
Solving Logic Formulas in Linear Time

Jakob Nordström

KTH Royal Institute of Technology
Stockholm, Sweden

Datalogisk Institut p̊a Københavns Universitet
April 13, 2018

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 1/15



Solving Logic Formulas in Linear Time
(At Least Surprisingly Often)

Jakob Nordström

KTH Royal Institute of Technology
Stockholm, Sweden

Datalogisk Institut p̊a Københavns Universitet
April 13, 2018

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 1/15



This Is Me. . .

Jakob Nordström
Associate Professor
Theoretical Computer Science Group
School of Electrical Engineering and
Computer Science
www.csc.kth.se/∼jakobn

jakobn@kth.se

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 2/15



. . . And This Is What I Do for a Living
(x1,1 ∨ x1,2 ∨ x1,3 ∨ x1,4 ∨ x1,5 ∨ x1,6 ∨ x1,7) ∧ (x2,1 ∨ x2,2 ∨ x2,3 ∨ x2,4 ∨ x2,5 ∨ x2,6 ∨ x2,7) ∧ (x3,1 ∨

x3,2 ∨x3,3 ∨x3,4 ∨x3,5 ∨x3,6 ∨x3,7) ∧ (x4,1 ∨x4,2 ∨x4,3 ∨x4,4 ∨x4,5 ∨x4,6 ∨x4,7) ∧ (x5,1 ∨x5,2 ∨x5,3 ∨

x5,4 ∨x5,5 ∨x5,6 ∨x5,7) ∧ (x6,1 ∨x6,2 ∨x6,3 ∨x6,4 ∨x6,5 ∨x6,6 ∨x6,7) ∧ (x7,1 ∨x7,2 ∨x7,3 ∨x7,4 ∨x7,5 ∨

x7,6 ∨x7,7) ∧ (x8,1 ∨x8,2 ∨x8,3 ∨x8,4 ∨x8,5 ∨x8,6 ∨x8,7) ∧ (x1,1 ∨x2,1) ∧ (x1,1 ∨x3,1) ∧ (x1,1 ∨x4,1) ∧

(x1,1 ∨x5,1) ∧ (x1,1 ∨x6,1) ∧ (x1,1 ∨x7,1) ∧ (x1,1 ∨x8,1) ∧ (x2,1 ∨x3,1) ∧ (x2,1 ∨x4,1) ∧ (x2,1 ∨x5,1) ∧

(x2,1 ∨x6,1) ∧ (x2,1 ∨x7,1) ∧ (x2,1 ∨x8,1) ∧ (x3,1 ∨x4,1) ∧ (x3,1 ∨x5,1) ∧ (x3,1 ∨x6,1) ∧ (x3,1 ∨x7,1) ∧

(x3,1 ∨x8,1) ∧ (x4,1 ∨x5,1) ∧ (x4,1 ∨x6,1) ∧ (x4,1 ∨x7,1) ∧ (x4,1 ∨x8,1) ∧ (x5,1 ∨x6,1) ∧ (x5,1 ∨x7,1) ∧

(x5,1 ∨x8,1) ∧ (x6,1 ∨x7,1) ∧ (x6,1 ∨x8,1) ∧ (x7,1 ∨x8,1) ∧ (x1,2 ∨x2,2) ∧ (x1,2 ∨x3,2) ∧ (x1,2 ∨x4,2) ∧

(x1,2 ∨x5,2) ∧ (x1,2 ∨x6,2) ∧ (x1,2 ∨x7,2) ∧ (x1,2 ∨x8,2) ∧ (x2,2 ∨x3,2) ∧ (x2,2 ∨x4,2) ∧ (x2,2 ∨x5,2) ∧

(x2,2 ∨x6,2) ∧ (x2,2 ∨x7,2) ∧ (x2,2 ∨x8,2) ∧ (x3,2 ∨x4,2) ∧ (x3,2 ∨x5,2) ∧ (x3,2 ∨x6,2) ∧ (x3,2 ∨x7,2) ∧

(x3,2 ∨x8,2) ∧ (x4,2 ∨x5,2) ∧ (x4,2 ∨x6,2) ∧ (x4,2 ∨x7,2) ∧ (x4,2 ∨x8,2) ∧ (x5,2 ∨x6,2) ∧ (x5,2 ∨x7,2) ∧

(x5,2 ∨x8,2) ∧ (x6,2 ∨x7,2) ∧ (x6,2 ∨x8,2) ∧ (x7,2 ∨x8,2) ∧ (x1,3 ∨x2,3) ∧ (x1,3 ∨x3,3) ∧ (x1,3 ∨x4,3) ∧

(x1,3 ∨x5,3) ∧ (x1,3 ∨x6,3) ∧ (x1,3 ∨x7,3) ∧ (x1,3 ∨x8,3) ∧ (x2,3 ∨x3,3) ∧ (x2,3 ∨x4,3) ∧ (x2,3 ∨x5,3) ∧

(x2,3 ∨x6,3) ∧ (x2,3 ∨x7,3) ∧ (x2,3 ∨x8,3) ∧ (x3,3 ∨x4,3) ∧ (x3,3 ∨x5,3) ∧ (x3,3 ∨x6,3) ∧ (x3,3 ∨x7,3) ∧

(x3,3 ∨x8,3) ∧ (x4,3 ∨x5,3) ∧ (x4,3 ∨x6,3) ∧ (x4,3 ∨x7,3) ∧ (x4,3 ∨x8,3) ∧ (x5,3 ∨x6,3) ∧ (x5,3 ∨x7,3) ∧

(x5,3 ∨x8,3) ∧ (x6,3 ∨x7,3) ∧ (x6,3 ∨x8,3) ∧ (x7,3 ∨x8,3) ∧ (x1,4 ∨x2,4) ∧ (x1,4 ∨x3,4) ∧ (x1,4 ∨x4,4) ∧

(x1,4 ∨ x5,4) ∧ (x1,4 ∨ x6,4) ∧ (x1,4 ∨ x7,4) ∧ (x1,4 ∨ x8,4) ∧ (x2,4 ∨ x3,4) ∧ (x2,4 ∨ x4,4) ∧ (x2,4 ∨ x5,4)
Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 3/15



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Can computers solve this satisfiability (SAT) problem efficiently?

Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 4/15



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Can computers solve this satisfiability (SAT) problem efficiently?

Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 4/15



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Can computers solve this satisfiability (SAT) problem efficiently?

Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 4/15



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Can computers solve this satisfiability (SAT) problem efficiently?

Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 4/15



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Can computers solve this satisfiability (SAT) problem efficiently?

Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 4/15



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Can computers solve this satisfiability (SAT) problem efficiently?

Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 4/15



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Can computers solve this satisfiability (SAT) problem efficiently?

Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 4/15



. . . with Huge Practical Implications

Many problems can be encoded as logic formulas, e.g.:
I hardware verification
I software testing
I artificial intelligence
I cryptography
I bioinformatics
I et cetera. . .

Leads to humongous formulas (100,000s or 1,000,000s of variables)

Dramatic progress last 15–20 years on so-called SAT solvers
Today routinely used to solve large-scale real-world problems

But. . . There are also small formulas (just ∼100 variables) that are
completely beyond reach of even the very best SAT solvers

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 5/15



Purpose of This Presentation

Explain how to solve SAT in linear time
(well, at least surprisingly often. . . )

Outline in a bit more detail:

How do state-of-the-art SAT solvers work?∗

How to to analyze SAT solver performance?

How to go beyond current state of the art?

(*) Obviously, can’t give all details in 15 minutes, but aim to cover essentials

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 6/15



Purpose of This Presentation

Explain how to solve SAT in linear time
(well, at least surprisingly often. . . )

Outline in a bit more detail:

How do state-of-the-art SAT solvers work?∗

How to to analyze SAT solver performance?

How to go beyond current state of the art?

(*) Obviously, can’t give all details in 15 minutes, but aim to cover essentials

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 6/15



Purpose of This Presentation

Explain how to solve SAT in linear time
(well, at least surprisingly often. . . )

Outline in a bit more detail:

How do state-of-the-art SAT solvers work?∗

How to to analyze SAT solver performance?

How to go beyond current state of the art?

(*) Obviously, can’t give all details in 15 minutes, but aim to cover essentials

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 6/15



Purpose of This Presentation

Explain how to solve SAT in linear time
(well, at least surprisingly often. . . )

Outline in a bit more detail:

How do state-of-the-art SAT solvers work?∗

How to to analyze SAT solver performance?

How to go beyond current state of the art?

(*) Obviously, can’t give all details in 15 minutes, but aim to cover essentials

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 6/15



Purpose of This Presentation

Explain how to solve SAT in linear time
(well, at least surprisingly often. . . )

Outline in a bit more detail:

How do state-of-the-art SAT solvers work?∗

How to to analyze SAT solver performance?

How to go beyond current state of the art?

(*) Obviously, can’t give all details in 15 minutes, but aim to cover essentials

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 6/15



Purpose of This Presentation

Explain how to solve SAT in linear time
(well, at least surprisingly often. . . )

Outline in a bit more detail:

How do state-of-the-art SAT solvers work?∗

How to to analyze SAT solver performance?

How to go beyond current state of the art?

(*) Obviously, can’t give all details in 15 minutes, but aim to cover essentials

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 6/15



How (Not) to Solve the SAT Problem

Let computer check all possible assignments! Isn’t this exactly the
kind of monotone routine work at which computers excel?
But how many cases to check?
Suppose formula has n variables
Each variable can be true or false, so all in all get 2n different cases
If formula contains, say, one million variables, we get 21,000,000 cases
(a number with more than 300,000 digits)

To understand how large this number is, consider that even if every atom in
the known universe was a modern supercomputer running at full speed ever
since the beginning of time some 13.7 billion years ago, all of them together
would only have covered a completely negligible fraction of these cases by
now. So we really would not have time to wait for them to finish. . .

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 7/15



How (Not) to Solve the SAT Problem

Let computer check all possible assignments! Isn’t this exactly the
kind of monotone routine work at which computers excel?
But how many cases to check?
Suppose formula has n variables
Each variable can be true or false, so all in all get 2n different cases
If formula contains, say, one million variables, we get 21,000,000 cases
(a number with more than 300,000 digits)

To understand how large this number is, consider that even if every atom in
the known universe was a modern supercomputer running at full speed ever
since the beginning of time some 13.7 billion years ago, all of them together
would only have covered a completely negligible fraction of these cases by
now. So we really would not have time to wait for them to finish. . .

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 7/15



How (Not) to Solve the SAT Problem

Let computer check all possible assignments! Isn’t this exactly the
kind of monotone routine work at which computers excel?
But how many cases to check?
Suppose formula has n variables
Each variable can be true or false, so all in all get 2n different cases
If formula contains, say, one million variables, we get 21,000,000 cases
(a number with more than 300,000 digits)

To understand how large this number is, consider that even if every atom in
the known universe was a modern supercomputer running at full speed ever
since the beginning of time some 13.7 billion years ago, all of them together
would only have covered a completely negligible fraction of these cases by
now. So we really would not have time to wait for them to finish. . .

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 7/15



How (Not) to Solve the SAT Problem

Let computer check all possible assignments! Isn’t this exactly the
kind of monotone routine work at which computers excel?
But how many cases to check?
Suppose formula has n variables
Each variable can be true or false, so all in all get 2n different cases
If formula contains, say, one million variables, we get 21,000,000 cases
(a number with more than 300,000 digits)

To understand how large this number is, consider that even if every atom in
the known universe was a modern supercomputer running at full speed ever
since the beginning of time some 13.7 billion years ago, all of them together
would only have covered a completely negligible fraction of these cases by
now. So we really would not have time to wait for them to finish. . .

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 7/15



How (Not) to Solve the SAT Problem

Let computer check all possible assignments! Isn’t this exactly the
kind of monotone routine work at which computers excel?
But how many cases to check?
Suppose formula has n variables
Each variable can be true or false, so all in all get 2n different cases
If formula contains, say, one million variables, we get 21,000,000 cases
(a number with more than 300,000 digits)

To understand how large this number is, consider that even if every atom in
the known universe was a modern supercomputer running at full speed ever
since the beginning of time some 13.7 billion years ago, all of them together
would only have covered a completely negligible fraction of these cases by
now. So we really would not have time to wait for them to finish. . .

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 7/15



How (Not) to Solve the SAT Problem

Let computer check all possible assignments! Isn’t this exactly the
kind of monotone routine work at which computers excel?
But how many cases to check?
Suppose formula has n variables
Each variable can be true or false, so all in all get 2n different cases
If formula contains, say, one million variables, we get 21,000,000 cases
(a number with more than 300,000 digits)

To understand how large this number is, consider that even if every atom in
the known universe was a modern supercomputer running at full speed ever
since the beginning of time some 13.7 billion years ago, all of them together
would only have covered a completely negligible fraction of these cases by
now. So we really would not have time to wait for them to finish. . .

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 7/15



Basic Idea Behind Modern SAT Solvers

Want more refined case analysis over variable assignments

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 8/15



Basic Idea Behind Modern SAT Solvers

Want more refined case analysis over variable assignments

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 8/15



Basic Idea Behind Modern SAT Solvers

Want more refined case analysis over variable assignments

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 8/15



Basic Idea Behind Modern SAT Solvers

Want more refined case analysis over variable assignments

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 8/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0 Decision

Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0 Decision

Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

Decision
Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

Decision
Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Decision
Free choice to assign value to variable

Notation w
d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u

u∨w= 0

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 9/15



Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause and backjump

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 10/15



Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause and backjump

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 10/15



Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause and backjump

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 10/15



Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause and backjump

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 10/15



Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause and backjump

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 10/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



Complete Example of CDCL Execution
Backjump: roll back max # assignments so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

⊥

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 11/15



State-of-the-Art SAT Solving in One Slide

repeat
if current assignment falsifies clause

if no decisions made
terminate with output UNSATISFIABLE

apply learning scheme to add new clause & backjump
else if all variables assigned

terminate with output SATISFIABLE
else if exists unit clause C propagating x to value b ∈ {0, 1}

add propagated assignment x
C= b

else if time to restart
undo all variable assignments

else
if time for clause database reduction

erase (roughly) half of learned clauses in memory
use decision scheme to add assignment x

d= b

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 12/15



CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Focus instead on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 13/15



CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Focus instead on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 13/15



CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Focus instead on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 13/15



CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Focus instead on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 13/15



Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing
together conflict analyses:

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 14/15



Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution. . . by stringing
together conflict analyses:

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

⊥

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 14/15



Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:

w
d
=0

u
u∨w
= 0

x
d
=0

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

x ∨ z

x ∨ z

x

x
x
=0

u
u∨x
= 1

u ∨ w

u ∨ w

u

x

⊥

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 14/15



Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x x ∨ z

x ∨ z

x

u ∨ w

u ∨ w

u

x

⊥

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 14/15



Conclusions and Open Problems
Current state of affairs

Modern solvers perform amazingly well (“SAT is easy in practice”)
Very poor theoretical understanding:

I Why do heuristics work?
I Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong lower
bounds for “obvious” formulas, e.g., [Hak85, Urq87, BW01, MN14]

Directions for future work
Develop better understanding of state-of-the-art solvers
Improve heuristics (maybe thanks to better understanding)
Explore stronger reasoning methods (potential exponential speed-up)

I Algebra: Gröbner basis computations
I Geometry: Integer linear programming

Thank you for your attention!
Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 15/15



Conclusions and Open Problems
Current state of affairs

Modern solvers perform amazingly well (“SAT is easy in practice”)
Very poor theoretical understanding:

I Why do heuristics work?
I Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong lower
bounds for “obvious” formulas, e.g., [Hak85, Urq87, BW01, MN14]

Directions for future work
Develop better understanding of state-of-the-art solvers
Improve heuristics (maybe thanks to better understanding)
Explore stronger reasoning methods (potential exponential speed-up)

I Algebra: Gröbner basis computations
I Geometry: Integer linear programming

Thank you for your attention!
Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 15/15



Conclusions and Open Problems
Current state of affairs

Modern solvers perform amazingly well (“SAT is easy in practice”)
Very poor theoretical understanding:

I Why do heuristics work?
I Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong lower
bounds for “obvious” formulas, e.g., [Hak85, Urq87, BW01, MN14]

Directions for future work
Develop better understanding of state-of-the-art solvers
Improve heuristics (maybe thanks to better understanding)
Explore stronger reasoning methods (potential exponential speed-up)

I Algebra: Gröbner basis computations
I Geometry: Integer linear programming

Thank you for your attention!
Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 15/15



References I

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made
simple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in
STOC ’99.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference (DAC ’01), pages 530–535, June 2001.

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 16/15



References II

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas.
In Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer
Science, pages 121–137. Springer, July 2014.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search algorithm for
satisfiability. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’96), pages 220–227, November 1996.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987.

Jakob Nordström (KTH) Solving Logic Formulas in Linear Time DIKU Apr ’18 17/15


	Main Talk
	Appendix

