quad \operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

8.

\bar{x}
$\operatorname{Res}(3,5)$
9. $\quad \perp \quad \operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

8.
9. $\quad \perp \quad \operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

8.
9. $\quad \perp \quad \operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

8.
9. $\perp \quad \operatorname{Res}(7,8)$

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

The Resolution Proof System

Goal: refute unsatisfiable CNF
Start with clauses of formula (axioms)
Derive new clauses by resolution rule

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Refutation ends when empty clause \perp derived

Can represent refutation as

- annotated list or
- DAG

Tree-like resolution if DAG is tree

Resolution Size/Length

Size/length $=\#$ clauses in refutation
Most fundamental measure in proof complexity
Lower bound on CDCL running time (can extract resolution proof from execution trace)

Never worse than $\exp (\mathcal{O}(N))$
Matching $\exp (\Omega(N))$ lower bounds known

Examples of Hard Formulas w.r.t Resolution Length (1/3)

Pigeonhole principle (PHP) [Hak85]

" $n+1$ pigeons don't fit into n holes"
Variables $p_{i, j}=$ "pigeon i goes into hole j "

$$
\begin{array}{ll}
p_{i, 1} \vee p_{i, 2} \vee \cdots \vee p_{i, n} & \text { every pigeon } i \text { gets a hole } \\
\bar{p}_{i, j} \vee \bar{p}_{i^{\prime}, j} & \text { no hole } j \text { gets two pigeons } i \neq i^{\prime}
\end{array}
$$

Can also add "functionality" and "onto" axioms

$$
\begin{array}{ll}
\bar{p}_{i, j} \vee \bar{p}_{i, j^{\prime}} & \text { no pigeon } i \text { gets two holes } j \neq j^{\prime} \\
p_{1, j} \vee p_{2, j} \vee \cdots \vee p_{n+1, j} & \text { every hole } j \text { gets a pigeon }
\end{array}
$$

Even onto functional PHP formula is hard for resolution
But only length lower bound $\exp (\Omega(\sqrt[3]{N}))$ in terms of formula size

Examples of Hard Formulas w.r.t Resolution Length (2/3)

Tseitin formulas [Urq87]

"Sum of degrees of vertices in graph is even"
Variables $=$ edges (in undirected graph of bounded degree)

- Label every vertex $0 / 1$ so that sum of labels odd
- Write CNF requiring parity of edges around vertex = label

Requires length $\exp (\Omega(N))$ on well-connected so-called expanders

$$
\begin{aligned}
(x \vee y) & \wedge(\bar{x} \vee z) \\
\wedge(\bar{x} \vee \bar{y}) & \wedge(y \vee \bar{z}) \\
\wedge(x \vee \bar{z}) & \wedge(\bar{y} \vee z)
\end{aligned}
$$

Examples of Hard Formulas w.r.t Resolution Length (3/3)

Random k-CNF formulas [CS88]

Δn randomly sampled k-clauses over n variables
($\Delta \gtrsim 4.5$ sufficient to get unsatisfiable 3 -CNF almost surely)
Again lower bound $\exp (\Omega(N))$

Examples of Hard Formulas w.r.t Resolution Length (3/3)

Random k-CNF formulas [CS88]
Δn randomly sampled k-clauses over n variables
($\Delta \gtrsim 4.5$ sufficient to get unsatisfiable 3 -CNF almost surely)
Again lower bound $\exp (\Omega(N))$

And more...

- k-colourability [BCMM05]
- Independent sets and vertex covers [BIS07]
- Zero-one designs [Spe10, VS10, MN14]
- Et cetera...

Resolution Width

Width $=$ size of largest clause in refutation (always $\leq N$)

Resolution Width

Width $=$ size of largest clause in refutation (always $\leq N$)
Width upper bound \Rightarrow length upper bound
Proof: at most $(2 \cdot \# \text { variables })^{\text {width }}$ distinct clauses
(This simple counting argument is essentially tight [ALN14])

Resolution Width

Width $=$ size of largest clause in refutation (always $\leq N$)
Width upper bound \Rightarrow length upper bound
Proof: at most $(2 \cdot \# \text { variables })^{\text {width }}$ distinct clauses
(This simple counting argument is essentially tight [ALN14])
Width lower bound \Rightarrow length lower bound
Much less obvious...

Width Lower Bounds Imply Length Lower Bounds

Theorem ([BW01])

$$
\text { length } \geq \exp \left(\Omega\left(\frac{\text { width }^{2}}{\text { formula size } N}\right)\right)
$$

Width Lower Bounds Imply Length Lower Bounds

Theorem ([BW01])

$$
\text { length } \geq \exp \left(\Omega\left(\frac{\text { width }^{2}}{\text { formula size } N}\right)\right)
$$

Yields superpolynomial length bounds for width $\omega(\sqrt{N \log N})$ Almost all known lower bounds on length derivable via width

Width Lower Bounds Imply Length Lower Bounds

Theorem ([BW01])

$$
\text { length } \geq \exp \left(\Omega\left(\frac{\text { width }^{2}}{\text { formula size } N}\right)\right)
$$

Yields superpolynomial length bounds for width $\omega(\sqrt{N \log N})$ Almost all known lower bounds on length derivable via width

For tree-like resolution have length $\geq 2^{\text {width }}$ [BW01]
General resolution: width up to $\mathcal{O}(\sqrt{N \log N})$ implies no length lower bounds - possible to tighten analysis? No!

Optimality of the Length-Width Lower Bound

Ordering principles [Stå96, BG01]
"Every (partially) ordered set $\left\{e_{1}, \ldots, e_{n}\right\}$ has minimal element"
Variables $x_{i, j}=" e_{i}<e_{j}$ "

$$
\begin{array}{ll}
\bar{x}_{i, j} \vee \bar{x}_{j, i} & \text { anti-symmetry; not both } e_{i}<e_{j} \text { and } e_{j}<e_{i} \\
\bar{x}_{i, j} \vee \bar{x}_{j, k} \vee x_{i, k} & \text { transitivity; } e_{i}<e_{j} \text { and } e_{j}<e_{k} \text { implies } e_{i}<e_{k} \\
\bigvee_{1 \leq i \leq n, i \neq j} x_{i, j} & e_{j} \text { is not a minimal element }
\end{array}
$$

Can also add "total order" axioms

$$
x_{i, j} \vee x_{j, i} \quad \text { totality; either } e_{i}<e_{j} \text { or } e_{j}<e_{i}
$$

Reuftable in resolution in length $\mathcal{O}(N)$
Requires resolution width $\Omega(\sqrt[3]{N})$ (3-CNF version)

Resolution Space

Space $=$ max $\#$ clauses in memory when performing refutation

Motivated by SAT solver memory usage (but also intrinsically interesting for proof complexity)

Can be measured in different ways focus here on most common measure clause space

Space at step t : \# clauses at steps $\leq t$

1.	$x \vee y$	Axiom
2.	$x \vee \bar{y} \vee z$	Axiom
3.	$\bar{x} \vee z$	Axiom
4.	$\bar{y} \vee \bar{z}$	Axiom
5.	$\bar{x} \vee \bar{z}$	Axiom
6.	$x \vee \bar{y}$	$\operatorname{Res}(2,4)$
7.	x	$\operatorname{Res}(1,6)$
8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

Resolution Space

Space $=$ max $\#$ clauses in memory when performing refutation

Motivated by SAT solver memory usage (but also intrinsically interesting for proof complexity)

Can be measured in different ways focus here on most common measure clause space

Space at step $t: \#$ clauses at steps $\leq t$

1.	$x \vee y$	Axiom
2.	$x \vee \bar{y} \vee z$	Axiom
3.	$\bar{x} \vee z$	Axiom
4.	$\bar{y} \vee \bar{z}$	Axiom
5.	$\bar{x} \vee \bar{z}$	Axiom
6.	$x \vee \bar{y}$	$\operatorname{Res}(2,4)$
7.	x	$\operatorname{Res}(1,6)$
8.	\bar{x}	$\operatorname{Res}(3,5)$
9.	\perp	$\operatorname{Res}(7,8)$

Resolution Space

Space $=\max \#$ clauses in memory when performing refutation

Motivated by SAT solver memory usage (but also intrinsically interesting for proof complexity)

Can be measured in different ways focus here on most common measure clause space

Space at step t : \# clauses at steps $\leq t$ used at steps $\geq t$

Example: Space at step $7 \ldots$

Resolution Space

Space $=\max \#$ clauses in memory when performing refutation

Motivated by SAT solver memory usage (but also intrinsically interesting for proof complexity)

Can be measured in different ways focus here on most common measure clause space

Space at step t : \# clauses at steps $\leq t$ used at steps $\geq t$

Example: Space at step 7 is 5

Bounds on Resolution Space

Space always at most $N+\mathcal{O}(1)$ [ET01]
Lower bounds for

- Pigeonhole principle [ABRW02, ET01]
- Tseitin formulas [ABRW02, ET01]
- Random k-CNFs [BG03]

Bounds on Resolution Space

Space always at most $N+\mathcal{O}(1)$ [ET01]
Lower bounds for

- Pigeonhole principle [ABRW02, ET01]
- Tseitin formulas [ABRW02, ET01]
- Random k-CNFs [BG03]

Results always matching width bounds
And proofs of very similar flavour. . . What is going on?

Space vs. Width

Theorem ([AD08])

$$
\text { space } \geq \text { width }+\mathcal{O}(1)
$$

Space vs. Width

Theorem ([AD08])

$$
\text { space } \geq \text { width }+\mathcal{O}(1)
$$

Are space and width asymptotically always the same? No!

Space vs. Width

Theorem ([AD08])

$$
\text { space } \geq \text { width }+\mathcal{O}(1)
$$

Are space and width asymptotically always the same? No!
Pebbling formulas [BN08]

- Can be refuted in width $\mathcal{O}(1)$
- May require space $\Omega(N / \log N)$

A bit more involved to describe than previous benchmarks...

Pebbling Formulas: Vanilla Version

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

- sources are true
- truth propagates upwards
- but sink is false

7. \bar{z}

Pebbling Formulas: Vanilla Version

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

- sources are true
- truth propagates upwards
- but sink is false

7. \bar{z}

Pebbling Formulas: Vanilla Version

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

- sources are true
- truth propagates upwards
- but sink is false

7. \bar{z}

Pebbling Formulas: Vanilla Version

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$

- sources are true
- truth propagates upwards
- but sink is false

7. \bar{z}

Pebbling Formulas: Vanilla Version

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

- sources are true
- truth propagates upwards
- but sink is false

Extensive literature on pebbling space and time-space trade-offs from 1970s and 80s

Have been useful in proof complexity before in various contexts
Hope that pebbling properties of DAG somehow carry over to resolution refutations of pebbling formulas.

Pebbling Formulas: Vanilla Version

CNF formulas encoding so-called pebble games on DAGs

1. u
2. v
3. w
4. $\bar{u} \vee \bar{v} \vee x$
5. $\bar{v} \vee \bar{w} \vee y$
6. $\bar{x} \vee \bar{y} \vee z$
7. \bar{z}

- sources are true
- truth propagates upwards
- but sink is false

Extensive literature on pebbling space and time-space trade-offs from 1970s and 80s

Have been useful in proof complexity before in various contexts
Hope that pebbling properties of DAG somehow carry over to resolution refutations of pebbling formulas. Except...

Substituted Pebbling Formulas

Won't work - solved by unit propagation, so supereasy
Make formula harder by substituting $x_{1} \oplus x_{2}$ for every variable x (also works for other Boolean functions with "right" properties):

$$
\begin{gathered}
\bar{x} \vee y \\
\Downarrow \\
\neg\left(x_{1} \oplus x_{2}\right) \vee\left(y_{1} \oplus y_{2}\right) \\
\Downarrow \\
\left(x_{1} \vee \bar{x}_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee y_{1} \vee y_{2}\right) \\
\wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{y}_{1} \vee \bar{y}_{2}\right)
\end{gathered}
$$

Now CNF formula inherits pebbling graph properties!

Space-Width Trade-offs

Given a formula easy w.r.t. these complexity measures, can refutations be optimized for two or more measures?

For space vs. width, the answer is a strong no

Theorem ([Ben09])

There are formulas for which

- exist refutations in width $\mathcal{O}(1)$
- exist refutations in space $\mathcal{O}(1)$
- optimization of one measure causes (essentially) worst-case behaviour for other measure

Holds for vanilla version of pebbling formulas

Length-Space Trade-offs

Theorem ([BN11, BBI12, BNT13])

There are formulas for which

- exist refutations in short length
- exist refutations in small space
- optimization of one measure causes dramatic blow-up for other measure

Holds for

- Substituted pebbling formulas over the right graphs
- Tseitin formulas over long, narrow rectangular grids

So no meaningful simultaneous optimization possible for length and space in the worst case

Length-Width Trade-offs?

What about length versus width?
[BW01] transforms short refutation to narrow one, but blows up length exponentially

- Is this blow-up inherent?
- Or just an artifact of the proof?

Open Problem

Are there length-width trade-offs in resolution? Or is a narrow refutation never much longer than the shortest one?

Recap of Complexity Measures for Resolution

Recall that $N=$ size of formula

Length

\# clauses in refutation
at most $\exp (N)$

Width

Size of largest clause in refutation

Space

Max \# clauses one needs to remember when "verifying correctness of refutation"

Proof Complexity Measures and CDCL Hardness

Recall \log (length) \lesssim width \lesssim space

Proof Complexity Measures and CDCL Hardness

Recall \log (length) \lesssim width \lesssim space

Length

- Lower bound on running time for CDCL
- CDCL polynomially simulates resolution [PD11]
- But short proofs may be worst-case intractable to find [AR08]

Proof Complexity Measures and CDCL Hardness

Recall \log (length) \lesssim width \lesssim space

Length

- Lower bound on running time for CDCL
- CDCL polynomially simulates resolution [PD11]
- But short proofs may be worst-case intractable to find [AR08]

Width

- Searching in small width known heuristic in AI community
- Small width \Rightarrow CDCL solver will run fast [AFT11]

Proof Complexity Measures and CDCL Hardness

Recall \log (length) \lesssim width \lesssim space

Length

- Lower bound on running time for CDCL
- CDCL polynomially simulates resolution [PD11]
- But short proofs may be worst-case intractable to find [AR08]

Width

- Searching in small width known heuristic in AI community
- Small width \Rightarrow CDCL solver will run fast [AFT11]

Space

- In practice, memory consumption important bottleneck
- Space complexity gives lower bound on clause database size
- Plus assumes solver knows exactly which clauses to keep \Rightarrow in reality, probably (much) more memory needed

Relations Between Theoretical and Practical Hardness?

(1) Are width or even space lower bounds relevant indicators of CDCL hardness?
(2) Or is it true in practice that CDCL does essentially as well as resolution w.r.t. length/running time?
(3) Can CDCL even do as well as resolution w.r.t. time and space simultaneously?

Relations Between Theoretical and Practical Hardness?

(1) Are width or even space lower bounds relevant indicators of CDCL hardness?
(2) Or is it true in practice that CDCL does essentially as well as resolution w.r.t. length/running time?
(3) Can CDCL even do as well as resolution w.r.t. time and space simultaneously?

Not mathematically well-defined questions. . .
But perhaps still possible to perform experiments and draw interesting conclusions?

Practical Experimental Evaluation

- Proposed by [ABLM08]
- First(?) systematic attempt in [JMNŽ12]
- Length as a proxy for hardness seems too optimistic. . .
- So start by looking at width vs. space

Practical Experimental Evaluation

- Proposed by [ABLM08]
- First(?) systematic attempt in [JMNŽ12]
- Length as a proxy for hardness seems too optimistic. . .
- So start by looking at width vs. space

Run experiments on formulas with fixed complexity w.r.t. width (and length) but varying space complexity*

- Is running time essentially the same?
- Or does it increase with increasing space?

Practical Experimental Evaluation

- Proposed by [ABLM08]
- First(?) systematic attempt in [JMNŽ12]
- Length as a proxy for hardness seems too optimistic. . .
- So start by looking at width vs. space

Run experiments on formulas with fixed complexity w.r.t. width (and length) but varying space complexity*

- Is running time essentially the same?
- Or does it increase with increasing space?

Experimental results

Running times sometimes correlate well with space complexity

Practical Experimental Evaluation

- Proposed by [ABLM08]
- First(?) systematic attempt in [JMNŽ12]
- Length as a proxy for hardness seems too optimistic. . .
- So start by looking at width vs. space

Run experiments on formulas with fixed complexity w.r.t. width (and length) but varying space complexity*

- Is running time essentially the same?
- Or does it increase with increasing space?

Experimental results

Running times sometimes correlate well with space complexity But sometimes they really don't. . .

Practical Experimental Evaluation

- Proposed by [ABLM08]
- First(?) systematic attempt in [JMNŽ12]
- Length as a proxy for hardness seems too optimistic. . .
- So start by looking at width vs. space

Run experiments on formulas with fixed complexity w.r.t. width (and length) but varying space complexity*

- Is running time essentially the same?
- Or does it increase with increasing space?

Experimental results

Running times sometimes correlate well with space complexity But sometimes they really don't. . .
(*) Note: such formulas nontrivial to find; only know one construction

Example Results for Glucose Without Preprocessing

Looks nice. . . "Easy" formulas solved fast; "hard" take longer time

Example Results for Glucose with Preprocessing

Preprocessing makes formulas much easier, but this still looks nice

Some Lingeling Results (Without Preprocessing)

But sometimes we see pretty random behaviour...

Practical Conclusions?

- No firm conclusions - both space and width seem relevant
- And sometimes other structural properties more important?
- More generally, CDCL performance on combinatorial benchmarks sometimes surprising; e.g.:
- For PHP, worse behaviour with heuristics than without
- For ordering principles, highly dependent on specific solver
- Sometimes "easy" formulas harder than "hard" ones?! [MN14]

Open Problems

- Could explanations of above phenomena help us understand CDCL better?
- Could controlled experiments on easily scalable theoretical benchmarks yield other interesting insights?

Polynomial Calculus (or Actually PCR)

Introduced in [CEI96]; below modified version from [ABRW02]
Clauses interpreted as polynomial equations over finite field Any field in theory; GF(2) in practice Example: $x \vee y \vee \bar{z}$ gets translated to $x y \bar{z}=0$
(Think of $0 \equiv$ true and $1 \equiv$ false)

Polynomial Calculus (or Actually PCR)

Introduced in [CEI96]; below modified version from [ABRW02]
Clauses interpreted as polynomial equations over finite field Any field in theory; $\mathrm{GF}(2)$ in practice
Example: $x \vee y \vee \bar{z}$ gets translated to $x y \bar{z}=0$
(Think of $0 \equiv$ true and $1 \equiv$ false)

Derivation rules

Boolean axioms $\frac{}{x^{2}-x=0}$
Negation $\overline{x+\bar{x}=1}$
Linear combination $\frac{p=0 \quad q=0}{\alpha p+\beta q=0}$ Multiplication $\frac{p=0}{x p=0}$

Goal: Derive $1=0 \Leftrightarrow$ no common root \Leftrightarrow formula unsatisfiable

Size, Degree and Space

Write out all polynomials as sums of monomials W.I.o.g. all polynomials multilinear (because of Boolean axioms)

Size, Degree and Space

Write out all polynomials as sums of monomials
W.I.o.g. all polynomials multilinear (because of Boolean axioms)

Size - analogue of resolution length
total \# monomials in refutation (counted with repetitions)
Can also define length measure - might be much smaller
Degree - analogue of resolution width largest degree of monomial in refutation
(Monomial) space - analogue of resolution (clause) space max \# monomials in memory during refutation (with repetitions)

Polynomial Calculus Simulates Resolution

Polynomial calculus can simulate resolution proofs efficiently with respect to length/size, width/degree, and space simultaneously

- Can mimic resolution refutation step by step
- Hence worst-case upper bounds for resolution carry over

Polynomial Calculus Simulates Resolution

Polynomial calculus can simulate resolution proofs efficiently with respect to length/size, width/degree, and space simultaneously

- Can mimic resolution refutation step by step
- Hence worst-case upper bounds for resolution carry over

Example: Resolution step:
$\frac{x \vee \bar{y} \vee z \quad \bar{y} \vee \bar{z}}{x \vee \bar{y}}$

Polynomial Calculus Simulates Resolution

Polynomial calculus can simulate resolution proofs efficiently with respect to length/size, width/degree, and space simultaneously

- Can mimic resolution refutation step by step
- Hence worst-case upper bounds for resolution carry over

Example: Resolution step:

$$
\frac{x \vee \bar{y} \vee z \quad \bar{y} \vee \bar{z}}{x \vee \bar{y}}
$$

simulated by polynomial calculus derivation:

$$
\begin{aligned}
& x \bar{y} z=0 \\
& \frac{\frac{\overline{y z}=0}{x \overline{y z}=0} \quad \frac{\frac{z+\bar{z}-1=0}{\bar{y} z+\overline{y z}-\bar{y}=0}}{x \bar{y} z+x \overline{y z}-x \bar{y}=0}}{-x \bar{y} z+x \bar{y}=0} \\
& x \bar{y}=0
\end{aligned}
$$

Polynomial Calculus Strictly Stronger than Resolution

Polynomial calculus strictly stronger w.r.t. size and degree

- Tseitin formulas on expanders (just do Gaussian elimination)
- Onto functional pigeonhole principle [Rii93]

Polynomial Calculus Strictly Stronger than Resolution

Polynomial calculus strictly stronger w.r.t. size and degree

- Tseitin formulas on expanders (just do Gaussian elimination)
- Onto functional pigeonhole principle [Rii93]

Open Problem

Show that polynomial calculus is strictly stronger than resolution w.r.t. space

Size vs. Degree

- Degree upper bound \Rightarrow size upper bound [CEI96] Qualitatively similar to resolution bound
A bit more involved argument
Again essentially tight by [ALN14]
- Degree lower bound \Rightarrow size lower bound [IPS99] Precursor of [BW01] - can do same proof to get same bound
- Size-degree lower bound essentially optimal [GL10] Example: again ordering principle formulas
- Most size lower bounds for polynomial calculus derived via degree lower bounds (but machinery less developed)

Examples of Hard Formulas w.r.t. Size (and Degree)

Pigeonhole principle formulas
Follows from [AR03]
Earlier work on other encodings in [Raz98, IPS99]
Tseitin formulas with "wrong modulus"
Can define Tseitin-like formulas counting mod p for $p \neq 2$
Hard if $p \neq$ characteristic of field [BGIP01]
Random k-CNF formulas
Hard in all characteristics except 2 [BI99]
Lower bound for all characteristics in [AR03]

Bounds on Polynomial Calculus Space

Lower bound for PHP with wide clauses [ABRW02]
k-CNFs much trickier - sequence of lower bounds for

- Obfuscated 4-CNF versions of PHP [FLN $\left.{ }^{+} 12\right]$
- Random 4-CNFs [BG13]
- Tseitin formulas on (some) expanders [FLM $\left.{ }^{+} 13\right]$

Open Problems

- Prove tight space lower bounds for Tseitin on any expander
- Prove any space lower bound on random 3-CNFs
- Prove any space lower bound for any 3-CNF!?

Space vs. Degree

Open Problem (analogue of [AD08])

Is it true that space \geq degree $+\mathcal{O}(1)$?
Partial progress: if formula requires large resolution width, then XOR-substituted version requires large space $\left[\mathrm{FLM}^{+} 13\right]$

Space vs. Degree

Open Problem (analogue of [AD08])

Is it true that space \geq degree $+\mathcal{O}(1)$?
Partial progress: if formula requires large resolution width, then XOR-substituted version requires large space $\left[\mathrm{FLM}^{+} 13\right]$

Optimal separation of space and degree in $\left[\mathrm{FLM}^{+} 13\right]$ by flavour of Tseitin formulas which

- can be refuted in degree $\mathcal{O}(1)$
- require space $\Omega(N)$
- but separating formulas depend on characteristic of field

Open Problem

Prove space lower bounds for substituted pebbling formulas (would give space-degree separation independent of characteristic)

Trade-offs for Polynomial Calculus

- Strong, essentially optimal space-degree trade-offs [BNT13] Same vanilla pebbling formulas as for resolution Same parameters
- Strong size-space trade-offs [BNT13]

Same formulas as for resolution Some loss in parameters

Open Problem

Are there size-degree trade-offs in polynomial calculus?

Algebraic SAT Solvers?

- Quite some excitement about Gröbner basis approach to SAT solving after [CEI96]
- Promise of performance improvement failed to deliver
- Meanwhile: the CDCL revolution...

Algebraic SAT Solvers?

- Quite some excitement about Gröbner basis approach to SAT solving after [CEI96]
- Promise of performance improvement failed to deliver
- Meanwhile: the CDCL revolution. . .
- Some current SAT solvers do Gaussian elimination, but this is only very limited form of polynomial calculus
- Is it harder to build good algebraic SAT solvers, or is it just that too little work has been done (or both)?
- Some shortcut seems to be needed - full Gröbner basis computation does too much work

Cutting Planes

Introduced in [CCT87]
Clauses interpreted as linear inequalities over the reals with integer coefficients
Example: $x \vee y \vee \bar{z}$ gets translated to $x+y+(1-z) \geq 1$ (Now $1 \equiv$ true and $0 \equiv$ false again)

Cutting Planes

Introduced in [CCT87]

Clauses interpreted as linear inequalities over the reals with integer coefficients
Example: $x \vee y \vee \bar{z}$ gets translated to $x+y+(1-z) \geq 1$
(Now $1 \equiv$ true and $0 \equiv$ false again)

Derivation rules

Variable axioms $\frac{}{0 \leq x \leq 1} \quad$ Multiplication $\frac{\sum a_{i} x_{i} \geq A}{\sum c a_{i} x_{i} \geq c A}$
Addition $\frac{\sum a_{i} x_{i} \geq A \quad \sum b_{i} x_{i} \geq B}{\sum\left(a_{i}+b_{i}\right) x_{i} \geq A+B} \quad$ Division $\frac{\sum c a_{i} x_{i} \geq A}{\sum a_{i} x_{i} \geq\lceil A / c\rceil}$

Goal: Derive $0 \geq 1 \Leftrightarrow$ formula unsatisfiable

Size, Length and Space

Length $=$ total $\#$ lines/inequalities in refutation
Size $=$ sum also size of coefficients
Space $=\max \#$ lines in memory during refutation
No (useful) analogue of width/degree

Size, Length and Space

Length $=$ total $\#$ lines/inequalities in refutation
Size $=$ sum also size of coefficients
Space $=\max \#$ lines in memory during refutation
No (useful) analogue of width/degree

Cutting planes

- simulates resolution efficiently w.r.t. length/size and space simultaneously
- is strictly stronger w.r.t. length/size - can refute PHP efficiently [CCT87]

Open Problem

Show cutting planes strictly stronger than resolution w.r.t. space

Hard Formulas w.r.t Cutting Planes Length

Clique-coclique formulas [Pud97]
"A graph with a k-clique is not $(k-1)$-colourable"
Lower bound via interpolation and circuit complexity

Hard Formulas w.r.t Cutting Planes Length

Clique-coclique formulas [Pud97]
"A graph with a k-clique is not $(k-1)$-colourable"
Lower bound via interpolation and circuit complexity

Open Problems

Prove length lower bounds for cutting planes

- for Tseitin formulas
- for random k-CNFs
- for any formula using other technique than interpolation

Hard Formulas w.r.t Cutting Planes Space?

No space lower bounds known except conditional ones:

- Short cutting planes refutations of Tseitin formulas on expanders require large space [GP14]
(But such short refutations probably don't exist anyway)
- Short cutting planes refutations of (some) pebbling formulas require large space [HN12, GP14] (and such short refutations do exist; hard to see how exponential length could help bring down space)

Hard Formulas w.r.t Cutting Planes Space?

No space lower bounds known except conditional ones:

- Short cutting planes refutations of Tseitin formulas on expanders require large space [GP14]
(But such short refutations probably don't exist anyway)
- Short cutting planes refutations of (some) pebbling formulas require large space [HN12, GP14] (and such short refutations do exist; hard to see how exponential length could help bring down space)

Above results obtained via communication complexity
No (true) length-space trade-off results known
(Although results above can also be phrased as trade-offs)

Geometric SAT Solvers?

- Some work on pseudo-Boolean solvers using (subset of) cutting planes
- Seems hard to make competitive with CDCL on CNFs
- One key problem to recover cardinality constraints
- But... If cardinality constraints can be detected, then solvers can do really well (at least on combinatorial benchmarks)
- E.g., PHP formulas and also zero-one design formulas become easy [BBLM14]

Building SAT Solvers on Extended Resolution?

- Resolution + introduce new variables to name subformulas
- Without restrictions, corresponds to extended Frege
- Extremely strong - pretty much no lower bounds known
- In order to study extended resolution, would need to:
- Describe heuristics/rules actually used
- See if possible to reason about such restricted proof system

Summing up

- Overview of resolution, polynomial calculus and cutting planes (More details in conference proceedings or survey [Nor13])
- Resolution fairly well understood
- Polynomial calculus less so
- Cutting planes almost not at all
- Could there be interesting connections between proof complexity measures and hardness of SAT?
- How can we build efficient SAT solvers on stronger proof systems than resolution?

Summing up

- Overview of resolution, polynomial calculus and cutting planes (More details in conference proceedings or survey [Nor13])
- Resolution fairly well understood
- Polynomial calculus less so
- Cutting planes almost not at all
- Could there be interesting connections between proof complexity measures and hardness of SAT?
- How can we build efficient SAT solvers on stronger proof systems than resolution?

Thank you for your attention!

References I

[ABLM08] Carlos Ansótegui, María Luisa Bonet, Jordi Levy, and Felip Manyà. Measuring the hardness of SAT instances. In Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI '08), pages 222-228, July 2008.
[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184-1211, 2002. Preliminary version appeared in STOC '00.
[AD08] Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution width. Journal of Computer and System Sciences, 74(3):323-334, May 2008. Preliminary version appeared in CCC '03.
[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms with many restarts and bounded-width resolution. Journal of Artificial Intelligence Research, 40:353-373, January 2011. Preliminary version appeared in SAT '09.

References II

[ALN14] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be maximally long. In Proceedings of the 29th Annual IEEE Conference on Computational Complexity (CCC '14), pages 286-297, June 2014.
[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus: Non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18-35, 2003. Available at http://people.cs.uchicago.edu/~razborov/files/misha.pdf. Preliminary version appeared in FOCS '01.
[AR08] Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable unless $\mathrm{W}[P]$ is tractable. SIAM Journal on Computing, 38(4):1347-1363, October 2008. Preliminary version appeared in FOCS '01.
[BBI12] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution: Superpolynomial lower bounds for superlinear space. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC '12), pages 213-232, May 2012.

References III

[BBLM14] Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey. Detecting cardinality constraints in CNF. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 285-301. Springer, July 2014.
[BCMM05] Paul Beame, Joseph C. Culberson, David G. Mitchell, and Cristopher Moore. The resolution complexity of random graph k-colorability. Discrete Applied Mathematics, 153(1-3):25-47, December 2005.
[Ben09] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing, 38(6):2511-2525, May 2009. Preliminary version appeared in STOC '02.
[BG01] María Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution. Computational Complexity, 10(4):261-276, December 2001. Preliminary version appeared in FOCS '99.
[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution. Random Structures and Algorithms, 23(1):92-109, August 2003. Preliminary version appeared in CCC '01.

References IV

[BG13] Ilario Bonacina and Nicola Galesi. Pseudo-partitions, transversality and locality: A combinatorial characterization for the space measure in algebraic proof systems. In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science (ITCS '13), pages 455-472, January 2013.
[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between degrees for the polynomial calculus modulo distinct primes. Journal of Computer and System Sciences, 62(2):267-289, March 2001. Preliminary version appeared in CCC '99.
[BI99] Eli Ben-Sasson and Russell Impagliazzo. Random CNF's are hard for the polynomial calculus. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS '99), pages 415-421, October 1999. Journal version in [BI10].
[BI10] Eli Ben-Sasson and Russell Impagliazzo. Random CNF's are hard for the polynomial calculus. Computational Complexity, 19:501-519, 2010. Preliminary version appeared in FOCS '99.

References V

[BIS07] Paul Beame, Russell Impagliazzo, and Ashish Sabharwal. The resolution complexity of independent sets and vertex covers in random graphs. Computational Complexity, 16(3):245-297, October 2007.
[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS '08), pages 709-718, October 2008.
[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separations and trade-offs via substitutions. In Proceedings of the 2nd Symposium on Innovations in Computer Science (ICS '11), pages 401-416, January 2011.
[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC '13), pages 813-822, May 2013.

References VI

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow-resolution made simple. Journal of the ACM, 48(2):149-169, March 2001. Preliminary version appeared in STOC '99.
[CCT87] William Cook, Collette Rene Coullard, and Gyorgy Turán. On the complexity of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25-38, November 1987.
[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC '96), pages 174-183, May 1996.
[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM, 35(4):759-768, October 1988.
[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Computation, 171(1):84-97, 2001. Preliminary versions of these results appeared in STACS '99 and CSL '99.

References VII

[FLM ${ }^{+}$13] Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals. Towards an understanding of polynomial calculus: New separations and lower bounds (extended abstract). In Proceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP '13), volume 7965 of Lecture Notes in Computer Science, pages 437-448. Springer, July 2013.
[FLN ${ }^{+}$12] Yuval Filmus, Massimo Lauria, Jakob Nordström, Neil Thapen, and Noga Ron-Zewi. Space complexity in polynomial calculus (extended abstract). In Proceedings of the 27th Annual IEEE Conference on Computational Complexity (CCC '12), pages 334-344, June 2012.
[GL10] Nicola Galesi and Massimo Lauria. Optimality of size-degree trade-offs for polynomial calculus. ACM Transactions on Computational Logic, 12:4:1-4:22, November 2010.
[GP14] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC '14), pages 847-856, May 2014.

References VIII

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2-3):297-308, August 1985.
[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying communication complexity hardness to time-space trade-offs in proof complexity (extended abstract). In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC '12), pages 233-248, May 2012.
[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial calculus and the Gröbner basis algorithm. Computational Complexity, 8(2):127-144, 1999.
[JMNŽ12] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný. Relating proof complexity measures and practical hardness of SAT. In Proceedings of the 18th International Conference on Principles and Practice of Constraint Programming (CP '12), volume 7514 of Lecture Notes in Computer Science, pages 316-331. Springer, October 2012.

References IX

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 121-137. Springer, July 2014.
[Nor13] Jakob Nordström. Pebble games, proof complexity and time-space trade-offs. Logical Methods in Computer Science, 9:15:1-15:63, September 2013.
[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as resolution engines. Artificial Intelligence, 175:512-525, February 2011. Preliminary version appeared in CP '09.
[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic, 62(3):981-998, September 1997.
[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Complexity, 7(4):291-324, December 1998.

References X

[Rii93] Søren Riis. Independence in Bounded Arithmetic. PhD thesis, University of Oxford, 1993.
[Spe10] Ivor Spence. sgen1: A generator of small but difficult satisfiability benchmarks. Journal of Experimental Algorithmics, 15:1.2:1.1-1.2:1.15, March 2010.
[Stå96] Gunnar Stålmarck. Short resolution proofs for a sequence of tricky formulas. Acta Informatica, 33(3):277-280, May 1996.
[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209-219, January 1987.
[VS10] Allen Van Gelder and Ivor Spence. Zero-one designs produce small hard SAT instances. In Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT '10), volume 6175 of Lecture Notes in Computer Science, pages 388-397. Springer, July 2010.

