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What This Work Is About

The unreasonable effectiveness of SAT solvers

The Boolean satisfiability problem (SAT) is NP-complete and so
should be exponentially hard

Yet current state-of-the-art conflict-driven clause learning (CDCL)
SAT solvers can deal with formulas containing millions of variables

How can they work so well? What are the limits to what they can do?

This work

Driving motivation: Understand the power of CDCL

Tool: Proof complexity (don’t have much else for rigorous analysis)
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What This Talk Is About

Report on results so far

Definitely more of “work in progress” than The Final AnswerTM

Also take the opportunity to give my take on some work at
intersection of SAT solving and proof complexity

Believe there is room for improved mutual understanding — hope to
stimulate discussions that can remove some misconceptions
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Introduction CDCL as a Resolution Proof Search Algorithm

CDCL and Resolution

Satisfiable CNF formula: CDCL solver finds satisfying assignment

Unsatisfiable formula: search for proof in resolution proof system

Lower bounds in proof complexity ⇒ impossibility results for CDCL
even assuming optimal choices∗

But CDCL searches for proofs with very special structure — can it
match resolution upper bounds?

(*) Ignores preprocessing — our focus on CDCL proof search
Will be happy to elaborate offline on why this is reasonable simplification
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Introduction CDCL as a Resolution Proof Search Algorithm

Understanding the Efficiency of CDCL Proof Search

Long line of work aimed at proving that CDCL explores resolution
search space efficiently, e.g., [BKS04, Van05, BHJ08, HBPV08]
Challenging problem — progress only by making assumptions such as

I artificial preprocessing
I decisions past conflicts
I non-standard learning strategies
I no unit propagation(!)

First result in clean model in [PD11]: CDCL as proof system
polynomially simulates resolution w.r.t. time/size
Constructive version in [AFT11]:∗ ∃ resolution proof with clauses of
bounded size ⇒ CDCL will run fast
Good, so then we’re done? Not quite

(*) [AFT11] and [PD11] independent but essentially equivalent works
Can use techniques in either paper to establish results in the other
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Introduction Strengths and Weaknesses of Simulation Results

Why Not Completely Happy with [AFT11, PD11]? (1/2)

Learning scheme
Learned clause assertive but otherwise adversarially chosen
Very strong aspect of result
But does not come for free — costs a lot for efficiency of simulation

Restart policy
Restarts are not too frequent (unless you think Luby is too frequent)
But no progress at all in between restarts
Restarts seem important, but not quite that important?!
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Introduction Strengths and Weaknesses of Simulation Results

Why Not Completely Happy with [AFT11, PD11]? (2/2)

Decision strategy
In [PD11], crucially relies on (unknown) resolution proof
In [AFT11], crucially needs to be (essentially totally) random
Probably inherent — fully constructive proof search likely to be
computationally intractable [AR08]

Clause database management
No learned clause must ever be forgotten, or theorems crash and burn
But in practice something like 90–95% of clauses erased. . .

Simulation efficiency
CDCL solvers typically have to run in (close to) linear time O(n)
But simulation will yield something like O

(
n5) running time
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Introduction Our Work

What We Want

More fine-grained and realistic CDCL model. . .
Capture restarts, clause learning, memory management, et cetera
Modular design to allow study of different features
Theoretical analogue of projects in [KSM11, SM11, ENSS16]

. . . Leading to improved theoretical insights
Can CDCL proof search be time and space efficient?
And can it be really efficient? (No polynomial blow-ups)
How does memory management affect proof search quality?
Do restarts increase reasoning power? (Or just a helpful heuristic?)
How do other heuristics help or hinder proof search?
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Introduction Our Work

What We Get

Much less impressive results than we would have liked. . .
(but these are hard problems)
Present proof system modelling CDCL no-one can complain about∗
(except it’s messy to analyse)
Already known: no clause learning ⇒ collapse to tree-like resolution
We show too aggressive clause removal can cause exponential
blow-up in running time, matching theory [BN11, BBI12, BNT13]
Involves time- and space-efficient simulations of some resolution
proofs (but far from general simulation result)
These simulations do not need restarts (impossible to prove in
principle for model in [AFT11, PD11])

(*) So if you see any issues with the model, we definitely want to know
Obviously, must abstract away some features, but we feel we capture the essentials
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CDCL Model and Results Resolution Proof System

Some Notation and Terminology

Literal a: variable x or its negation x (or ¬x)

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

N denotes size of formula (# literals counted with repetitions)

O(f(N)) grows at most as quickly as f(N) asymptotically
Ω(g(N)) grows at least as quickly as g(N) asymptotically
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CDCL Model and Results Resolution Proof System

The Resolution Proof System

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Proof ends when empty clause ⊥ derived

Can represent proof/refutation as
annotated list or
directed acyclic graph

Tree-like if DAG is tree
Regular if resolved variables don’t repeat on path

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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CDCL Model and Results Resolution Proof System

Resolution Size/Length

Size/length of proof = # clauses (9 in example on previous slide)
Length of refuting F = min over all proofs for F

Most fundamental measure in proof complexity

Lower bound on CDCL running time
(can extract resolution proof from execution trace)

Never worse than exp(O(N))

Matching exp(Ω(N)) lower bounds known [Urq87, CS88, BW01]
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CDCL Model and Results Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥
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Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 13/25



CDCL Model and Results Resolution Proof System

Resolution Space

Space = max # clauses in memory when
performing refutation

Motivated by SAT solver memory usage
(but also intrinsically interesting for proof
complexity)

Can be measured in different ways — makes
most sense here to focus on clause space

Space at step t = # clauses at steps ≤ t
used at steps ≥ t

Example: Space at step 7 . . .

Space of proof = max over all steps
Space of refuting F = min over all proofs

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

7. x Res(1, 6)
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CDCL Model and Results Resolution Proof System

Bounds on Resolution Space

Space always at most N +O(1) (!) [ET01]

Matching Ω(N) lower bounds known [ABRW02, BG03, ET01]

Linear space lower bounds might not seem so impressive. . .

But:
Apply for space on top of storing formula
Hold even for optimal algorithms that magically know exactly which
clauses to throw away or keep
So significantly more space might be needed in practice
And linear space upper bound obtained for proofs of exponential size

Which leads to a natural question. . .
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CDCL Model and Results Resolution Proof System

Length-Space Trade-offs

Length ≈ running time
Space ≈ memory consumption
SAT solvers aggressively try to minimize both — is this possible?

Theorem ([BN11, BBI12, BNT13])
There are formulas for which

exist refutations in short length
exist refutations in small space
optimization of one measure causes dramatic blow-up for other
measure

So no meaningful simultaneous optimization possible in worst case
At least for resolution proofs — but what about CDCL proof search?
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CDCL Model and Results CDCL as a Proof System

CDCL Model (1/2)

Trail: a stack of decisions xi
d= b and unit propagations xi

C= b

( x7
d= 0︸ ︷︷ ︸

dec. level 1

, x2
d= 1, x12

C1= 0︸ ︷︷ ︸
dec. level 2

, x6
d= 1, x4

C2= 1, x1
C3= 0︸ ︷︷ ︸

dec. level 3

, x11
d= 0, x59

C4= 1︸ ︷︷ ︸
dec. level 4

)

Clause database D: set of initial + learned clauses

Solver starts in Default mode and transits to Conflict, Unit, or Decision

Default If all variables assigned, output SAT;
else if trail falsifies clause C ∈ D, move to Conflict;
else if some C ∈ D unit, move to Unit;
else solver is in stable state; do in sequence:

1 decide whether to restart, i.e., set trail to ();
2 decide whether to apply database reduction to D;
3 move to Decision
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CDCL Model and Results CDCL as a Proof System

CDCL Model (2/2)

Unit Arbitrarily pick clause C ∈ D unit w.r.t. trail
Add propagated assignment x C= b to trail
Move to Default

Conflict If trail contains no decisions, output UNSAT;
else

apply learning scheme to derive asserting clause C;
backjump, i.e., remove decision levels > assertion level
of C from trail;
move to Unit

Decision Use decision scheme to add decision x d= b to trail
Move to Default

Model draws heavily on [AFT11, PD11]
Combined with ideas from [BHJ08] to capture memory and restarts
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CDCL Model and Results Our Results

CDCL Cannot Do Better than Resolution

Theorem
CDCL with “standard” learning scheme (e.g., UIP) decides F in time τ
and space s ⇒ F has resolution proof in length ≤ τ and space ≤ s+O(1)

Fairly obvious for time/length

A priori not so obvious for space
(but proof not hard once one gets the model right)

Means that lower bounds in resolution trade-offs automatically carry over
But can CDCL find time-efficient and space-efficient proofs?
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CDCL Model and Results Our Results

Time-Space Trade-Offs for CDCL (in Math Notation)

We obtain CDCL analogues of (almost all) trade-off results in
[BN11, BBI12, BNT13] — here is one sample:

Theorem (slightly informal)
For your favourite k ∈ N+ ∃ explicit formulas FN of size ≈ N such that

CDCL with 1UIP learning and no restarts can decide FN in time
O
(
Nk
)

and space O
(
Nk
)

CDCL with 1UIP learning and no restarts can decide FN in space
O
(
log2N

)
and time NO(logN)

For any CDCL run in time τ and space s using any learning scheme
and restart policy it holds that τ '

(
Nk/s

)Ω(log logN/log log logN)
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CDCL Model and Results Our Results

Time-Space Trade-Offs for CDCL (in English)

Rephrasing theorem on previous slide to convey high-level message:

The formulas FN are somewhat tricky (require more than linear time)

CDCL can solve them efficiently for generous memory management
(even without restarts)

But more aggressive clause erasure policy (such as current MiniSat or
Glucose defaults) cause superpolynomial blow-up in running time

Interpretation:

This is only a mathematical theorem about asymptotic behaviour for
theoretical benchmarks

But have some indications of similar behaviour for scaled-down
versions in practical experiments [ENSS16]
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CDCL Model and Results Our Results

Proof Plan for CDCL Simulation of Resolution

General idea is obvious:
Given resolution proof (C1, C2, . . . , Cτ )
Force solver to efficiently learn Ct for t = 1, 2, 3, . . .
Make sure clause database size ≈ space of proof at all times

Not as easy as it seems. . .
Unit propagation + clause database cause problems
Suppose have C ∨ x and D ∨ x and now want to learn C ∨D
Easy: decide to make C ∨D false ⇒ conflict on x
But clauses in database can propagate “wrong values”
⇒ proof search veers off in different direction
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CDCL Model and Results Our Results

Illustrate on One of Benchmarks: Pebbling Formulas
CNF formulas encoding so-called pebble games on DAGs

1. u1 ⊕ u2
2. v1 ⊕ v2
3. w1 ⊕ w2
4. (u1 ⊕ u2) ∧ (v1 ⊕ v2)→ (x1 ⊕ x2)
5. (v1 ⊕ v2) ∧ (w1 ⊕ w2)→ (y1 ⊕ y2)
6. (x1 ⊕ x2) ∧ (y1 ⊕ y2)→ (z1 ⊕ z2)
7. ¬(z1 ⊕ z2)

z

x y

u v w

sources are true
truth propa-
gates upwards
but sink is false

Rewrite, e.g., (x1 ⊕ x2)→ (y1 ⊕ y2) in CNF as

(x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Pebble game trade-offs ⇒ resolution size-space trade-offs [BN08, BN11]
Jakob Nordström (KTH) Trade-offs Between Time and Memory in CDCL SAT ’16 22/25
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sources are true
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CDCL Model and Results Our Results

Why Life Without Restarts Might Be Tricky

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1 ∨ x2

x1 ∨ x2 ∨ u1

u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1

v1 ∨ v2

x1 ∨ x2 ∨ u1 ∨ u2 ∨ v1 ∨ v2

x1
d=0 x2

d=0 u1
d=0

u2=1 | v1
d=0 v2=1

x1
d=0 x2

d=0 | u1
d=0

u2=1 v1=1 v2=0

x1
d=0 x2

d=0 u1=1

u2=0 | v1
d=0 v2=1

x1
d=0 | x2

d=0 u1=1
u2=0 v1=1 v2=0

Know u1 ⊕ u2 and v1 ⊕ v2; want to learn x1 ⊕ x2
Decide x1 = x2 = 0 ⇒ easy to learn x1 ∨ x2 — so far, so good
x1 ∨ x2 asserts x2 = 1 but x1 = 0 left on trail ⇒ x1 ⊕ x2 true
Need to erase decision x1 = 0 from trail to learn x1 ∨ x2
Easy with restarts — major pain without. . .
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Future Directions

Open Problems
CDCL vs. resolution

Can CDCL simulate resolution time- and space-efficiently in theory?
Is CDCL competitive with resolution in practice?

Importance of restarts
Is CDCL without restarts strictly weaker than resolution?
Failed separation attempts in [BHJ08, BBJ14, BK14, BS14] for
formulas hard for regular resolution
But models of CDCL too strong! No real practical implications
[CDCL + (standard heuristics)− restarts] weaker than resolution?

Theoretical study of power (or weakness) of other heuristics
How do other heuristics help or hinder proof search?
Does LBD (literal block distance) measure identify important clauses?
Prove that VSIDS (variable state independent decaying sum) some-
times goes terribly wrong? (See this on some theory benchmarks)
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Summing up This Presentation

This work part of larger effort to connect proof complexity and SAT solving
(see survey paper [Nor15] for wider context)

Our contributions:
Fine-grained model of CDCL as proof system
Time-space trade-offs for CDCL proof search

Some open problems (not exhaustive list):
Can CDCL simulate resolution time- and space-efficiently?
Understand better the role of restarts
Prove limitations of CDCL with current state-of-the-art heuristics(?)

Thank you for your attention!
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