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. . . And This Is What I Do for a Living
(x1,1 ∨x1,2 ∨x1,3 ∨x1,4 ∨x1,5 ∨x1,6 ∨x1,7) ∧ (x2,1 ∨x2,2 ∨x2,3 ∨x2,4 ∨x2,5 ∨x2,6 ∨x2,7) ∧

(x3,1 ∨x3,2 ∨x3,3 ∨x3,4 ∨x3,5 ∨x3,6 ∨x3,7) ∧ (x4,1 ∨x4,2 ∨x4,3 ∨x4,4 ∨x4,5 ∨x4,6 ∨x4,7) ∧

(x5,1 ∨x5,2 ∨x5,3 ∨x5,4 ∨x5,5 ∨x5,6 ∨x5,7) ∧ (x6,1 ∨x6,2 ∨x6,3 ∨x6,4 ∨x6,5 ∨x6,6 ∨x6,7) ∧

(x7,1 ∨x7,2 ∨x7,3 ∨x7,4 ∨x7,5 ∨x7,6 ∨x7,7) ∧ (x8,1 ∨x8,2 ∨x8,3 ∨x8,4 ∨x8,5 ∨x8,6 ∨x8,7) ∧

(x1,1 ∨ x2,1) ∧ (x1,1 ∨ x3,1) ∧ (x1,1 ∨ x4,1) ∧ (x1,1 ∨ x5,1) ∧ (x1,1 ∨ x6,1) ∧ (x1,1 ∨ x7,1) ∧

(x1,1 ∨ x8,1) ∧ (x2,1 ∨ x3,1) ∧ (x2,1 ∨ x4,1) ∧ (x2,1 ∨ x5,1) ∧ (x2,1 ∨ x6,1) ∧ (x2,1 ∨ x7,1) ∧

(x2,1 ∨ x8,1) ∧ (x3,1 ∨ x4,1) ∧ (x3,1 ∨ x5,1) ∧ (x3,1 ∨ x6,1) ∧ (x3,1 ∨ x7,1) ∧ (x3,1 ∨ x8,1) ∧

(x4,1 ∨ x5,1) ∧ (x4,1 ∨ x6,1) ∧ (x4,1 ∨ x7,1) ∧ (x4,1 ∨ x8,1) ∧ (x5,1 ∨ x6,1) ∧ (x5,1 ∨ x7,1) ∧

(x5,1 ∨ x8,1) ∧ (x6,1 ∨ x7,1) ∧ (x6,1 ∨ x8,1) ∧ (x7,1 ∨ x8,1) ∧ (x1,2 ∨ x2,2) ∧ (x1,2 ∨ x3,2) ∧

(x1,2 ∨ x4,2) ∧ (x1,2 ∨ x5,2) ∧ (x1,2 ∨ x6,2) ∧ (x1,2 ∨ x7,2) ∧ (x1,2 ∨ x8,2) ∧ (x2,2 ∨ x3,2) ∧

(x2,2 ∨ x4,2) ∧ (x2,2 ∨ x5,2) ∧ (x2,2 ∨ x6,2) ∧ (x2,2 ∨ x7,2) ∧ (x2,2 ∨ x8,2) ∧ (x3,2 ∨ x4,2) ∧

(x3,2∨x5,2) ∧ (x3,2∨x6,2) ∧ (x3,2∨x7,2) ∧ (x3,2∨x8,2) ∧ (x4,2∨x5,2) ∧ (x4,2∨x6,2) ∧ (x4,2∨

x7,2) ∧ (x4,2∨x8,2) ∧ (x5,2∨x6,2) ∧ (x5,2∨x7,2) ∧ (x5,2∨x8,2) ∧ (x6,2∨x7,2) ∧ (x6,2∨x8,2) ∧

(x7,2∨x8,2) ∧ (x1,3∨x2,3) ∧ (x1,3∨x3,3) ∧ (x1,3∨x4,3) ∧ (x1,3∨x5,3) ∧ (x1,3∨x6,3) ∧ (x1,3∨

x7,3) ∧ (x1,3∨x8,3) ∧ (x2,3∨x3,3) ∧ (x2,3∨x4,3) ∧ (x2,3∨x5,3) ∧ (x2,3∨x6,3) ∧ (x2,3∨x7,3) ∧

(x2,3∨x8,3) ∧ (x3,3∨x4,3) ∧ (x3,3∨x5,3) ∧ (x3,3∨x6,3) ∧ (x3,3∨x7,3) ∧ (x3,3∨x8,3) ∧ (x4,3∨

x5,3) ∧ (x4,3∨x6,3) ∧ (x4,3∨x7,3) ∧ (x4,3∨x8,3) ∧ (x5,3∨x6,3) ∧ (x5,3∨x7,3) ∧ (x5,3∨x8,3) ∧

(x6,3∨x7,3) ∧ (x6,3∨x8,3) ∧ (x7,3∨x8,3) ∧ (x1,4∨x2,4) ∧ (x1,4∨x3,4) ∧ (x1,4∨x4,4) ∧ (x1,4∨

x5,4) ∧ (x1,4∨x6,4) ∧ (x1,4∨x7,4) ∧ (x1,4∨x8,4) ∧ (x2,4∨x3,4) ∧ (x2,4∨x4,4) ∧ (x2,4∨x5,4)
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Three Simple Problems. . .

Colouring

Does graph G = (V,E) have a
colouring with k colours so
that neighbours have distinct
colours? 3-colouring exists but no 2-colouring

Sat

Given propositional logic formula,
is there a satisfying assignment?
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Three Simple Problems. . .

3-clique exists but no 4-clique

Clique

Is there a clique in graph
G = (V,E) with k vertices
that are all pairwise
connected?

Sat

Given propositional logic formula,
is there a satisfying assignment?
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Three Simple Problems. . .

Colouring

Does graph G = (V,E) have a
colouring with k colours so
that neighbours have distinct
colours?

Clique

Is there a clique in graph
G = (V,E) with k vertices
that are all pairwise
connected?

Sat

Given propositional logic formula,
is there a satisfying assignment?

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Variables should be set to true or false

Constraint (x ∨ y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
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Three Simple Problems. . .

Colouring

Does graph G = (V,E) have a
colouring with k colours so
that neighbours have distinct
colours?

Clique

Is there a clique in graph
G = (V,E) with k vertices
that are all pairwise
connected?

Sat

Given propositional logic formula,
is there a satisfying assignment?

Colouring: frequency allocation for mobile base stations
Clique: bioinformatics, computational chemistry
Sat: easily models these and many other problems
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. . . with Huge Practical Implications

Some examples of problems that can be encoded as logic
formulas:

computer hardware verification
computer software testing
artificial intelligence
cryptography
bioinformatics
et cetera. . .

Leads to humongous formulas (100,000s or even 1,000,000s
of variables)

Can we use computers to solve these problems efficiently?

Question mentioned already in Gödel’s famous letter in 1956
to von Neumann (the “father of computer science”)

Topic of intense research in computer science ever since 1960s
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Solving Logic Formulas in Practice

Dramatic progress last 15–20 years on so-called SAT solvers
Today routinely used to solve large-scale real-world problems

But. . . There are also small formulas (just ∼100 variables) that
are completely beyond reach of even the very best SAT solvers

Best known algorithms based on fairly simple method from
early 1960s (Davis-Putnam-Logemann-Loveland or DPLL)

How do these SAT solvers work?

How can they be so good in practice?

When they fail to be efficient, can we understand why?

It’s 2019 now — can we go beyond techniques from 1960s?
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Plan for the Rest of This Talk

What we hope to cover in this talk:

Define more precisely the computational problem

Give (simplified) description of how modern SAT solvers work

Present tools to analyze SAT solver performance

Discuss possible ways to go beyond current state of the art

. . . And in the process also touch on some of the research being
done in the Algorithms and Complexity Section at DIKU
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

The SATISFIABILITY Problem
The Problem Class NP
DPLL and CDCL

Formal Description of Problem

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

The Satisfiability (or just Sat) Problem

Given a CNF formula F , is it satisfiable?

For instance, what about our example formula?

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

The SATISFIABILITY Problem
The Problem Class NP
DPLL and CDCL

How to Solve the SAT Problem?

Let computer check all possible assignments! Isn’t this exactly
the kind of monotone routine work at which computers excel?

But how many cases to check?

Suppose formula has n variables

Each variable can be either true or false, so all in all get 2n

different cases

If formula contains, say, one million variables, we get 21,000,000

cases (a number with more than 300,000 digits)

To understand how large this number is, consider that even if every
atom in the known universe was a modern supercomputer that had
been running at full speed ever since the beginning of time some
13.7 billion years ago, all of them together would only have covered
a completely negligible fraction of these cases by now. So we really
would not have time to wait for them to finish. . .
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

The SATISFIABILITY Problem
The Problem Class NP
DPLL and CDCL

An Interesting Feature of the SAT Problem

Deciding whether a satisfying assignment exists may take a
long time

But if you happen to know a satisfying assignment, easy to
convince someone else that formula is satisfiable

How? Just give assignment — can be verified in linear time

So SAT problem might seem hard to solve, but verifying a
solution is easy (not all problems have this property — how
do you verify a winning position in chess?)

The family of problems for which solutions are easy to check
have a name: NP
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

The SATISFIABILITY Problem
The Problem Class NP
DPLL and CDCL

How to Solve the SAT Problem, Take 2

The SAT problem can be used to describe any problem in NP

If you can solve SAT efficiently, then you can solve any
problem in NP efficiently (this is why SAT is so useful)

So how hard is it to solve SAT? (Ok, brute force didn’t work,
but it usually doesn’t — maybe can do something smarter?)

We don’t know

This one of the million dollar “Millennium Problems” posed as
the main challenges for mathematics in the new millennium

Widely believe to be impossible to solve efficiently on
computer in the worst case, but we really don’t know
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

The SATISFIABILITY Problem
The Problem Class NP
DPLL and CDCL

An Attempt at a Smarter Case Analysis: DPLL

Ok, but suppose you’re out there in reality and actually have to
solve the problem — then what do you do?

Chances are you’ll use some variant of the DPLL method based on
[Davis & Putnam ’60] and [Davis, Logemann & Loveland ’62]

DPLL (somewhat simplified description)

If F contains an empty clause (without literals), report
“unsatisfiable” and return — refer to as conflict

If F contains no clauses, report “satisfiable” and terminate

Otherwise pick some variable x in F

Set x = 0, simplify F and make recursive call

Set x = 1, simplify F and make recursive call

If result in both cases “unsatisfiable”, then report
“unsatisfiable” and return
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SAT solving Beyond Resolution?

The SATISFIABILITY Problem
The Problem Class NP
DPLL and CDCL

A DPLL Toy Example

F = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨u) ∧ (y ∨u)

∧ (u∨ v) ∧ (x∨ v) ∧ (u∨w) ∧ (x∨u∨w)

Visualize execution of DPLL algorithm as search tree

Pick variables in internal nodes; terminate in leaves when falsified
clause found (i.e., when conflict reached)
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Proof Complexity

SAT solving Beyond Resolution?

The SATISFIABILITY Problem
The Problem Class NP
DPLL and CDCL

State-of-the-art SAT solvers: Ingredients

Many more ingredients in modern SAT solvers, for instance:

Branching or decision heuristic (choice of pivot variables
crucial)

When reaching leaf, compute reason for conflict and add to
formula as new clause (conflict-driven clause learning (CDCL))

Every once in a while, restart from beginning (but save
computed info)

Let us briefly discuss these ingredients
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

The SATISFIABILITY Problem
The Problem Class NP
DPLL and CDCL

Variable Decision Heuristics

Unit propagation

Suppose current assignment falsifies all literals in clause
a1 ∨ a2 ∨ · · · ∨ ak except one (say ak) — clause is unit

Then ak has to be true, so set it to true

Known as unit progagation or Boolean constraint progagation

Always propagate if possible — in modern solvers aim for
99% of assignments being unit propagations

VSIDS (Variable state independent decaying sum)

When backtracking, score +1 for variables “causing conflict”

Also multiply all scores with factor κ < 1 — exponential filter
rewarding variables involved in recent conflicts

When no unit propagations, pick variable with highest score
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Conflict-Driven Clause Learning (CDCL)

At conflict, want to add clause avoiding same part of search
tree being explored again

Suppose decisions x = 1, y = 0, z = 1 led to conflict

Then can add x ∨ y ∨ z to avoid these decisions being made
again — decision learning scheme

In practice, more advanced learning schemes

Derive new clause from clauses unit propagating on the way
to conflict (using resolution, which we will talk about soon)
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Restarts

Every once in a while, start search all over (but keep learned
clauses)

Original intuition: stuck in bad part of search tree — go
somewhere else

Not the reason this is done now

Popular variables with high VSIDS scores get set again

Are even set to same values (phase saving)

Current intution: improves the search by focusing on
important variables

How often to restart: at fixed intervals or (better) depending
on “quality” of learned clauses
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DPLL and CDCL

State-of-the-art SAT solvers: What About the Recipe?

List of ingredients again (not exhaustive):

Variable decisions

Clause learning

Restarts

Some natural questions:

How to combine these ingredients into a recipe?

When and why does this recipe work?

Why SAT solvers actually work so well poorly understood question
Lots of research to comprehend this better
(Among other places in the AC Section at DIKU)
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Proof Complexity

Proof search algorithm: defines proof system with derivation rules

Proof complexity: study of proofs in such systems

Lower bounds: no algorithm can do better (even optimal one
always guessing the right next step)

Upper bounds: gives hope for good algorithms if we can
search for proofs in system efficiently
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Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Resolution

Resolution rule:
B ∨ x C ∨ x

B ∨ C

Observation

If F is a satisfiable CNF formula and D is derived from clauses
C1, C2 ∈ F by the resolution rule, then F ∧D is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause ⊥
from F by resolution
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from F by resolution
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

DPLL and Resolution

A DPLL execution is essentially a resolution proof
Look at our example again

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w
0 1 0 1 0 1 0 1

0 1 0 1

0 1
x

y u

z u v w

and apply resolution rule B∨x C∨x
B∨C bottom-up
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Running Time and Proof Size

Can extract resolution proof from any DPLL execution

Conflict-driven clause learning adds “shortcut edges” in tree

But still yields resolution proof

(Almost) true for other optimizations used by modern SAT
solvers as well

Hence, lower bounds on resolution proof size ⇒ lower bounds
on SAT solver running time
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) [Haken ’85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i 6= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j 6= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urquhart ’87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

0 0

x y

z

(x ∨ y) ∧ (x ∨ z)
∧ (x ∨ y) ∧ (y ∨ z)
∧ (x ∨ z) ∧ (y ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called
expander graphs — “resolution cannot count mod 2”
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [Chvátal & Szemerédi ’88]
∆n randomly sampled k-clauses over n variables

(∆ & 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

k-colourability [Beame et al. ’05]

Independent sets and vertex covers [Beame et al. ’07]

Zero-one designs [Mikša & Nordström ’14]

Et cetera. . .
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Resolution Proof System
Resolution and SAT Solving
Lower Bounds for Resolution

Theoretical Lower Bounds and Practical Reality

So resolution is very weak in theory

Then how can SAT solvers based on resolution be so good?

One answer: this kind of formulas don’t show up too often in
practice

Another area of intense research: Try to describe what
properties of “real-life” formulas make them easy or hard

But sometimes we would like to solve such formulas (and
frankly they don’t seem too hard, do they?)

Can we go beyond resolution?

Jakob Nordström (UCPH) Solving Exponentially Hard Problems DIKU Bits Dec ’19 26/34



SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Algebraic Approach
Geometric Approach

Polynomial Calculus (1/2)

Introduced in [Clegg et al. ’96] and [Alekhnovich et al. ’02]

Clauses translated to polynomial equations
Example: x ∨ y ∨ z gets translated to xyz = 0
(Think of 0 ≡ true and 1 ≡ false)

Compute only with 0 and 1: 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0

Derivation rules

Boolean axioms
x2 − x = 0

Negation
x+ x = 1

Linear combination
p = 0 q = 0

αp+ βq = 0
Multiplication

p = 0
xp = 0
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Algebraic Approach
Geometric Approach

Polynomial Calculus (2/2)

Translate all clauses to polynomial equations

Apply derivation rules

Derive 1 = 0 ⇔ no common root ⇔ formula unsatisfiable

Also makes sense to do this for general polynomial equations
(not translations of CNF formulas)

Known as Gröbner basis computations
(now you know the buzzword)

Exponentially more powerful than resolution (e.g. Tseitin
formulas easy)
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Algebraic Approach
Geometric Approach

Cutting Planes (1/2)

Introduced in [Cook et al. ’87]

Clauses translated to linear inequalities over the reals with
integer coefficients
Example: x ∨ y ∨ z gets translated to x+ y + (1− z) ≥ 1
or equivalently x+ y − z ≥ 0
(Now 1 ≡ true and 0 ≡ false again)

Derivation rules

Variable axioms
0 ≤ x ≤ 1

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai+bi)xi ≥ A+B
Division

∑
caixi ≥ A∑

aixi ≥ dA/ce
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Algebraic Approach
Geometric Approach

Cutting Planes (2/2)

Translate all clauses to linear inequalities

Apply derivation rules

Derive 0 ≥ 1 ⇔ formula unsatisfiable

Also makes sense for more general linear inequalities
(not translations of CNF formulas)

Cutting planes

can always simulate resolution proofs efficiently

is sometimes exponentially stronger (e.g., for PHP formulas
just count to see #pigeons > #holes)
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SAT solving
Proof Complexity

SAT solving Beyond Resolution?

Algebraic Approach
Geometric Approach

Algebraic or Geometric SAT Solvers?

Quite some excitement about Gröbner basis approach to SAT
solving after [Clegg et al. ’96]

Promise of performance improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is
only very limited form of polynomial calculus

More work has been done on so-called pseudo-Boolean solvers
using (subset of) cutting planes reasoning

But again seems hard to make competitive with CDCL

Is it harder to build good algebraic or geometric SAT solvers?
Or is it just that too little work has been done? (Or both?)
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So. . . Is There a Smarter Way Than Brute-Force?

In theory, probably no. . .

Colouring, Clique, Sat, and 1000s other problems are
“all the same” — efficient algorithm for one can solve all

Widely believed impossible to construct algorithms that are
always (a) efficient and (b) correct in the worst case

Proving (or disproving) this is one of Millennium Prize
Problems: Are there efficient algorithms for NP-problems?

In practice, definitely yes!

Real-world problems are usually not “worst-case” but highly
structured

Fairly simple (but clever) methods work amazingly well
amazingly often (though we don’t really understand why)

Stark disconnect between theory and practice. . .
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Our Research Goals

Strengthen the mathematical analysis of algorithmic methods

Study methods of reasoning powerful enough to capture
state-of-the-art algorithms used in practice

Prove theorems about their power and limitations

Construct stronger algorithms for combinatorial problems

Use insights into stronger mathematical methods of reasoning
to build algorithms for Sat and related problems

Aiming for exponential speed-ups over state of the art

Improve understanding of efficient computation in practice

Use computational complexity theory to study “real-world”
(not worst-case) problems

Combine theoretical study and empirical experiments
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Take-Home Message

Modern SAT solvers, although based on old and simple DPLL
method, can be enormously efficient in practice

SAT solving more of an art form than a science — theoretical
understanding lagging far behind

Can use proof complexity to analyze potential and limitations
of SAT solvers — also suggests stronger methods of reasoning

Lots of challenging work for PhD students (we’re hiring!)

Also room for interesting BSc or MSc projects

Thank you for your attention!
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