
Divide and Conquer: Towards Faster
Conflict-Driven Pseudo-Boolean Solving

Jakob Nordström

KTH Royal Institute of Technology
Stockholm, Sweden

Datalogisk Institut p̊a Københavns Universitet
September 4, 2018

Joint work with Jan Elffers

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 1/39



This Is Me. . .

Jakob Nordström
Associate Professor
Theoretical Computer Science Group
School of Electrical Engineering and
Computer Science
KTH Royal Institute of Technology
www.csc.kth.se/∼jakobn

jakobn@kth.se

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 2/39



. . . And This Is What I Do for a Living
(x1,1 ∨ x1,2 ∨ x1,3 ∨ x1,4 ∨ x1,5 ∨ x1,6 ∨ x1,7) ∧ (x2,1 ∨ x2,2 ∨ x2,3 ∨ x2,4 ∨ x2,5 ∨ x2,6 ∨ x2,7) ∧ (x3,1 ∨

x3,2 ∨x3,3 ∨x3,4 ∨x3,5 ∨x3,6 ∨x3,7) ∧ (x4,1 ∨x4,2 ∨x4,3 ∨x4,4 ∨x4,5 ∨x4,6 ∨x4,7) ∧ (x5,1 ∨x5,2 ∨x5,3 ∨

x5,4 ∨x5,5 ∨x5,6 ∨x5,7) ∧ (x6,1 ∨x6,2 ∨x6,3 ∨x6,4 ∨x6,5 ∨x6,6 ∨x6,7) ∧ (x7,1 ∨x7,2 ∨x7,3 ∨x7,4 ∨x7,5 ∨

x7,6 ∨x7,7) ∧ (x8,1 ∨x8,2 ∨x8,3 ∨x8,4 ∨x8,5 ∨x8,6 ∨x8,7) ∧ (x1,1 ∨x2,1) ∧ (x1,1 ∨x3,1) ∧ (x1,1 ∨x4,1) ∧

(x1,1 ∨x5,1) ∧ (x1,1 ∨x6,1) ∧ (x1,1 ∨x7,1) ∧ (x1,1 ∨x8,1) ∧ (x2,1 ∨x3,1) ∧ (x2,1 ∨x4,1) ∧ (x2,1 ∨x5,1) ∧

(x2,1 ∨x6,1) ∧ (x2,1 ∨x7,1) ∧ (x2,1 ∨x8,1) ∧ (x3,1 ∨x4,1) ∧ (x3,1 ∨x5,1) ∧ (x3,1 ∨x6,1) ∧ (x3,1 ∨x7,1) ∧

(x3,1 ∨x8,1) ∧ (x4,1 ∨x5,1) ∧ (x4,1 ∨x6,1) ∧ (x4,1 ∨x7,1) ∧ (x4,1 ∨x8,1) ∧ (x5,1 ∨x6,1) ∧ (x5,1 ∨x7,1) ∧

(x5,1 ∨x8,1) ∧ (x6,1 ∨x7,1) ∧ (x6,1 ∨x8,1) ∧ (x7,1 ∨x8,1) ∧ (x1,2 ∨x2,2) ∧ (x1,2 ∨x3,2) ∧ (x1,2 ∨x4,2) ∧

(x1,2 ∨x5,2) ∧ (x1,2 ∨x6,2) ∧ (x1,2 ∨x7,2) ∧ (x1,2 ∨x8,2) ∧ (x2,2 ∨x3,2) ∧ (x2,2 ∨x4,2) ∧ (x2,2 ∨x5,2) ∧

(x2,2 ∨x6,2) ∧ (x2,2 ∨x7,2) ∧ (x2,2 ∨x8,2) ∧ (x3,2 ∨x4,2) ∧ (x3,2 ∨x5,2) ∧ (x3,2 ∨x6,2) ∧ (x3,2 ∨x7,2) ∧

(x3,2 ∨x8,2) ∧ (x4,2 ∨x5,2) ∧ (x4,2 ∨x6,2) ∧ (x4,2 ∨x7,2) ∧ (x4,2 ∨x8,2) ∧ (x5,2 ∨x6,2) ∧ (x5,2 ∨x7,2) ∧

(x5,2 ∨x8,2) ∧ (x6,2 ∨x7,2) ∧ (x6,2 ∨x8,2) ∧ (x7,2 ∨x8,2) ∧ (x1,3 ∨x2,3) ∧ (x1,3 ∨x3,3) ∧ (x1,3 ∨x4,3) ∧

(x1,3 ∨x5,3) ∧ (x1,3 ∨x6,3) ∧ (x1,3 ∨x7,3) ∧ (x1,3 ∨x8,3) ∧ (x2,3 ∨x3,3) ∧ (x2,3 ∨x4,3) ∧ (x2,3 ∨x5,3) ∧

(x2,3 ∨x6,3) ∧ (x2,3 ∨x7,3) ∧ (x2,3 ∨x8,3) ∧ (x3,3 ∨x4,3) ∧ (x3,3 ∨x5,3) ∧ (x3,3 ∨x6,3) ∧ (x3,3 ∨x7,3) ∧

(x3,3 ∨x8,3) ∧ (x4,3 ∨x5,3) ∧ (x4,3 ∨x6,3) ∧ (x4,3 ∨x7,3) ∧ (x4,3 ∨x8,3) ∧ (x5,3 ∨x6,3) ∧ (x5,3 ∨x7,3) ∧

(x5,3 ∨x8,3) ∧ (x6,3 ∨x7,3) ∧ (x6,3 ∨x8,3) ∧ (x7,3 ∨x8,3) ∧ (x1,4 ∨x2,4) ∧ (x1,4 ∨x3,4) ∧ (x1,4 ∨x4,4) ∧

(x1,4 ∨x5,4) ∧ (x1,4 ∨x6,4) ∧ (x1,4 ∨x7,4) ∧ (x1,4 ∨x8,4) ∧ (x2,4 ∨x3,4) ∧ (x2,4 ∨x4,4) ∧ (x2,4 ∨x5,4)
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 3/39



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?

Can computers solve this satisfiability (SAT) problem efficiently?
Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 4/39



A Fundamental Theoretical Problem. . .

(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Variables should be set to true (= 1) or false (= 0)
Constraint (x ∨ y ∨ z): means x or z should be true or y false
∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?

Can computers solve this satisfiability (SAT) problem efficiently?
Mentioned already in Gödel’s famous letter in 1956 to von Neumann
(the “father of computer science”)
Intense research in theoretical computer science ever since early 1970s
Now one of Millennium Prize Problems in mathematics

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 4/39



. . . with Huge Practical Implications

Dramatic progress last 15–20 years on so-called SAT solvers using
conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]

Today routinely used to solve large-scale real-world problems
(100,000s or 1,000,000s of variables)

hardware verification
software testing
artificial intelligence
operations research
et cetera. . .

But. . . There are also small formulas (just ∼100 variables) that are
completely beyond reach of even the very best solvers

Limitations of CDCL
1 Clauses weak formalism for encoding constraints
2 Method of reasoning used (resolution) also weak

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 5/39



. . . with Huge Practical Implications

Dramatic progress last 15–20 years on so-called SAT solvers using
conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]

Today routinely used to solve large-scale real-world problems
(100,000s or 1,000,000s of variables)

hardware verification
software testing
artificial intelligence
operations research
et cetera. . .

But. . . There are also small formulas (just ∼100 variables) that are
completely beyond reach of even the very best solvers

Limitations of CDCL
1 Clauses weak formalism for encoding constraints
2 Method of reasoning used (resolution) also weak

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 5/39



. . . with Huge Practical Implications

Dramatic progress last 15–20 years on so-called SAT solvers using
conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]

Today routinely used to solve large-scale real-world problems
(100,000s or 1,000,000s of variables)

hardware verification
software testing
artificial intelligence
operations research
et cetera. . .

But. . . There are also small formulas (just ∼100 variables) that are
completely beyond reach of even the very best solvers

Limitations of CDCL
1 Clauses weak formalism for encoding constraints
2 Method of reasoning used (resolution) also weak

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 5/39



. . . with Huge Practical Implications

Dramatic progress last 15–20 years on so-called SAT solvers using
conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]

Today routinely used to solve large-scale real-world problems
(100,000s or 1,000,000s of variables)

hardware verification
software testing
artificial intelligence
operations research
et cetera. . .

But. . . There are also small formulas (just ∼100 variables) that are
completely beyond reach of even the very best solvers

Limitations of CDCL
1 Clauses weak formalism for encoding constraints
2 Method of reasoning used (resolution) also weak

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 5/39



Pseudo-Boolean Reasoning to the Rescue?

Pseudo-Boolean (PB) linear constraints are stronger than clauses

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x4 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially more powerful in theory

But PB solvers less efficient than CDCL in practice(!?)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 6/39



Pseudo-Boolean Reasoning to the Rescue?

Pseudo-Boolean (PB) linear constraints are stronger than clauses

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x4 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially more powerful in theory

But PB solvers less efficient than CDCL in practice(!?)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 6/39



Pseudo-Boolean Reasoning to the Rescue?

Pseudo-Boolean (PB) linear constraints are stronger than clauses

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)
∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)
∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x4 ∨ x6)
∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)
∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

And pseudo-Boolean reasoning exponentially more powerful in theory

But PB solvers less efficient than CDCL in practice(!?)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 6/39



Outline

1 Conflict-Driven Clause Learning
CDCL by Example
Pseudocode and Analysis

2 Conflict-Driven Pseudo-Boolean Solving
Some Preliminaries
Pseudo-Boolean Solving Using Saturation
Pseudo-Boolean Solving Using Division

3 Open Problems and Future Directions

Slides online at www.csc.kth.se/˜jakobn/research/TalkDIKU18.pdf

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 7/39

http://www.csc.kth.se/~jakobn/research/TalkDIKU18.pdf


Conflict-Driven Clause Learning CDCL by Example

Modern SAT Solving

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 8/39



Conflict-Driven Clause Learning CDCL by Example

Modern SAT Solving

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 8/39



Conflict-Driven Clause Learning CDCL by Example

Modern SAT Solving

DPLL method [DP60, DLL62]

Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 8/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0 Decision

Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0 Decision

Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Variable Assignments
Two kinds of assignments — illustrate on our example formula:
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Decision
Free choice to assign value to variable

Notation w d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given w = 0, clause u ∨ w forces u = 0
Notation u u∨w= 0 (u ∨ w is reason)

Always propagate if possible, otherwise decide
Until satisfying assignment or conflict clause

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 9/39



Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 10/39



Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 10/39



Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 10/39



Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 10/39



Conflict-Driven Clause Learning CDCL by Example

Conflict-Driven Clause Learning
Time to analyse this conflict!
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by flipping last decision

But want to learn from conflict and cut away as
much of search space as possible

Case analysis over z for last two clauses:
x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge & remove z — must satisfy x ∨ y

Repeat until only 1 variable after last decision
— learn that clause (1UIP) and backjump

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 10/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning CDCL by Example

Complete Example of CDCL Execution
Backjump: roll back max #decisions so that last variable still flips
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

⊥

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 11/39



Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Main Loop Pseudocode (High Level)
forever do

if current assignment falsifies clause then
apply learning scheme to derive new clause;
if learned clause empty then output UNSATISFIABLE and exit;
else

add learned clause and backjump
end

else if all variables assigned then output SATISFIABLE and exit;
else if exists unit clause C propagating x to value b ∈ {0, 1} then

add propagated assignment x
C= b

else if time to restart then
remove all variable assignments

else
if time for clause database reduction then

erase (roughly) half of learned clauses in memory
end
use decision scheme to choose assignment x

d= b;
end

end

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 12/39



Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Main Loop Pseudocode (High Level)
forever do

if current assignment falsifies clause then
apply learning scheme to derive new clause;
if learned clause empty then output UNSATISFIABLE and exit;
else

add learned clause and backjump
end

else if all variables assigned then output SATISFIABLE and exit;
else if exists unit clause C propagating x to value b ∈ {0, 1} then

add propagated assignment x
C= b

else if time to restart then
remove all variable assignments

else
if time for clause database reduction then

erase (roughly) half of learned clauses in memory
end
use decision scheme to choose assignment x

d= b;
end

end

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 12/39



Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 13/39



Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 13/39



Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 13/39



Conflict-Driven Clause Learning Pseudocode and Analysis

CDCL Analysis and the Resolution Proof System

How to analyse CDCL performance?
Many intricate, hard-to-understand heuristics
Best(?) rigorous method: Focus on underlying method of reasoning

Resolution proof system
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗
So lower bounds on proof size ⇒ lower bounds on running time

(*) Ignores preprocessing, but we don’t have time to go into this

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 13/39



Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing
together conflict analyses:

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 14/39



Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution. . . by stringing
together conflict analyses:

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

w
u∨w
= 1

u∨w

⊥

u

x

⊥

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 14/39



Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:

w
d
=0

u
u∨w
= 0

x
d
=0

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

w
d
=0

u
u∨w
= 0

x
u∨x
= 1

x ∨ z

x ∨ z

x

x
x
=0

u
u∨x
= 1

u ∨ w

u ∨ w

u

x

⊥

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 14/39



Conflict-Driven Clause Learning Pseudocode and Analysis

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing
together conflict analyses:

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x x ∨ z

x ∨ z

x

u ∨ w

u ∨ w

u

x

⊥

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 14/39



Conflict-Driven Clause Learning Pseudocode and Analysis

Current state of affairs

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)
Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong lower
bounds for “obvious” formulas, e.g., [Hak85, Urq87, BW01, MN14]

Explore stronger reasoning methods (potential exponential speed-up)

In particular, pseudo-Boolean solving (a.k.a. 0-1 integer
programming) corresponding to cutting planes proof system

Importantly, extends to pseudo-Boolean optimization (but we won’t
talk about that)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 15/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Pseudo-Boolean Constraints and Normalized Form

In this talk, “pseudo-Boolean” refers to 0-1 integer linear constraints

Convenient to use non-negative linear combinations of literals, a.k.a.
normalized form ∑

i ai`i ≥ A

coefficients ai: non-negative integers
degree (of falsity) A: positive integer
literals `i: xi or xi (where xi + xi = 1)

(All constraints in what follows assumed to be implicitly normalized)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 16/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Pseudo-Boolean Constraints and Normalized Form

In this talk, “pseudo-Boolean” refers to 0-1 integer linear constraints

Convenient to use non-negative linear combinations of literals, a.k.a.
normalized form ∑

i ai`i ≥ A

coefficients ai: non-negative integers
degree (of falsity) A: positive integer
literals `i: xi or xi (where xi + xi = 1)

(All constraints in what follows assumed to be implicitly normalized)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 16/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Pseudo-Boolean Constraints and Normalized Form

In this talk, “pseudo-Boolean” refers to 0-1 integer linear constraints

Convenient to use non-negative linear combinations of literals, a.k.a.
normalized form ∑

i ai`i ≥ A

coefficients ai: non-negative integers
degree (of falsity) A: positive integer
literals `i: xi or xi (where xi + xi = 1)

(All constraints in what follows assumed to be implicitly normalized)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 16/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 17/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 17/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Some Types of Pseudo-Boolean Constraints

1 Clauses are pseudo-Boolean constraints

x ∨ y ∨ z ⇔ x+ y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

3 General constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 17/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses
Lazy approach: learn clauses from PB constraints

Sat4j [LP10] (one of versions in library)
Eager approach: re-encode to clauses and run CDCL

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 18/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses
Lazy approach: learn clauses from PB constraints

Sat4j [LP10] (one of versions in library)
Eager approach: re-encode to clauses and run CDCL

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 18/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Approaches to Pseudo-Boolean Solving

Conversion to disjunctive clauses
Lazy approach: learn clauses from PB constraints

Sat4j [LP10] (one of versions in library)
Eager approach: re-encode to clauses and run CDCL

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

Native reasoning with pseudo-Boolean constraints
PRS [DG02]
Galena [CK05]
Pueblo [SS06]
Sat4j [LP10]
RoundingSat [EN18]

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 18/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict-Driven Search in a Pseudo-Boolean Setting

Want to do “same thing” as CDCL but with linear constraints

Variable assignments
1 Always propagate forced assignment if possible
2 Otherwise make assignment using decision heuristic

At conflict
1 Do conflict analysis to derive new constraint
2 Add new constraint to instance
3 Backjump by rolling back max #decisions so that variable flips

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 19/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 20/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 20/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 20/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 20/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 20/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 20/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 20/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Propagation, Conflict, and Slack
Let ρ current assignment of solver (a.k.a. trail)
Represent as ρ = {(ordered) set of literals assigned true}

Slack measures how far ρ is from falsifying
∑
i ai`i ≥ A

slack
(∑

i ai`i ≥ A; ρ
)

=
∑

`i not falsified by ρ
ai −A

Consider C : x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

ρ slack(C; ρ) comment
{} 8
{x5} 3 propagates x4 (coefficient > slack)
{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note that constraint can be conflicting though not all variables assigned
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 20/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 21/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 21/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥
y ∨ z falsified by
trail ρ = {w, u, x, y, z}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 21/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 21/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

u ∨ x falsified by
trail ρ′′ = {w, u, x}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 21/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

u ∨ x falsified by
trail ρ′′ = {w, u, x}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 21/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

u ∨ x falsified by
trail ρ′′ = {w, u, x}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 21/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Conflict Analysis Invariant
Look at our example CDCL conflict analysis again
(u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

w
d
=0

u
u∨w
= 0

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

y ∨ z falsified by
trail ρ = {w, u, x, y, z}

x ∨ y falsified by
trail ρ′ = {w, u, x, y}

u ∨ x falsified by
trail ρ′′ = {w, u, x}

Assignment “left on trail”
always falsifies derived clause

⇒ every derived constraint
“explains” conflict

Terminate conflict analysis
when explanation looks nice

Learn asserting constraint:
after backjump, some variable
guaranteed to flip

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 21/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Generalized Resolution
Can mimic resolution step

x ∨ y ∨ z y ∨ z
x ∨ y

by adding clauses as pseudo-Boolean constraints
x+ y + z ≥ 1 y + z ≥ 1

x+ 2y ≥ 1

(Recall z + z = 1)

Generalized resolution rule [Hoo88, Hoo92]
Positive linear combination so that some variable cancels

a1x1 +
∑
i≥2 ai`i ≥ A b1x1 +

∑
i≥2 bi`i ≥ B∑

i≥2
(
c
a1
ai + c

b1
bi)`i ≥ c

a1
A+ c

b1
B − c

[c = lcm(a1, b1)]

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 22/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Generalized Resolution
Can mimic resolution step

x ∨ y ∨ z y ∨ z
x ∨ y

by adding clauses as pseudo-Boolean constraints
x+ y + z ≥ 1 y + z ≥ 1

x+ 2y ≥ 1

(Recall z + z = 1)

Generalized resolution rule [Hoo88, Hoo92]
Positive linear combination so that some variable cancels

a1x1 +
∑
i≥2 ai`i ≥ A b1x1 +

∑
i≥2 bi`i ≥ B∑

i≥2
(
c
a1
ai + c

b1
bi)`i ≥ c

a1
A+ c

b1
B − c

[c = lcm(a1, b1)]

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 22/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Generalized Resolution
Can mimic resolution step

x ∨ y ∨ z y ∨ z
x ∨ y

by adding clauses as pseudo-Boolean constraints
x+ y + z ≥ 1 y + z ≥ 1

x+ 2y ≥ 1

(Recall z + z = 1)

Generalized resolution rule [Hoo88, Hoo92]
Positive linear combination so that some variable cancels

a1x1 +
∑
i≥2 ai`i ≥ A b1x1 +

∑
i≥2 bi`i ≥ B∑

i≥2
(
c
a1
ai + c

b1
bi)`i ≥ c

a1
A+ c

b1
B − c

[c = lcm(a1, b1)]

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 22/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Saturation

Actually, don’t get quite the right constraint in mimicking of resolution

x+ y + z ≥ 1 y + z ≥ 1
x+ 2y ≥ 1

But clearly valid to conclude

x+ 2y ≥ 1
x+ y ≥ 1

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Sound over integers, not over rationals (need such rules for SAT solving)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 23/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Saturation

Actually, don’t get quite the right constraint in mimicking of resolution

x+ y + z ≥ 1 y + z ≥ 1
x+ 2y ≥ 1

But clearly valid to conclude

x+ 2y ≥ 1
x+ y ≥ 1

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Sound over integers, not over rationals (need such rules for SAT solving)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 23/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Saturation

Actually, don’t get quite the right constraint in mimicking of resolution

x+ y + z ≥ 1 y + z ≥ 1
x+ 2y ≥ 1

But clearly valid to conclude

x+ 2y ≥ 1
x+ y ≥ 1

Saturation rule ∑
i ai`i ≥ A∑

i min{ai, A} · `i ≥ A

Sound over integers, not over rationals (need such rules for SAT solving)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 23/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)
2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3

x4 ≥ 1
Applying saturate(x4 ≥ 1) does nothing
Non-negative slack w.r.t. ρ′ =

{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Fix (non-obvious): Apply weakening to reason constraints
weaken(

∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 24/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)
2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3

x4 ≥ 1
Applying saturate(x4 ≥ 1) does nothing
Non-negative slack w.r.t. ρ′ =

{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Fix (non-obvious): Apply weakening to reason constraints
weaken(

∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 24/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)
2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3

x4 ≥ 1
Applying saturate(x4 ≥ 1) does nothing
Non-negative slack w.r.t. ρ′ =

{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Fix (non-obvious): Apply weakening to reason constraints
weaken(

∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 24/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)
2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3

x4 ≥ 1
Applying saturate(x4 ≥ 1) does nothing
Non-negative slack w.r.t. ρ′ =

{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Fix (non-obvious): Apply weakening to reason constraints
weaken(

∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 24/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)
2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3

x4 ≥ 1
Applying saturate(x4 ≥ 1) does nothing
Non-negative slack w.r.t. ρ′ =

{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Fix (non-obvious): Apply weakening to reason constraints
weaken(

∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 24/39



Conflict-Driven Pseudo-Boolean Solving Some Preliminaries

Analyze Conflict with Generalized Resolution + Saturation!

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

(Note: same constraint can propagate several times!)

Resolve reason(x3, ρ) .= C1 with C2 over x3 to get resolve(C1, C2, x3)
2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3

x4 ≥ 1
Applying saturate(x4 ≥ 1) does nothing
Non-negative slack w.r.t. ρ′ =

{
x1

d= 0, x2
C1= 1

}
— not conflicting!

Fix (non-obvious): Apply weakening to reason constraints
weaken(

∑
i ai`i ≥ A, `j) =

∑
i 6=j ai`i ≥ A− aj

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 24/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try to Reduce the Reason Constraint

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

Let’s try to
1 Weaken reason on non-falsified literal (but not last propagated)
2 Saturate weakened constraint
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x2 2x1 + 2x3 + x4 ≥ 2saturate
2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 + x4 ≥ 1

Bummer! Still non-negative slack — not conflicting
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 25/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try to Reduce the Reason Constraint

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

Let’s try to
1 Weaken reason on non-falsified literal (but not last propagated)
2 Saturate weakened constraint
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x2 2x1 + 2x3 + x4 ≥ 2saturate
2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 + x4 ≥ 1

Bummer! Still non-negative slack — not conflicting
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 25/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try to Reduce the Reason Constraint

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

Let’s try to
1 Weaken reason on non-falsified literal (but not last propagated)
2 Saturate weakened constraint
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x2 2x1 + 2x3 + x4 ≥ 2saturate
2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 + x4 ≥ 1

Bummer! Still non-negative slack — not conflicting
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 25/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting! Saturate and resolve with reason for x2

2x1 + 2x2 + 2x3 + x4 ≥ 4
2x2 ≥ 1 saturate
x2 ≥ 1resolve x2 2x1 + 2x3 + x4 ≥ 4

Asserting! Backjump propagates to conflict without decisions ⇒ done
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 26/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting! Saturate and resolve with reason for x2

2x1 + 2x2 + 2x3 + x4 ≥ 4
2x2 ≥ 1 saturate
x2 ≥ 1resolve x2 2x1 + 2x3 + x4 ≥ 4

Asserting! Backjump propagates to conflict without decisions ⇒ done
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 26/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting! Saturate and resolve with reason for x2

2x1 + 2x2 + 2x3 + x4 ≥ 4
2x2 ≥ 1 saturate
x2 ≥ 1resolve x2 2x1 + 2x3 + x4 ≥ 4

Asserting! Backjump propagates to conflict without decisions ⇒ done
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 26/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting! Saturate and resolve with reason for x2

2x1 + 2x2 + 2x3 + x4 ≥ 4
2x2 ≥ 1 saturate
x2 ≥ 1resolve x2 2x1 + 2x3 + x4 ≥ 4

Asserting! Backjump propagates to conflict without decisions ⇒ done
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 26/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Try Again to Reduce the Reason Constraint. . .

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken {x2, x4} 2x1 + 2x3 ≥ 1saturate
x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3resolve x3 2x2 ≥ 1

Negative slack — conflicting! Saturate and resolve with reason for x2

2x1 + 2x2 + 2x3 + x4 ≥ 4
2x2 ≥ 1 saturate
x2 ≥ 1resolve x2 2x1 + 2x3 + x4 ≥ 4

Asserting! Backjump propagates to conflict without decisions ⇒ done
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 26/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 27/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 27/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 27/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 27/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Reason Reduction Using Saturation [CK05]

reduceSat(Cconfl, Creason, `, ρ)
while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `

′));
end
return Creason;

Why does this work?
Slack is subadditive

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ)

By invariant have slack(Cconfl; ρ) < 0
Weakening leaves slack(Creason; ρ) unchanged
Saturation decreases slack — reach 0 when max #literals weakened

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 27/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Pseudo-Boolean Conflict Analys

analyzePBconflict(Cconfl, ρ)
while Cconfl not asserting do

`← literal assigned last on trail ρ;
if ` occurs in Cconfl then

Creason ← reason(`, ρ);
Creason ← reduceSat(Creason, Cconfl, `, ρ);
Cconfl ← resolve(Cconfl, Creason, `);
Cconfl ← saturate(Cconfl);

end
ρ← removeLast(ρ);

end
return Cconfl;

The need to reduce the reason is new compared to CDCL
Everything else is the same
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 28/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Some Problems Compared to CDCL

Compared to clauses harder to detect propagation for constraints like
n∑
i=1

xi ≥ n− 1

Generalized resolution for general pseudo-Boolean constraints
⇒ lots of lcm computations
⇒ coefficient sizes can explode (expensive arithmetic)

For CNF inputs, degenerates to resolution!
⇒ CDCL but with super-expensive data structures

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 29/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Some Problems Compared to CDCL

Compared to clauses harder to detect propagation for constraints like
n∑
i=1

xi ≥ n− 1

Generalized resolution for general pseudo-Boolean constraints
⇒ lots of lcm computations
⇒ coefficient sizes can explode (expensive arithmetic)

For CNF inputs, degenerates to resolution!
⇒ CDCL but with super-expensive data structures

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 29/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Saturation

Some Problems Compared to CDCL

Compared to clauses harder to detect propagation for constraints like
n∑
i=1

xi ≥ n− 1

Generalized resolution for general pseudo-Boolean constraints
⇒ lots of lcm computations
⇒ coefficient sizes can explode (expensive arithmetic)

For CNF inputs, degenerates to resolution!
⇒ CDCL but with super-expensive data structures

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 29/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

The Cutting Planes Proof System
Cutting planes as defined in [CCT87] doesn’t use saturation but instead
division (a.k.a. Chvátal-Gomory cut)

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB

Division
∑
i ai`i ≥ A∑

idai/ce`i ≥ dA/ce

Cutting planes with division implicationally complete
Cutting planes with saturation is not [VEG+18]
Can division yield stronger conflict analysis?
(Used for general integer linear programming in CutSat [JdM13])

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 30/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

The Cutting Planes Proof System
Cutting planes as defined in [CCT87] doesn’t use saturation but instead
division (a.k.a. Chvátal-Gomory cut)

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB

Division
∑
i ai`i ≥ A∑

idai/ce`i ≥ dA/ce

Cutting planes with division implicationally complete
Cutting planes with saturation is not [VEG+18]
Can division yield stronger conflict analysis?
(Used for general integer linear programming in CutSat [JdM13])

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 30/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

The Cutting Planes Proof System
Cutting planes as defined in [CCT87] doesn’t use saturation but instead
division (a.k.a. Chvátal-Gomory cut)

Literal axioms
`i ≥ 0

Linear combination
∑
i ai`i ≥ A

∑
i bi`i ≥ B∑

i(cAai + cBbi)`i ≥ cAA+ cBB

Division
∑
i ai`i ≥ A∑

idai/ce`i ≥ dA/ce

Cutting planes with division implicationally complete
Cutting planes with saturation is not [VEG+18]
Can division yield stronger conflict analysis?
(Used for general integer linear programming in CutSat [JdM13])

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 30/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 31/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 31/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 31/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Using Division to Reduce the Reason

C1
.= 2x1 + 2x2 + 2x3 + x4 ≥ 4

C2
.= 2x1 + 2x2 + 2x3 ≥ 3

Trail ρ =
{
x1

d= 0, x2
C1= 1, x3

C1= 1
}
⇒ Conflict with C2

1 Weaken reason on non-falsified literal(s) with coefficient not divisible
by propagating literal coefficient

2 Divide weakened constraint by propagating literal coefficient
3 Resolve with conflicting constraint over propagated literal

2x1 + 2x2 + 2x3 + x4 ≥ 4weaken x4 2x1 + 2x2 + 2x3 ≥ 3divide by 2
x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3resolve x3 0 ≥ 1

Terminate immediately!
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 31/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 32/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 32/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 32/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Reason Reduction Using Division [EN18]

reduceDiv(Cconfl, Creason, `, ρ)
c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`j ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `j);
Creason ← weaken(Creason, `j);

end
return divide(Creason, c);

So now why does this work?
Sufficient to get reason with slack 0 since

1 slack(Cconfl; ρ) < 0
2 slack is subadditive

Weakening doesn’t change slack ⇒ always 0 ≤ slack(Creason; ρ) < c

After max #weakenings have 0 ≤ slack(divide(Creason, c); ρ) < 1
Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 32/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Round-to-1 Reduction used in RoundingSat

Reduction method used in RoundingSat does max weakening right away

roundToOne(C, `, ρ)
c← coeff (C, `);
foreach literal `j in C do

if `j /∈ ρ and c - coeff (C, `j) then
C ← weaken(C, `j);

end
end
return divide(C, c);

And roundToOne used more aggressively in conflict analysis

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 33/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

RoundingSat Conflict Analysis

analyzePBconflict(Cconfl, ρ)
while Cconfl contains no or multiple falsified literals on last level do

if no current solver decisions then
output UNSATISFIABLE and terminate

end
`← literal assigned last on trail ρ;
if ` occurs in Cconfl then

Cconfl ← roundToOne(Cconfl, `, ρ);
Creason ← roundToOne(reason(`, ρ), `, ρ);
Cconfl ← resolve(Cconfl, Creason, `);

end
ρ← removeLast(ρ);

end
`← literal in Cconfl last falsified by ρ;
return roundToOne(Cconfl, `, ρ);

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 34/39



Conflict-Driven Pseudo-Boolean Solving Pseudo-Boolean Solving Using Division

Division vs. Saturation

Higher conflict speed when PB reasoning doesn’t help [EN18]

Seems to perform better when PB reasoning crucial [EGNV18]

Keeps coefficients small — can do fixed-precision integer arithmetic

But still equally hard to detect propagation

And still degenerates to resolution for CNF inputs

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 35/39



Open Problems and Future Directions

Open Problems I: Some Implementation Challenges

1 Degrees of freedom in PB conflict analysis
Skip resolution steps when slack very negative?
How much to weaken?
Learn general PB constraints or more limited form?

2 Efficient propagation detection for PB constraints
3 Assessment of quality of learned constraints
4 Distance to backjump? (Constraint can be asserting at several levels)

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 36/39



Open Problems and Future Directions

Open Problems II: Some PB Reasoning Challenges

1 Better conflict analysis (also for CDCL)
Is trivial resolution optimal, or can it pay to be smarter?

2 Natural way to recover from bad encodings (e.g., CNF)
3 Efficient and concise PB proof logging
4 Theoretical potential and limitations poorly understood [VEG+18]

Separations of subsystems of cutting planes?
In particular, is division strictly stronger than saturation?

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 37/39



Open Problems and Future Directions

Open Problems III: Beyond PB Reasoning

Sometimes very poor performance even on LPs that are rationally
infeasible! (And trivial for mixed integer linear programming solvers)

But sometimes MIP solvers lost when learning from PB constraints
crucial (and when conflict-driven PB solvers shine)

Borrow techniques from (or merge with) MIP?

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 38/39



Summing up

Conflict-driven search hugely successful SAT solving paradigm

This talk: Survey how to port from CDCL to PB constraints

Potential exponential performance gains haven’t materialized so far
Instead highly nontrivial challenges regarding

Efficient implementation
Theoretical understanding

But no obvious reason why efficient PB solvers should not be possible
(remember CDCL took 50 years)

And in any case lots of fun questions to work on! ,

Thank you for your attention!

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 39/39



Summing up

Conflict-driven search hugely successful SAT solving paradigm

This talk: Survey how to port from CDCL to PB constraints

Potential exponential performance gains haven’t materialized so far
Instead highly nontrivial challenges regarding

Efficient implementation
Theoretical understanding

But no obvious reason why efficient PB solvers should not be possible
(remember CDCL took 50 years)

And in any case lots of fun questions to work on! ,

Thank you for your attention!

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 39/39



References I

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made
simple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in
STOC ’99.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of
cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CK05] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(3):305–317, March 2005. Preliminary version in DAC ’03.

[DG02] Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-Boolean
satisfiability solver. In Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI ’02), pages 635–640, July 2002.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 40/39



References II

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

[EGNV18] Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using
combinatorial benchmarks to probe the reasoning power of pseudo-Boolean solvers.
In Proceedings of the 21st International Conference on Theory and Applications of
Satisfiability Testing (SAT ’18), volume 10929 of Lecture Notes in Computer
Science, pages 75–93. Springer, July 2018.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster
pseudo-Boolean solving. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI ’18), pages 1291–1299, July 2018.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[Hoo88] John N. Hooker. Generalized resolution and cutting planes. Annals of Operations
Research, 12(1):217–239, 1988.

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 41/39



References III

[Hoo92] John N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of
Mathematics and Artificial Intelligence, 6(1):271–286, 1992.

[JdM13] Dejan Jovanovic and Leonardo de Moura. Cutting to the chase solving linear
integer arithmetic. Journal of Automated Reasoning, 51(1):79–108, June 2013.
Preliminary version in CADE-23 2011.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on
Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular
MaxSAT solver. In Proceedings of the 17th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in
Computer Science, pages 438–445. Springer, July 2014.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference (DAC ’01), pages 530–535, June 2001.

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 42/39



References IV

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas.
In Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer
Science, pages 121–137. Springer, July 2014.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search algorithm for
satisfiability. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’96), pages 220–227, November 1996.

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a
PB-constraint in band form and related techniques for PB-solvers. IEICE
Transactions on Information and Systems, 98-D(6):1121–1127, June 2015.

[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT
solver. Journal on Satisfiability, Boolean Modeling and Computation,
2(1-4):165–189, March 2006. Preliminary version in DATE ’05.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987.

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 43/39



References V

[VEG+18] Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob
Nordström. In between resolution and cutting planes: A study of proof systems for
pseudo-Boolean SAT solving. In Proceedings of the 21st International Conference
on Theory and Applications of Satisfiability Testing (SAT ’18), volume 10929 of
Lecture Notes in Computer Science, pages 292–310. Springer, July 2018.

Jakob Nordström (KTH) Divide and Conquer: Towards Faster Conflict-Driven PB Solving DIKU Sep ’18 44/39


	Introductory Slides
	Main Talk
	Conflict-Driven Clause Learning
	CDCL by Example
	Pseudocode and Analysis

	Conflict-Driven Pseudo-Boolean Solving
	Some Preliminaries
	Pseudo-Boolean Solving Using Saturation
	Pseudo-Boolean Solving Using Division

	Open Problems and Future Directions

	Conclusion
	Appendix

