
Trade-offs Between Time and Memory in a
Tighter Model of CDCL SAT Solvers

Jakob Nordström

KTH Royal Institute of Technology
Stockholm, Sweden

19th International Conference on Theory and
Applications of Satisfiability Testing

Bordeaux, France
July 5, 2016

Joint work with Jan Elffers, Jan Johannsen,
Massimo Lauria, Thomas Magnard, and Marc Vinyals

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 1/25

What This Work Is About

The unreasonable effectiveness of SAT solvers

The Boolean satisfiability problem (SAT) is NP-complete and so
should be exponentially hard

Yet current state-of-the-art conflict-driven clause learning (CDCL)
SAT solvers can deal with formulas containing millions of variables

How can they work so well? What are the limits to what they can do?

This work

Driving motivation: Understand the power of CDCL

Tool: Proof complexity (don’t have much else for rigorous analysis)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 2/25

What This Work Is About

The unreasonable effectiveness of SAT solvers

The Boolean satisfiability problem (SAT) is NP-complete and so
should be exponentially hard

Yet current state-of-the-art conflict-driven clause learning (CDCL)
SAT solvers can deal with formulas containing millions of variables

How can they work so well? What are the limits to what they can do?

This work

Driving motivation: Understand the power of CDCL

Tool: Proof complexity (don’t have much else for rigorous analysis)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 2/25

What This Talk Is About

Report on results so far

Definitely more of “work in progress” than The Final AnswerTM

Also take the opportunity to give my take on some work at
intersection of SAT solving and proof complexity

Believe there is room for improved mutual understanding — hope to
stimulate discussions that can remove some misconceptions

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 3/25

Introduction CDCL as a Resolution Proof Search Algorithm

CDCL and Resolution

Satisfiable CNF formula: CDCL solver finds satisfying assignment

Unsatisfiable formula: search for proof in resolution proof system

Lower bounds in proof complexity ⇒ impossibility results for CDCL
even assuming optimal choices∗

But CDCL searches for proofs with very special structure — can it
match resolution upper bounds?

(*) Ignores preprocessing — our focus on CDCL proof search
Will be happy to elaborate offline on why this is reasonable simplification

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 4/25

Introduction CDCL as a Resolution Proof Search Algorithm

CDCL and Resolution

Satisfiable CNF formula: CDCL solver finds satisfying assignment

Unsatisfiable formula: search for proof in resolution proof system

Lower bounds in proof complexity ⇒ impossibility results for CDCL
even assuming optimal choices∗

But CDCL searches for proofs with very special structure — can it
match resolution upper bounds?

(*) Ignores preprocessing — our focus on CDCL proof search
Will be happy to elaborate offline on why this is reasonable simplification

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 4/25

Introduction CDCL as a Resolution Proof Search Algorithm

CDCL and Resolution

Satisfiable CNF formula: CDCL solver finds satisfying assignment

Unsatisfiable formula: search for proof in resolution proof system

Lower bounds in proof complexity ⇒ impossibility results for CDCL
even assuming optimal choices∗

But CDCL searches for proofs with very special structure — can it
match resolution upper bounds?

(*) Ignores preprocessing — our focus on CDCL proof search
Will be happy to elaborate offline on why this is reasonable simplification

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 4/25

Introduction CDCL as a Resolution Proof Search Algorithm

CDCL and Resolution

Satisfiable CNF formula: CDCL solver finds satisfying assignment

Unsatisfiable formula: search for proof in resolution proof system

Lower bounds in proof complexity ⇒ impossibility results for CDCL
even assuming optimal choices∗

But CDCL searches for proofs with very special structure — can it
match resolution upper bounds?

(*) Ignores preprocessing — our focus on CDCL proof search
Will be happy to elaborate offline on why this is reasonable simplification

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 4/25

Introduction CDCL as a Resolution Proof Search Algorithm

CDCL and Resolution

Satisfiable CNF formula: CDCL solver finds satisfying assignment

Unsatisfiable formula: search for proof in resolution proof system

Lower bounds in proof complexity ⇒ impossibility results for CDCL
even assuming optimal choices∗

But CDCL searches for proofs with very special structure — can it
match resolution upper bounds?

(*) Ignores preprocessing — our focus on CDCL proof search
Will be happy to elaborate offline on why this is reasonable simplification

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 4/25

Introduction CDCL as a Resolution Proof Search Algorithm

Understanding the Efficiency of CDCL Proof Search

Long line of work aimed at proving that CDCL explores resolution
search space efficiently, e.g., [BKS04, Van05, BHJ08, HBPV08]
Challenging problem — progress only by making assumptions such as

I artificial preprocessing
I decisions past conflicts
I non-standard learning strategies
I no unit propagation(!)

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size
Constructive version in [AFT11]:∗ ∃ resolution proof with clauses of
bounded size ⇒ CDCL will run fast
Good, so then we’re done? Not quite

(*) [AFT11] and [PD11] independent but essentially equivalent works
Can use techniques in either paper to establish results in the other

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 5/25

Introduction CDCL as a Resolution Proof Search Algorithm

Understanding the Efficiency of CDCL Proof Search

Long line of work aimed at proving that CDCL explores resolution
search space efficiently, e.g., [BKS04, Van05, BHJ08, HBPV08]
Challenging problem — progress only by making assumptions such as

I artificial preprocessing
I decisions past conflicts
I non-standard learning strategies
I no unit propagation(!)

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size
Constructive version in [AFT11]:∗ ∃ resolution proof with clauses of
bounded size ⇒ CDCL will run fast
Good, so then we’re done? Not quite

(*) [AFT11] and [PD11] independent but essentially equivalent works
Can use techniques in either paper to establish results in the other

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 5/25

Introduction CDCL as a Resolution Proof Search Algorithm

Understanding the Efficiency of CDCL Proof Search

Long line of work aimed at proving that CDCL explores resolution
search space efficiently, e.g., [BKS04, Van05, BHJ08, HBPV08]
Challenging problem — progress only by making assumptions such as

I artificial preprocessing
I decisions past conflicts
I non-standard learning strategies
I no unit propagation(!)

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size
Constructive version in [AFT11]:∗ ∃ resolution proof with clauses of
bounded size ⇒ CDCL will run fast
Good, so then we’re done? Not quite

(*) [AFT11] and [PD11] independent but essentially equivalent works
Can use techniques in either paper to establish results in the other

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 5/25

Introduction CDCL as a Resolution Proof Search Algorithm

Understanding the Efficiency of CDCL Proof Search

Long line of work aimed at proving that CDCL explores resolution
search space efficiently, e.g., [BKS04, Van05, BHJ08, HBPV08]
Challenging problem — progress only by making assumptions such as

I artificial preprocessing
I decisions past conflicts
I non-standard learning strategies
I no unit propagation(!)

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size
Constructive version in [AFT11]:∗ ∃ resolution proof with clauses of
bounded size ⇒ CDCL will run fast
Good, so then we’re done? Not quite

(*) [AFT11] and [PD11] independent but essentially equivalent works
Can use techniques in either paper to establish results in the other

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 5/25

Introduction CDCL as a Resolution Proof Search Algorithm

Understanding the Efficiency of CDCL Proof Search

Long line of work aimed at proving that CDCL explores resolution
search space efficiently, e.g., [BKS04, Van05, BHJ08, HBPV08]
Challenging problem — progress only by making assumptions such as

I artificial preprocessing
I decisions past conflicts
I non-standard learning strategies
I no unit propagation(!)

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size
Constructive version in [AFT11]:∗ ∃ resolution proof with clauses of
bounded size ⇒ CDCL will run fast
Good, so then we’re done? Not quite

(*) [AFT11] and [PD11] independent but essentially equivalent works
Can use techniques in either paper to establish results in the other

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 5/25

Introduction CDCL as a Resolution Proof Search Algorithm

Understanding the Efficiency of CDCL Proof Search

Long line of work aimed at proving that CDCL explores resolution
search space efficiently, e.g., [BKS04, Van05, BHJ08, HBPV08]
Challenging problem — progress only by making assumptions such as

I artificial preprocessing
I decisions past conflicts
I non-standard learning strategies
I no unit propagation(!)

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size
Constructive version in [AFT11]:∗ ∃ resolution proof with clauses of
bounded size ⇒ CDCL will run fast
Good, so then we’re done? Not quite

(*) [AFT11] and [PD11] independent but essentially equivalent works
Can use techniques in either paper to establish results in the other

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 5/25

Introduction Strengths and Weaknesses of Simulation Results

Why Not Completely Happy with [AFT11, PD11]? (1/2)

Learning scheme
Learned clause assertive but otherwise adversarially chosen
Very strong aspect of result
But does not come for free — costs a lot for efficiency of simulation

Restart policy
Restarts are not too frequent (unless you think Luby is too frequent)
But no progress at all in between restarts
Restarts seem important, but not quite that important?!

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 6/25

Introduction Strengths and Weaknesses of Simulation Results

Why Not Completely Happy with [AFT11, PD11]? (1/2)

Learning scheme
Learned clause assertive but otherwise adversarially chosen
Very strong aspect of result
But does not come for free — costs a lot for efficiency of simulation

Restart policy
Restarts are not too frequent (unless you think Luby is too frequent)
But no progress at all in between restarts
Restarts seem important, but not quite that important?!

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 6/25

Introduction Strengths and Weaknesses of Simulation Results

Why Not Completely Happy with [AFT11, PD11]? (2/2)

Decision strategy
In [PD11], crucially relies on (unknown) resolution proof
In [AFT11], crucially needs to be (essentially totally) random
Probably inherent — fully constructive proof search likely to be
computationally intractable [AR08]

Clause database management
No learned clause must ever be forgotten, or theorems crash and burn
But in practice something like 90–95% of clauses erased. . .

Simulation efficiency
CDCL solvers typically have to run in (close to) linear time O(n)
But simulation will yield something like O

(
n5) running time

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 7/25

Introduction Strengths and Weaknesses of Simulation Results

Why Not Completely Happy with [AFT11, PD11]? (2/2)

Decision strategy
In [PD11], crucially relies on (unknown) resolution proof
In [AFT11], crucially needs to be (essentially totally) random
Probably inherent — fully constructive proof search likely to be
computationally intractable [AR08]

Clause database management
No learned clause must ever be forgotten, or theorems crash and burn
But in practice something like 90–95% of clauses erased. . .

Simulation efficiency
CDCL solvers typically have to run in (close to) linear time O(n)
But simulation will yield something like O

(
n5) running time

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 7/25

Introduction Strengths and Weaknesses of Simulation Results

Why Not Completely Happy with [AFT11, PD11]? (2/2)

Decision strategy
In [PD11], crucially relies on (unknown) resolution proof
In [AFT11], crucially needs to be (essentially totally) random
Probably inherent — fully constructive proof search likely to be
computationally intractable [AR08]

Clause database management
No learned clause must ever be forgotten, or theorems crash and burn
But in practice something like 90–95% of clauses erased. . .

Simulation efficiency
CDCL solvers typically have to run in (close to) linear time O(n)
But simulation will yield something like O

(
n5) running time

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 7/25

Introduction Our Work

What We Want

More fine-grained and realistic CDCL model. . .
Capture restarts, clause learning, memory management, et cetera
Modular design to allow study of different features
Theoretical analogue of projects in [KSM11, SM11, ENSS16]

. . . Leading to improved theoretical insights
Can CDCL proof search be time and space efficient?
And can it be really efficient? (No polynomial blow-ups)
How does memory management affect proof search quality?
Do restarts increase reasoning power? (Or just a helpful heuristic?)
How do other heuristics help or hinder proof search?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 8/25

Introduction Our Work

What We Want

More fine-grained and realistic CDCL model. . .
Capture restarts, clause learning, memory management, et cetera
Modular design to allow study of different features
Theoretical analogue of projects in [KSM11, SM11, ENSS16]

. . . Leading to improved theoretical insights
Can CDCL proof search be time and space efficient?
And can it be really efficient? (No polynomial blow-ups)
How does memory management affect proof search quality?
Do restarts increase reasoning power? (Or just a helpful heuristic?)
How do other heuristics help or hinder proof search?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 8/25

Introduction Our Work

What We Get

Much less impressive results than we would have liked. . .
(but these are hard problems)
Present proof system modelling CDCL no-one can complain about∗
(except it’s messy to analyse)
Already known: no clause learning ⇒ collapse to tree-like resolution
We show too aggressive clause removal can cause exponential
blow-up in running time, matching theory [BN11, BBI12, BNT13]
Involves time- and space-efficient simulations of some resolution
proofs (but far from general simulation result)
These simulations do not need restarts (impossible to prove in
principle for model in [AFT11, PD11])

(*) So if you see any issues with the model, we definitely want to know
Obviously, must abstract away some features, but we feel we capture the essentials

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 9/25

Introduction Our Work

What We Get

Much less impressive results than we would have liked. . .
(but these are hard problems)
Present proof system modelling CDCL no-one can complain about∗
(except it’s messy to analyse)
Already known: no clause learning ⇒ collapse to tree-like resolution
We show too aggressive clause removal can cause exponential
blow-up in running time, matching theory [BN11, BBI12, BNT13]
Involves time- and space-efficient simulations of some resolution
proofs (but far from general simulation result)
These simulations do not need restarts (impossible to prove in
principle for model in [AFT11, PD11])

(*) So if you see any issues with the model, we definitely want to know
Obviously, must abstract away some features, but we feel we capture the essentials

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 9/25

Introduction Our Work

What We Get

Much less impressive results than we would have liked. . .
(but these are hard problems)
Present proof system modelling CDCL no-one can complain about∗
(except it’s messy to analyse)
Already known: no clause learning ⇒ collapse to tree-like resolution
We show too aggressive clause removal can cause exponential
blow-up in running time, matching theory [BN11, BBI12, BNT13]
Involves time- and space-efficient simulations of some resolution
proofs (but far from general simulation result)
These simulations do not need restarts (impossible to prove in
principle for model in [AFT11, PD11])

(*) So if you see any issues with the model, we definitely want to know
Obviously, must abstract away some features, but we feel we capture the essentials

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 9/25

Introduction Our Work

What We Get

Much less impressive results than we would have liked. . .
(but these are hard problems)
Present proof system modelling CDCL no-one can complain about∗
(except it’s messy to analyse)
Already known: no clause learning ⇒ collapse to tree-like resolution
We show too aggressive clause removal can cause exponential
blow-up in running time, matching theory [BN11, BBI12, BNT13]
Involves time- and space-efficient simulations of some resolution
proofs (but far from general simulation result)
These simulations do not need restarts (impossible to prove in
principle for model in [AFT11, PD11])

(*) So if you see any issues with the model, we definitely want to know
Obviously, must abstract away some features, but we feel we capture the essentials

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 9/25

Introduction Our Work

What We Get

Much less impressive results than we would have liked. . .
(but these are hard problems)
Present proof system modelling CDCL no-one can complain about∗
(except it’s messy to analyse)
Already known: no clause learning ⇒ collapse to tree-like resolution
We show too aggressive clause removal can cause exponential
blow-up in running time, matching theory [BN11, BBI12, BNT13]
Involves time- and space-efficient simulations of some resolution
proofs (but far from general simulation result)
These simulations do not need restarts (impossible to prove in
principle for model in [AFT11, PD11])

(*) So if you see any issues with the model, we definitely want to know
Obviously, must abstract away some features, but we feel we capture the essentials

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 9/25

Introduction Our Work

What We Get

Much less impressive results than we would have liked. . .
(but these are hard problems)
Present proof system modelling CDCL no-one can complain about∗
(except it’s messy to analyse)
Already known: no clause learning ⇒ collapse to tree-like resolution
We show too aggressive clause removal can cause exponential
blow-up in running time, matching theory [BN11, BBI12, BNT13]
Involves time- and space-efficient simulations of some resolution
proofs (but far from general simulation result)
These simulations do not need restarts (impossible to prove in
principle for model in [AFT11, PD11])

(*) So if you see any issues with the model, we definitely want to know
Obviously, must abstract away some features, but we feel we capture the essentials

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 9/25

Introduction Our Work

What We Get

Much less impressive results than we would have liked. . .
(but these are hard problems)
Present proof system modelling CDCL no-one can complain about∗
(except it’s messy to analyse)
Already known: no clause learning ⇒ collapse to tree-like resolution
We show too aggressive clause removal can cause exponential
blow-up in running time, matching theory [BN11, BBI12, BNT13]
Involves time- and space-efficient simulations of some resolution
proofs (but far from general simulation result)
These simulations do not need restarts (impossible to prove in
principle for model in [AFT11, PD11])

(*) So if you see any issues with the model, we definitely want to know
Obviously, must abstract away some features, but we feel we capture the essentials

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 9/25

CDCL Model and Results Resolution Proof System

Some Notation and Terminology

Literal a: variable x or its negation x (or ¬x)

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

N denotes size of formula (# literals counted with repetitions)

O(f(N)) grows at most as quickly as f(N) asymptotically
Ω(g(N)) grows at least as quickly as g(N) asymptotically

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 10/25

CDCL Model and Results Resolution Proof System

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 11/25

CDCL Model and Results Resolution Proof System

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 11/25

CDCL Model and Results Resolution Proof System

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 11/25

CDCL Model and Results Resolution Proof System

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 11/25

CDCL Model and Results Resolution Proof System

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 11/25

CDCL Model and Results Resolution Proof System

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 11/25

CDCL Model and Results Resolution Proof System

Resolution Size/Length

Size/length of proof = # clauses (9 in example on previous slide)
Length of refuting F = min over all proofs for F

Most fundamental measure in proof complexity

Lower bound on CDCL running time
(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known [Urq87, CS88, BW01]

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 12/25

CDCL Model and Results Resolution Proof System

Resolution Size/Length

Size/length of proof = # clauses (9 in example on previous slide)
Length of refuting F = min over all proofs for F

Most fundamental measure in proof complexity

Lower bound on CDCL running time
(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known [Urq87, CS88, BW01]

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 12/25

CDCL Model and Results Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 13/25

CDCL Model and Results Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

7. x Res(1, 6)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 13/25

CDCL Model and Results Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

x

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 13/25

CDCL Model and Results Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 is 5

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

xx

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 13/25

CDCL Model and Results Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 is 5

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

xx

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 13/25

CDCL Model and Results Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 is 5

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

xx

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 13/25

CDCL Model and Results Resolution Proof System

Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Apply for space on top of storing formula
Hold even for optimal algorithms that magically know exactly which
clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound obtained for proofs of exponential size

Which leads to a natural question. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 14/25

CDCL Model and Results Resolution Proof System

Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Apply for space on top of storing formula
Hold even for optimal algorithms that magically know exactly which
clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound obtained for proofs of exponential size

Which leads to a natural question. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 14/25

CDCL Model and Results Resolution Proof System

Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Apply for space on top of storing formula
Hold even for optimal algorithms that magically know exactly which
clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound obtained for proofs of exponential size

Which leads to a natural question. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 14/25

CDCL Model and Results Resolution Proof System

Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Apply for space on top of storing formula
Hold even for optimal algorithms that magically know exactly which
clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound obtained for proofs of exponential size

Which leads to a natural question. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 14/25

CDCL Model and Results Resolution Proof System

Length-Space Trade-offs

Length ≈ running time
Space ≈ memory consumption
SAT solvers aggressively try to minimize both — is this possible?

Theorem ([BN11, BBI12, BNT13])
There are formulas for which

exist refutations in short length
exist refutations in small space
optimization of one measure causes dramatic blow-up for other
measure

So no meaningful simultaneous optimization possible in worst case
At least for resolution proofs — but what about CDCL proof search?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 15/25

CDCL Model and Results Resolution Proof System

Length-Space Trade-offs

Length ≈ running time
Space ≈ memory consumption
SAT solvers aggressively try to minimize both — is this possible?

Theorem ([BN11, BBI12, BNT13])
There are formulas for which

exist refutations in short length
exist refutations in small space
optimization of one measure causes dramatic blow-up for other
measure

So no meaningful simultaneous optimization possible in worst case
At least for resolution proofs — but what about CDCL proof search?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 15/25

CDCL Model and Results Resolution Proof System

Length-Space Trade-offs

Length ≈ running time
Space ≈ memory consumption
SAT solvers aggressively try to minimize both — is this possible?

Theorem ([BN11, BBI12, BNT13])
There are formulas for which

exist refutations in short length
exist refutations in small space
optimization of one measure causes dramatic blow-up for other
measure

So no meaningful simultaneous optimization possible in worst case
At least for resolution proofs — but what about CDCL proof search?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 15/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (1/2)

Trail: a stack of decisions xi
d= b and unit propagations xi

C= b

(x7
d= 0︸ ︷︷ ︸

dec. level 1

, x2
d= 1, x12

C1= 0︸ ︷︷ ︸
dec. level 2

, x6
d= 1, x4

C2= 1, x1
C3= 0︸ ︷︷ ︸

dec. level 3

, x11
d= 0, x59

C4= 1︸ ︷︷ ︸
dec. level 4

)

Clause database D: set of initial + learned clauses

Solver starts in Default mode and transits to Conflict, Unit, or Decision

Default If all variables assigned, output SAT;
else if trail falsifies clause C ∈ D, move to Conflict;
else if some C ∈ D unit, move to Unit;
else solver is in stable state; do in sequence:

1 decide whether to restart, i.e., set trail to ();
2 decide whether to apply database reduction to D;
3 move to Decision

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 16/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (1/2)

Trail: a stack of decisions xi
d= b and unit propagations xi

C= b

(x7
d= 0︸ ︷︷ ︸

dec. level 1

, x2
d= 1, x12

C1= 0︸ ︷︷ ︸
dec. level 2

, x6
d= 1, x4

C2= 1, x1
C3= 0︸ ︷︷ ︸

dec. level 3

, x11
d= 0, x59

C4= 1︸ ︷︷ ︸
dec. level 4

)

Clause database D: set of initial + learned clauses

Solver starts in Default mode and transits to Conflict, Unit, or Decision

Default If all variables assigned, output SAT;
else if trail falsifies clause C ∈ D, move to Conflict;
else if some C ∈ D unit, move to Unit;
else solver is in stable state; do in sequence:

1 decide whether to restart, i.e., set trail to ();
2 decide whether to apply database reduction to D;
3 move to Decision

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 16/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (1/2)

Trail: a stack of decisions xi
d= b and unit propagations xi

C= b

(x7
d= 0︸ ︷︷ ︸

dec. level 1

, x2
d= 1, x12

C1= 0︸ ︷︷ ︸
dec. level 2

, x6
d= 1, x4

C2= 1, x1
C3= 0︸ ︷︷ ︸

dec. level 3

, x11
d= 0, x59

C4= 1︸ ︷︷ ︸
dec. level 4

)

Clause database D: set of initial + learned clauses

Solver starts in Default mode and transits to Conflict, Unit, or Decision

Default If all variables assigned, output SAT;
else if trail falsifies clause C ∈ D, move to Conflict;
else if some C ∈ D unit, move to Unit;
else solver is in stable state; do in sequence:

1 decide whether to restart, i.e., set trail to ();
2 decide whether to apply database reduction to D;
3 move to Decision

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 16/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (1/2)

Trail: a stack of decisions xi
d= b and unit propagations xi

C= b

(x7
d= 0︸ ︷︷ ︸

dec. level 1

, x2
d= 1, x12

C1= 0︸ ︷︷ ︸
dec. level 2

, x6
d= 1, x4

C2= 1, x1
C3= 0︸ ︷︷ ︸

dec. level 3

, x11
d= 0, x59

C4= 1︸ ︷︷ ︸
dec. level 4

)

Clause database D: set of initial + learned clauses

Solver starts in Default mode and transits to Conflict, Unit, or Decision

Default If all variables assigned, output SAT;
else if trail falsifies clause C ∈ D, move to Conflict;
else if some C ∈ D unit, move to Unit;
else solver is in stable state; do in sequence:

1 decide whether to restart, i.e., set trail to ();
2 decide whether to apply database reduction to D;
3 move to Decision

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 16/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (1/2)

Trail: a stack of decisions xi
d= b and unit propagations xi

C= b

(x7
d= 0︸ ︷︷ ︸

dec. level 1

, x2
d= 1, x12

C1= 0︸ ︷︷ ︸
dec. level 2

, x6
d= 1, x4

C2= 1, x1
C3= 0︸ ︷︷ ︸

dec. level 3

, x11
d= 0, x59

C4= 1︸ ︷︷ ︸
dec. level 4

)

Clause database D: set of initial + learned clauses

Solver starts in Default mode and transits to Conflict, Unit, or Decision

Default If all variables assigned, output SAT;
else if trail falsifies clause C ∈ D, move to Conflict;
else if some C ∈ D unit, move to Unit;
else solver is in stable state; do in sequence:

1 decide whether to restart, i.e., set trail to ();
2 decide whether to apply database reduction to D;
3 move to Decision

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 16/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (2/2)

Unit Arbitrarily pick clause C ∈ D unit w.r.t. trail
Add propagated assignment x C= b to trail
Move to Default

Conflict If trail contains no decisions, output UNSAT;
else

apply learning scheme to derive asserting clause C;
backjump, i.e., remove decision levels > assertion level
of C from trail;
move to Unit

Decision Use decision scheme to add decision x d= b to trail
Move to Default

Model draws heavily on [AFT11, PD11]
Combined with ideas from [BHJ08] to capture memory and restarts

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 17/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (2/2)

Unit Arbitrarily pick clause C ∈ D unit w.r.t. trail
Add propagated assignment x C= b to trail
Move to Default

Conflict If trail contains no decisions, output UNSAT;
else

apply learning scheme to derive asserting clause C;
backjump, i.e., remove decision levels > assertion level
of C from trail;
move to Unit

Decision Use decision scheme to add decision x d= b to trail
Move to Default

Model draws heavily on [AFT11, PD11]
Combined with ideas from [BHJ08] to capture memory and restarts

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 17/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (2/2)

Unit Arbitrarily pick clause C ∈ D unit w.r.t. trail
Add propagated assignment x C= b to trail
Move to Default

Conflict If trail contains no decisions, output UNSAT;
else

apply learning scheme to derive asserting clause C;
backjump, i.e., remove decision levels > assertion level
of C from trail;
move to Unit

Decision Use decision scheme to add decision x d= b to trail
Move to Default

Model draws heavily on [AFT11, PD11]
Combined with ideas from [BHJ08] to capture memory and restarts

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 17/25

CDCL Model and Results CDCL as a Proof System

CDCL Model (2/2)

Unit Arbitrarily pick clause C ∈ D unit w.r.t. trail
Add propagated assignment x C= b to trail
Move to Default

Conflict If trail contains no decisions, output UNSAT;
else

apply learning scheme to derive asserting clause C;
backjump, i.e., remove decision levels > assertion level
of C from trail;
move to Unit

Decision Use decision scheme to add decision x d= b to trail
Move to Default

Model draws heavily on [AFT11, PD11]
Combined with ideas from [BHJ08] to capture memory and restarts

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 17/25

CDCL Model and Results Our Results

CDCL Cannot Do Better than Resolution

Theorem
CDCL with “standard” learning scheme (e.g., UIP) decides F in time τ
and space s ⇒ F has resolution proof in length ≤ τ and space ≤ s+O(1)

Fairly obvious for time/length

A priori not so obvious for space
(but proof not hard once one gets the model right)

Means that lower bounds in resolution trade-offs automatically carry over
But can CDCL find time-efficient and space-efficient proofs?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 18/25

CDCL Model and Results Our Results

CDCL Cannot Do Better than Resolution

Theorem
CDCL with “standard” learning scheme (e.g., UIP) decides F in time τ
and space s ⇒ F has resolution proof in length ≤ τ and space ≤ s+O(1)

Fairly obvious for time/length

A priori not so obvious for space
(but proof not hard once one gets the model right)

Means that lower bounds in resolution trade-offs automatically carry over
But can CDCL find time-efficient and space-efficient proofs?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 18/25

CDCL Model and Results Our Results

CDCL Cannot Do Better than Resolution

Theorem
CDCL with “standard” learning scheme (e.g., UIP) decides F in time τ
and space s ⇒ F has resolution proof in length ≤ τ and space ≤ s+O(1)

Fairly obvious for time/length

A priori not so obvious for space
(but proof not hard once one gets the model right)

Means that lower bounds in resolution trade-offs automatically carry over
But can CDCL find time-efficient and space-efficient proofs?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 18/25

CDCL Model and Results Our Results

CDCL Cannot Do Better than Resolution

Theorem
CDCL with “standard” learning scheme (e.g., UIP) decides F in time τ
and space s ⇒ F has resolution proof in length ≤ τ and space ≤ s+O(1)

Fairly obvious for time/length

A priori not so obvious for space
(but proof not hard once one gets the model right)

Means that lower bounds in resolution trade-offs automatically carry over
But can CDCL find time-efficient and space-efficient proofs?

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 18/25

CDCL Model and Results Our Results

Time-Space Trade-Offs for CDCL (in Math Notation)

We obtain CDCL analogues of (almost all) trade-off results in
[BN11, BBI12, BNT13] — here is one sample:

Theorem (slightly informal)
For your favourite k ∈ N+ ∃ explicit formulas FN of size ≈ N such that

CDCL with 1UIP learning and no restarts can decide FN in time
O
(
Nk
)

and space O
(
Nk
)

CDCL with 1UIP learning and no restarts can decide FN in space
O
(
log2N

)
and time NO(logN)

For any CDCL run in time τ and space s using any learning scheme
and restart policy it holds that τ '

(
Nk/s

)Ω(log logN/log log logN)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 19/25

CDCL Model and Results Our Results

Time-Space Trade-Offs for CDCL (in English)

Rephrasing theorem on previous slide to convey high-level message:

The formulas FN are somewhat tricky (require more than linear time)

CDCL can solve them efficiently for generous memory management
(even without restarts)

But more aggressive clause erasure policy (such as current MiniSat or
Glucose defaults) cause superpolynomial blow-up in running time

Interpretation:

This is only a mathematical theorem about asymptotic behaviour for
theoretical benchmarks

But have some indications of similar behaviour for scaled-down
versions in practical experiments [ENSS16]

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 20/25

CDCL Model and Results Our Results

Time-Space Trade-Offs for CDCL (in English)

Rephrasing theorem on previous slide to convey high-level message:

The formulas FN are somewhat tricky (require more than linear time)

CDCL can solve them efficiently for generous memory management
(even without restarts)

But more aggressive clause erasure policy (such as current MiniSat or
Glucose defaults) cause superpolynomial blow-up in running time

Interpretation:

This is only a mathematical theorem about asymptotic behaviour for
theoretical benchmarks

But have some indications of similar behaviour for scaled-down
versions in practical experiments [ENSS16]

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 20/25

CDCL Model and Results Our Results

Proof Plan for CDCL Simulation of Resolution

General idea is obvious:
Given resolution proof (C1, C2, . . . , Cτ)
Force solver to efficiently learn Ct for t = 1, 2, 3, . . .
Make sure clause database size ≈ space of proof at all times

Not as easy as it seems. . .
Unit propagation + clause database cause problems
Suppose have C ∨ x and D ∨ x and now want to learn C ∨D
Easy: decide to make C ∨D false ⇒ conflict on x
But clauses in database can propagate “wrong values”
⇒ proof search veers off in different direction

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 21/25

CDCL Model and Results Our Results

Proof Plan for CDCL Simulation of Resolution

General idea is obvious:
Given resolution proof (C1, C2, . . . , Cτ)
Force solver to efficiently learn Ct for t = 1, 2, 3, . . .
Make sure clause database size ≈ space of proof at all times

Not as easy as it seems. . .
Unit propagation + clause database cause problems
Suppose have C ∨ x and D ∨ x and now want to learn C ∨D
Easy: decide to make C ∨D false ⇒ conflict on x
But clauses in database can propagate “wrong values”
⇒ proof search veers off in different direction

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 21/25

CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25

CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25

CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25

CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25

CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25

CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25

CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25

CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25

CDCL Model and Results Our Results

Why Life Without Restarts Might Be Tricky

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1
d=0 x2

d=0 u1
d=0

u2=1 | v1
d=0 v2=1

x1
d=0 x2

d=0 | u1
d=0

u2=1 v1=1 v2=0

x1
d=0 x2

d=0 u1=1

u2=0 | v1
d=0 v2=1

x1
d=0 | x2

d=0 u1=1
u2=0 v1=1 v2=0

Know u1 ⊕ u2 and v1 ⊕ v2; want to learn x1 ⊕ x2
Decide x1 = x2 = 0 ⇒ easy to learn x1 ∨ x2 — so far, so good
x1 ∨ x2 asserts x2 = 1 but x1 = 0 left on trail ⇒ x1 ⊕ x2 true
Need to erase decision x1 = 0 from trail to learn x1 ∨ x2
Easy with restarts — major pain without. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 23/25

CDCL Model and Results Our Results

Why Life Without Restarts Might Be Tricky

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1
d=0 x2

d=0 u1
d=0

u2=1 | v1
d=0 v2=1

x1
d=0 x2

d=0 | u1
d=0

u2=1 v1=1 v2=0

x1
d=0 x2

d=0 u1=1

u2=0 | v1
d=0 v2=1

x1
d=0 | x2

d=0 u1=1
u2=0 v1=1 v2=0

Know u1 ⊕ u2 and v1 ⊕ v2; want to learn x1 ⊕ x2
Decide x1 = x2 = 0 ⇒ easy to learn x1 ∨ x2 — so far, so good
x1 ∨ x2 asserts x2 = 1 but x1 = 0 left on trail ⇒ x1 ⊕ x2 true
Need to erase decision x1 = 0 from trail to learn x1 ∨ x2
Easy with restarts — major pain without. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 23/25

CDCL Model and Results Our Results

Why Life Without Restarts Might Be Tricky

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1
d=0 x2

d=0 u1
d=0

u2=1 | v1
d=0 v2=1

x1
d=0 x2

d=0 | u1
d=0

u2=1 v1=1 v2=0

x1
d=0 x2

d=0 u1=1

u2=0 | v1
d=0 v2=1

x1
d=0 | x2

d=0 u1=1
u2=0 v1=1 v2=0

Know u1 ⊕ u2 and v1 ⊕ v2; want to learn x1 ⊕ x2
Decide x1 = x2 = 0 ⇒ easy to learn x1 ∨ x2 — so far, so good
x1 ∨ x2 asserts x2 = 1 but x1 = 0 left on trail ⇒ x1 ⊕ x2 true
Need to erase decision x1 = 0 from trail to learn x1 ∨ x2
Easy with restarts — major pain without. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 23/25

CDCL Model and Results Our Results

Why Life Without Restarts Might Be Tricky

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1
d=0 x2

d=0 u1
d=0

u2=1 | v1
d=0 v2=1

x1
d=0 x2

d=0 | u1
d=0

u2=1 v1=1 v2=0

x1
d=0 x2

d=0 u1=1

u2=0 | v1
d=0 v2=1

x1
d=0 | x2

d=0 u1=1
u2=0 v1=1 v2=0

Know u1 ⊕ u2 and v1 ⊕ v2; want to learn x1 ⊕ x2
Decide x1 = x2 = 0 ⇒ easy to learn x1 ∨ x2 — so far, so good
x1 ∨ x2 asserts x2 = 1 but x1 = 0 left on trail ⇒ x1 ⊕ x2 true
Need to erase decision x1 = 0 from trail to learn x1 ∨ x2
Easy with restarts — major pain without. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 23/25

CDCL Model and Results Our Results

Why Life Without Restarts Might Be Tricky

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1
d=0 x2

d=0 u1
d=0

u2=1 | v1
d=0 v2=1

x1
d=0 x2

d=0 | u1
d=0

u2=1 v1=1 v2=0

x1
d=0 x2

d=0 u1=1

u2=0 | v1
d=0 v2=1

x1
d=0 | x2

d=0 u1=1
u2=0 v1=1 v2=0

Know u1 ⊕ u2 and v1 ⊕ v2; want to learn x1 ⊕ x2
Decide x1 = x2 = 0 ⇒ easy to learn x1 ∨ x2 — so far, so good
x1 ∨ x2 asserts x2 = 1 but x1 = 0 left on trail ⇒ x1 ⊕ x2 true
Need to erase decision x1 = 0 from trail to learn x1 ∨ x2
Easy with restarts — major pain without. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 23/25

CDCL Model and Results Our Results

Why Life Without Restarts Might Be Tricky

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1
d=0 x2

d=0 u1
d=0

u2=1 | v1
d=0 v2=1

x1
d=0 x2

d=0 | u1
d=0

u2=1 v1=1 v2=0

x1
d=0 x2

d=0 u1=1

u2=0 | v1
d=0 v2=1

x1
d=0 | x2

d=0 u1=1
u2=0 v1=1 v2=0

Know u1 ⊕ u2 and v1 ⊕ v2; want to learn x1 ⊕ x2
Decide x1 = x2 = 0 ⇒ easy to learn x1 ∨ x2 — so far, so good
x1 ∨ x2 asserts x2 = 1 but x1 = 0 left on trail ⇒ x1 ⊕ x2 true
Need to erase decision x1 = 0 from trail to learn x1 ∨ x2
Easy with restarts — major pain without. . .

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 23/25

Future Directions

Open Problems
CDCL vs. resolution

Can CDCL simulate resolution time- and space-efficiently in theory?
Is CDCL competitive with resolution in practice?

Importance of restarts
Is CDCL without restarts strictly weaker than resolution?
Failed separation attempts in [BHJ08, BBJ14, BK14, BS14] for
formulas hard for regular resolution
But models of CDCL too strong! No real practical implications
[CDCL + (standard heuristics)− restarts] weaker than resolution?

Theoretical study of power (or weakness) of other heuristics
How do other heuristics help or hinder proof search?
Does LBD (literal block distance) measure identify important clauses?
Prove that VSIDS (variable state independent decaying sum) some-
times goes terribly wrong? (See this on some theory benchmarks)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 24/25

Future Directions

Open Problems
CDCL vs. resolution

Can CDCL simulate resolution time- and space-efficiently in theory?
Is CDCL competitive with resolution in practice?

Importance of restarts
Is CDCL without restarts strictly weaker than resolution?
Failed separation attempts in [BHJ08, BBJ14, BK14, BS14] for
formulas hard for regular resolution
But models of CDCL too strong! No real practical implications
[CDCL + (standard heuristics)− restarts] weaker than resolution?

Theoretical study of power (or weakness) of other heuristics
How do other heuristics help or hinder proof search?
Does LBD (literal block distance) measure identify important clauses?
Prove that VSIDS (variable state independent decaying sum) some-
times goes terribly wrong? (See this on some theory benchmarks)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 24/25

Future Directions

Open Problems
CDCL vs. resolution

Can CDCL simulate resolution time- and space-efficiently in theory?
Is CDCL competitive with resolution in practice?

Importance of restarts
Is CDCL without restarts strictly weaker than resolution?
Failed separation attempts in [BHJ08, BBJ14, BK14, BS14] for
formulas hard for regular resolution
But models of CDCL too strong! No real practical implications
[CDCL + (standard heuristics)− restarts] weaker than resolution?

Theoretical study of power (or weakness) of other heuristics
How do other heuristics help or hinder proof search?
Does LBD (literal block distance) measure identify important clauses?
Prove that VSIDS (variable state independent decaying sum) some-
times goes terribly wrong? (See this on some theory benchmarks)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 24/25

Summing up This Presentation

This work part of larger effort to connect proof complexity and SAT solving
(see survey paper [Nor15] for wider context)

Our contributions:
Fine-grained model of CDCL as proof system
Time-space trade-offs for CDCL proof search

Some open problems (not exhaustive list):
Can CDCL simulate resolution time- and space-efficiently?
Understand better the role of restarts
Prove limitations of CDCL with current state-of-the-art heuristics(?)

Thank you for your attention!

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 25/25

Summing up This Presentation

This work part of larger effort to connect proof complexity and SAT solving
(see survey paper [Nor15] for wider context)

Our contributions:
Fine-grained model of CDCL as proof system
Time-space trade-offs for CDCL proof search

Some open problems (not exhaustive list):
Can CDCL simulate resolution time- and space-efficiently?
Understand better the role of restarts
Prove limitations of CDCL with current state-of-the-art heuristics(?)

Thank you for your attention!

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 25/25

Summing up This Presentation

This work part of larger effort to connect proof complexity and SAT solving
(see survey paper [Nor15] for wider context)

Our contributions:
Fine-grained model of CDCL as proof system
Time-space trade-offs for CDCL proof search

Some open problems (not exhaustive list):
Can CDCL simulate resolution time- and space-efficiently?
Understand better the role of restarts
Prove limitations of CDCL with current state-of-the-art heuristics(?)

Thank you for your attention!

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 25/25

Summing up This Presentation

This work part of larger effort to connect proof complexity and SAT solving
(see survey paper [Nor15] for wider context)

Our contributions:
Fine-grained model of CDCL as proof system
Time-space trade-offs for CDCL proof search

Some open problems (not exhaustive list):
Can CDCL simulate resolution time- and space-efficiently?
Understand better the role of restarts
Prove limitations of CDCL with current state-of-the-art heuristics(?)

Thank you for your attention!

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 25/25

References I

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002. Preliminary version in STOC ’00.

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning
algorithms with many restarts and bounded-width resolution. Journal of Artificial
Intelligence Research, 40:353–373, January 2011. Preliminary version in SAT ’09.

[AR08] Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable
unless W[P] is tractable. SIAM Journal on Computing, 38(4):1347–1363, October
2008. Preliminary version in FOCS ’01.

[BBI12] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in
resolution: Superpolynomial lower bounds for superlinear space. In Proceedings of
the 44th Annual ACM Symposium on Theory of Computing (STOC ’12), pages
213–232, May 2012.

[BBJ14] Maria Luisa Bonet, Sam Buss, and Jan Johannsen. Improved separations of regular
resolution from clause learning proof systems. Journal of Artificial Intelligence
Research, 49:669–703, 2014.

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 26/25

References II

[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in
resolution. Random Structures and Algorithms, 23(1):92–109, August 2003.
Preliminary version in CCC ’01.

[BHJ08] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas:
Resolution refinements that characterize DLL-algorithms with clause learning.
Logical Methods in Computer Science, 4(4:13), December 2008.

[BK14] Samuel R. Buss and Leszek Ko lodziejczyk. Small stone in pool. Logical Methods in
Computer Science, 10, June 2014.

[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence
Research, 22:319–351, December 2004. Preliminary version in IJCAI ’03.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal
separation of space and length in resolution. In Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’08), pages 709–718,
October 2008.

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 27/25

References III

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity:
Separations and trade-offs via substitutions. In Proceedings of the 2nd Symposium
on Innovations in Computer Science (ICS ’11), pages 401–416, January 2011.

[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for
polynomial calculus. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing (STOC ’13), pages 813–822, May 2013.

[BS14] Paul Beame and Ashish Sabharwal. Non-restarting SAT solvers with simple
preprocessing can efficiently simulate resolution. In Proceedings of the 28th
National Conference on Artificial Intelligence (AAAI ’14), pages 2608–2615. AAAI
Press, July 2014.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made
simple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in
STOC ’99.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of
the ACM, 35(4):759–768, October 1988.

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 28/25

References IV

[ENSS16] Jan Elffers, Jakob Nordström, Laurent Simon, and Karem A. Sakallah. Seeking
practical CDCL insights from theoretical SAT benchmarks. Manuscript in
preparation, 2016.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001. Preliminary versions of these results appeared in
STACS ’99 and CSL ’99.

[HBPV08] Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause
learning can effectively P-simulate general propositional resolution. In Proceedings
of the 23rd National Conference on Artificial Intelligence (AAAI ’08), pages
283–290, July 2008.

[KSM11] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva. Empirical study of the
anatomy of modern SAT solvers. In Proceedings of the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’11), volume
6695 of Lecture Notes in Computer Science, pages 343–356. Springer, June 2011.

[Nor15] Jakob Nordström. On the interplay between proof complexity and SAT solving.
ACM SIGLOG News, 2(3):19–44, July 2015.

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 29/25

References V

[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT
solvers as resolution engines. Artificial Intelligence, 175:512–525, February 2011.
Preliminary version in CP ’09.

[SM11] Karem A. Sakallah and João Marques-Silva. Anatomy and empirical evaluation of
modern SAT solvers. Bulletin of the European Association for Theoretical Computer
Science, 103:96–121, February 2011.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987.

[Van05] Allen Van Gelder. Pool resolution and its relation to regular resolution and DPLL
with clause learning. In Proceedings of the 12th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR ’05), volume 3835 of
Lecture Notes in Computer Science, pages 580–594. Springer, 2005.

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 30/25

	Introductory Slides
	Main Talk
	Introduction
	CDCL as a Resolution Proof Search Algorithm
	Strengths and Weaknesses of Simulation Results
	Our Work

	CDCL Model and Results
	Resolution Proof System
	CDCL as a Proof System
	Our Results

	Future Directions

	Concluding Slides
	Appendix

