
Solving with Provably Correct
Results: Beyond Satisfiability, and
Towards Constraint Programming
Bart Bogaerts Ciaran McCreesh

Jakob Nordström

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Solvers Are Awesome!

We’re here because we all know how good solvers for CP, SAT, MIP,

etc have become.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 1 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

The Controversial Slide

Last year’s MiniZinc challenge: for 1.28% of instances, wrong

solutions were claimed.

False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

This problem is worth taking seriously.

Not limited to a single solver, problem, or constraint.

Not even consistent—same solver on same hardware and same

instance can give different results on different runs.

Obviously, your solver doesn’t have this problem, but how do you

convince others of this?

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 2 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Testing?

Various domain-specific testing methods [BLB10, AGJ
+
18, GSD19].

Definitely better than nothing, but is it enough?

Do you still think it’s enough if a solver is making a decision

that will affect your life or livelihood?

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 3 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Testing?

Various domain-specific testing methods [BLB10, AGJ
+
18, GSD19].

Definitely better than nothing, but is it enough?

Do you still think it’s enough if a solver is making a decision

that will affect your life or livelihood?

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 3 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Formal Methods?

Prove that solver implementation adheres to formal specification.

Current techniques cannot scale to this level of complexity.

Even an inefficient implementation of all-different is pushing the

limits [Dub20].

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 4 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

This One Simple Trick Fixes Everything!

For SAT solvers: proof logging.

A particular kind of certifying algorithm [ABM
+
11, MMNS11].

Solvers output a proof in a standard format, which can be verified

independently.

A variety of formats, including

DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17],

LRAT [CHH
+
17], . . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 5 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Proof Logging Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only solution but also proof.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 6 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Proof Logging Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only solution but also proof.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 6 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Proof Logging Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only solution but also proof.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 6 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Proof Logging Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only solution but also proof.

3 Feed input + solution + proof to proof checker.

4 Verify that proof checker says solution is correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 6 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Requirements

Proofs produced by certifying solver should:

Be powerful enough to allow proof logging with minimal

overhead.

Be based on very simple rules.

Not require knowledge of inner workings of solver.

Allow verification by stand-alone proof checker.

Much easier to trust a small, simple checker than a full solver.

Should even be simple enough to be formally verified.

Does not prove solver correct, but proves solution correct.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 7 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

The Sales Pitch For Proof Logging

1 Certifies correctness of solutions.

2 Detects errors even if due to compiler bugs, hardware failures, or

cosmic rays.

3 Provides debugging support during development

[EG21, GMM
+
20, KM21].

4 Facilitates performance analysis.

5 Helps identify potential for further improvements.

6 Enables auditability.

7 Serves as stepping stone towards explainability.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 8 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

The Rest of This Tutorial

VeriPB (https://gitlab.com/MIAOresearch/VeriPB)

Versatile proof logging system that can handle

Subgraph algorithms (we’ll show lots of examples).

Constraint programming (we’ll give an overview).

Symmetries and dominance (time and interest dependent).

in a unified way.

But first we need to tell you about:

Proof logging for SAT.

Pseudo-Boolean reasoning and cutting planes.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 9 / 69

https://gitlab.com/MIAOresearch/VeriPB

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

The Rest of This Tutorial

VeriPB (https://gitlab.com/MIAOresearch/VeriPB)

Versatile proof logging system that can handle

Subgraph algorithms (we’ll show lots of examples).

Constraint programming (we’ll give an overview).

Symmetries and dominance (time and interest dependent).

in a unified way.

But first we need to tell you about:

Proof logging for SAT.

Pseudo-Boolean reasoning and cutting planes.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 9 / 69

https://gitlab.com/MIAOresearch/VeriPB

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Proofs for SAT

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a proof is a sequence of clauses (CNF

constraints).

Each clause follows “obviously” from everything we know so far.

Final clause is empty, meaning contradiction (written ⊥).

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 10 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Forward Checking (DPLL)

We could write a “proof” of unsatisfiability by writing a step

whenever a forward-checker backtracks asserting the negation of the

guesses we made. For example,

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ z

2 x ∨ z

3 x

4 x

5 ⊥

x

z

E

z

E

z

x

E

x

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 11 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Forward Checking (DPLL)

We could write a “proof” of unsatisfiability by writing a step

whenever a forward-checker backtracks asserting the negation of the

guesses we made. For example,

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ z

2 x ∨ z

3 x

4 x

5 ⊥

x

z

E

z

E

z

x

E

x

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 11 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Forward Checking (DPLL)

We could write a “proof” of unsatisfiability by writing a step

whenever a forward-checker backtracks asserting the negation of the

guesses we made. For example,

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ z

2 x ∨ z

3 x

4 x

5 ⊥

x

z

E

z

E

z

x

E

x

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 11 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Forward Checking (DPLL)

We could write a “proof” of unsatisfiability by writing a step

whenever a forward-checker backtracks asserting the negation of the

guesses we made. For example,

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ z

2 x ∨ z

3 x

4 x

5 ⊥

x

z

E

z

E

z

x

E

x

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 11 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Forward Checking (DPLL)

We could write a “proof” of unsatisfiability by writing a step

whenever a forward-checker backtracks asserting the negation of the

guesses we made. For example,

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ z

2 x ∨ z

3 x

4 x

5 ⊥

x

z

E

z

E

z

x

E

x

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 11 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Forward Checking (DPLL)

We could write a “proof” of unsatisfiability by writing a step

whenever a forward-checker backtracks asserting the negation of the

guesses we made. For example,

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ z

2 x ∨ z

3 x

4 x

5 ⊥

x

z

E

z

E

z

x

E

x

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 11 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Forward Checking (DPLL)

We could write a “proof” of unsatisfiability by writing a step

whenever a forward-checker backtracks asserting the negation of the

guesses we made. For example,

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ z

2 x ∨ z

3 x

4 x

5 ⊥

x

z

E

z

E

z

x

E

x

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 11 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Forward Checking (DPLL)

We could write a “proof” of unsatisfiability by writing a step

whenever a forward-checker backtracks asserting the negation of the

guesses we made. For example,

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ z

2 x ∨ z

3 x

4 x

5 ⊥

x

z

E

z

E

z

x

E

x

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 11 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Reverse Unit Propagation (RUP)

To make this a proof, need each backtrack clause to be easily

verifiable.

Reverse unit propagation (RUP) clause [GN03, Van08]

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact

Backtracks from DPLL solver generate a RUP proof.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 12 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

What About CDCL?

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 13 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So shorter proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 14 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 15 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 15 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP

x ∨ z
x ∨ z
x
x
⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 15 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP

x ∨ z
x ∨ z
x
x
⊥

DPLL Proof in DRAT

6 8 0
6 -8 0
6 0
-6 0
0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 15 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP

x ∨ z
x ∨ z
x
x
⊥

DPLL Proof in DRAT

6 8 0
6 -8 0
6 0
-6 0
0

CDCL Proof as RUP

u ∨ x
x
⊥

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 15 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Writing Proofs in the DRAT Format

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

In DIMACS

p cnf 8 9
1 -4 0
2 3 0
-2 5 0
4 6 7 0
6 -7 8 0
-6 8 0
-7 -8 0
-6 -8 0
-1 -4 0

DPLL Proof in RUP

x ∨ z
x ∨ z
x
x
⊥

DPLL Proof in DRAT

6 8 0
6 -8 0
6 0
-6 0
0

CDCL Proof as RUP

u ∨ x
x
⊥

CDCL Proof in DRAT

4 6 0
-6 0
0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 15 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Extension Variables, Part 1

Fact

RUP proofs are short-hand for so-called Resolution proofs.

RUP and Resolution aren’t enough for preprocessing, inprocessing, or

some kinds of reasoning.

Suppose we want new, fresh variable a encoding

a ↔ (x ∧ y)

Extended Resolution: introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be fine, so long as a doesn’t appear anywhere previously.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 16 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Deleting Clauses

In practice, important to erase lines to save memory and time.

Very easy to deal with from the point of view of proof logging.

So ignored in this tutorial for simplicity and clarity.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 17 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Why Aren’t We Done?

Practical limitations of SAT proof logging technology:

Difficulties dealing with stronger reasoning efficiently.

Clausal proofs can’t easily reflect what other algorithms do.

Surprising claim: a slight change to 0-1 integer linear inequalities

does the job!

Can justify graph reasoning without knowing what a graph is.

Can justify constraint programming inference without knowing

what an integer variable is.

This even helps justify advanced SAT techniques (cardinality

reasoning, Gaussian elimination, symmetry elimination).

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 18 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑︁
i

aiℓi ≥ A

ai,A ∈ Z
literals ℓi : xi or x i (where xi + x i = 1)

variables xi take values 0 = false or 1 = true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 19 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Some Types of Pseudo-Boolean Constraints

1 Clauses

x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 20 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean setting.

Confusing terminology: in CP, we’d call it (reverse) integer bounds

consistency.

Does the same thing if we’re working with clauses.

More interesting for general pseudo-Boolean constraints.

SAT people beware: constraints can propagate multiple variables and

multiple times.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 21 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Model axioms From the input

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑
i aiℓi ≥

⌈A
c

⌉
Literal axioms ℓi ≥ 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 22 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Model axioms From the input

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑
i aiℓi ≥

⌈A
c

⌉
Literal axioms ℓi ≥ 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 22 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Model axioms From the input

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑
i aiℓi ≥

⌈A
c

⌉
Literal axioms ℓi ≥ 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 22 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Model axioms From the input

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑
i aiℓi ≥

⌈A
c

⌉

Literal axioms ℓi ≥ 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 22 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Model axioms From the input

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑
i aiℓi ≥

⌈A
c

⌉
Literal axioms ℓi ≥ 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 22 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Extension Variables, Part 2

Suppose we want new, fresh variable a encoding

a ↔ (x ∧ y)

This time, introduce constraints

a + x + y ≥ 1 2a + x + y ≥ 2

Again, needs support from the proof system.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 23 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Proof Logs for Extended Cutting Planes

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a proof is a sequence of pseudo-Boolean

constraints.

Each constraint follows “obviously” from everything we know so

far.

Either implicitly, by RUP. . .

Or an explicit cutting planes derivation. . .

Or an extension variable reifying a new constraint
∗

Final clause is 0 ≥ 1.

(*) Not actually implemented this way: details later.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 24 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Satisfiable, Enumeration, and Optimisation Problems

When a solution is found, can log it.

Introduces a new axiom constraint saying “not this solution”.

So the proof semantics are “unsatisfiable, except for all the

solutions I told you about”.

For optimisation,

Define an objective f =
∑

i wiℓi , w ∈ Z, to minimise in the

pseudo-Boolean model.

Log a solution 𝛼 , get a solution-improving constraint∑
i wiℓi ≤ −1 +∑

i wi𝛼 (ℓi).

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 25 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

The VeriPB Format and Tool

https://gitlab.com/MIAOresearch/VeriPB

MIT Licence.

Various features to help development:

Extended variable name syntax allowing human-readable names.

Proof tracing.

“Trust me” assertions.

Full details: Stephan Gocht’s PhD thesis [Goc22].

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 26 / 69

https://gitlab.com/MIAOresearch/VeriPB

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Progress So Far

We’ve seen proof logging, and how it works for SAT.

We’ve learned about cutting planes and VeriPB.

Coming next, some worked examples from dedicated graph solvers.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 27 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

The Maximum Clique Problem

3

4

6

7

9

10

11

12

1

2

5

8

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 28 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

The Maximum Clique Problem

3

4

6

7

9

10

11

12

1

2

5

8

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 28 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Maximum Clique Solvers

There are a lot of dedicated solvers for clique problems.

But there are issues:

“State of the art” solvers have been buggy.

Often undetected: error rate of around 0.1% [MPP19].

Often used inside other solvers.

An off-by-one result can cause much larger errors.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 29 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Making a Proof-Logging Clique Solver

1 Output a pseudo-Boolean encoding of the problem.

Clique problems have several standard file formats.

2 Make the solver log its search tree.

Output a small header.

Output something on every backtrack.

Output something every time a solution is found.

Output a small footer.

3 Figure out how to log the bound function.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 30 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

A Slightly Different Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 31 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

A Slightly Different Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 31 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

A Slightly Different Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 31 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

A Slightly Different Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 31 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

A Slightly Different Workflow

Solver

Checker

Solution

Proof ✓ or ✗

Input

Encoded Input

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 31 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

A Pseudo-Boolean Encoding for Clique (in OPB Format)

3

4

6

7

9

10

11

12

1

2

5

8

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 . . . and so on. . . -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* . . . and a further 38 similar lines for the remaining non-edges

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 32 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

11

12

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

11

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

11

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

8

9

10

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

9

10

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

First Attempt at a Proof

1

2

3

4

5

6

7

9

10

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 33 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 34 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

1

2

3

4

5

6

7

8

9

10

11

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 34 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Verifying This Proof (Or Not. . .)

$ veripb --trace clique.opb clique-attempt-one.veripb
...
ConstraintId 040: 1 ~x10 1 ~x12 >= 1
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: u 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: u 1 ~x12 >= 1 ;
ConstraintId 044: 1 ~x12 >= 1

line 006: u 1 ~x11 1 ~x10 >= 1 ;
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 34 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Bound Functions

1

39

2

4

7 5

6

10

8

11

12

Given a k-colouring of a subgraph, that subgraph cannot have a

clique of more than k vertices.

Each colour class describes an at-most-one constraint.

This does not follow by reverse unit propagation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 35 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Recovering At-Most-One Constraints

Can’t list every colour class we might use in the pseudo-Boolean

input.

We can use cutting planes to recover colour classes lazily!

(x1 + x6 ≥ 1) × 2 = 2x1 + 2x6 ≥ 2

+ (x1 + x9 ≥ 1) = 3x1 + 2x6 + x9 ≥ 6

+ (x6 + x9 ≥ 1) = 3x1 + 3x6 + 2x9 ≥ 4

/ 3 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.

Each non-edge is used exactly once, v (v − 1) additions.
v − 2 multiplications and divisions.

Solvers don’t need to “understand” cutting planes to write this out.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 36 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Recovering At-Most-One Constraints

Can’t list every colour class we might use in the pseudo-Boolean

input.

We can use cutting planes to recover colour classes lazily!

(x1 + x6 ≥ 1) × 2 = 2x1 + 2x6 ≥ 2

+ (x1 + x9 ≥ 1) = 3x1 + 2x6 + x9 ≥ 6

+ (x6 + x9 ≥ 1) = 3x1 + 3x6 + 2x9 ≥ 4

/ 3 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.

Each non-edge is used exactly once, v (v − 1) additions.
v − 2 multiplications and divisions.

Solvers don’t need to “understand” cutting planes to write this out.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 36 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Recovering At-Most-One Constraints

Can’t list every colour class we might use in the pseudo-Boolean

input.

We can use cutting planes to recover colour classes lazily!

(x1 + x6 ≥ 1) × 2 = 2x1 + 2x6 ≥ 2

+ (x1 + x9 ≥ 1) = 3x1 + 2x6 + x9 ≥ 6

+ (x6 + x9 ≥ 1) = 3x1 + 3x6 + 2x9 ≥ 4

/ 3 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.

Each non-edge is used exactly once, v (v − 1) additions.
v − 2 multiplications and divisions.

Solvers don’t need to “understand” cutting planes to write this out.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 36 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

What This Looks Like (More or Less)

pseudo-Boolean proof version 1.2
f 41 0
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
* at most one [x1 x6 x9]
p nonadj1_6 2 * nonadj1_9 + nonadj6_9 + 3 d ⇝ tmp1
p obj1 tmp1 +
u 1 ~x11 1 ~x10 >= 1 ; ⇝ b3
* at-most-one [x1 x3 x9]
p nonadj1_3 2 * nonadj1_9 + nonadj3_9 + 3 d ⇝ tmp2
p obj1 tmp2 +
u 1 ~x11 >= 1 ; ⇝ b4
o x1 x2 x5 x8 ⇝ obj2
u 1 ~x8 1 ~x5 >= 1 ; ⇝ b5
p obj2 nonadj1_9 +
u 1 ~x8 >= 1 ; ⇝ b6
* at-most-one [x1 x3 x7] [x2 x4 x9] [x5 x6 x10]
p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d ⇝ tmp3
p obj2 tmp3 +
p nonadj2_4 2 * nonadj2_9 + nonadj4_9 + 3 d ⇝ tmp4
p obj2 tmp3 + tmp4 +
p nonadj5_6 2 * nonadj5_10 + nonadj6_10 + 3 d ⇝ tmp5
p obj2 tmp3 + tmp4 + tmp5 +
u >= 1 ; ⇝ done
c done

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 37 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Verifying This Proof (For Real, This Time)

$ veripb --trace clique.opb clique-attempt-two.veripb
...

line 005: u 1 ~x12 >= 1 ;
ConstraintId 044: 1 ~x12 >= 1

line 006: p 7 2 * 19 + 24 + 3 d
ConstraintId 045: 1 ~x1 1 ~x6 1 ~x9 >= 2

line 007: p -1 42 +
ConstraintId 046: 1 x2 1 x3 1 x4 1 x5 1 x7 1 x8 1 x10 1 x11 1 x12 >= 3
...

line 020: p 51 -1 + -3 + -5 +
ConstraintId 059: 1 x8 1 x11 1 x12 >= 2

line 021: u >= 1 ;
ConstraintId 060: >= 1

line 022: c -1
=== end trace ===

Verification succeeded.
Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 38 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Different Clique Algorithms

Different search orders?

✓ Irrelevant for proof logging.

Using local search to initialise?

✓ Just log the incumbent.

Different bound functions?

Is cutting planes strong enough to justify every useful bound

function ever invented?

So far, seems like it. . .

Weighted cliques?

✓ Multiply a colour class by its largest weight.

✓ Also works for vertices “split between colour classes”.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 39 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Subgraph Isomorphism

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 40 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Subgraph Isomorphism

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 40 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex must be mapped to exactly one target vertex:∑︁
t∈V(T)

xp,t = 1 p ∈ V(P)

Injectivity, each target vertex may be used at most once:∑︁
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if a vertex p is mapped to a vertex t , then
every vertex in the neighbourhood of p must be mapped to a vertex in

the neighbourhood of t :

xp,t +
∑︁

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 41 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex must be mapped to exactly one target vertex:∑︁
t∈V(T)

xp,t = 1 p ∈ V(P)

Injectivity, each target vertex may be used at most once:∑︁
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if a vertex p is mapped to a vertex t , then
every vertex in the neighbourhood of p must be mapped to a vertex in

the neighbourhood of t :

xp,t +
∑︁

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 41 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Subgraph Isomorphism in Pseudo-Boolean Form

Each pattern vertex must be mapped to exactly one target vertex:∑︁
t∈V(T)

xp,t = 1 p ∈ V(P)

Injectivity, each target vertex may be used at most once:∑︁
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if a vertex p is mapped to a vertex t , then
every vertex in the neighbourhood of p must be mapped to a vertex in

the neighbourhood of t :

xp,t +
∑︁

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 41 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Degree Reasoning in Cutting Planes

A pattern vertex p of degree deg(p) can never be mapped to a target

vertex t of degree deg(p) − 1 or lower in any subgraph isomorphism.

Suppose N(p) = {q, r, s} and N(t) = {u, v}.

We wish to derive xp,t ≥ 1.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 42 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Degree Reasoning in Cutting Planes

We have the three adjacency constraints,

xp,t + xq,u + xq,v ≥ 1

xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1

Their sum is

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 42 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Degree Reasoning in Cutting Planes

Remember, N(p) = {q, r, s} and N(t) = {u, v}.

Continuing with the sum

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3

Due to injectivity,∑︁
𝛼∈V(P)

−x𝛼,u ≥ −1 and

∑︁
𝛼∈V(P)

−x𝛼,v ≥ −1

Add all these together, getting

3xp,t +
∑︁

𝛼∈V(P)\{q,r,s}
−x𝛼,u +

∑︁
𝛼∈V(P)\{q,r,s}

−x𝛼,v ≥ 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 42 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Degree Reasoning in Cutting Planes

Remember, N(p) = {q, r, s} and N(t) = {u, v}.
Continuing with the sum of sums

3xp,t +
∑︁

𝛼∈V(P)\{q,r,s}
−x𝛼,u +

∑︁
𝛼∈V(P)\{q,r,s}

−x𝛼,v ≥ 1

Add the literal axioms∑︁
𝛼∈V(P)\{q,r,s}

x𝛼,u +
∑︁

𝛼∈V(P)\{q,r,s}
x𝛼,v ≥ 0

to get

3xp,t ≥ 1

Divide by 3 to get the desired

xp,t ≥ 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 42 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Degree Reasoning in VeriPB

p 18 19 + 20 + * sum adj constraints
12 + 13 + * sum inj constraints
xp_u + xp_v + * cancel stray xp_*
xo_u + xo_v + * cancel stray xo_*
3 d 0 * divide, and we're done

e -1 1 ~xp_t >= 1 ; * check what we just did

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 43 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Degree Reasoning in VeriPB

p 18 19 + 20 + * sum adj constraints
12 + 13 + 0 * sum inj constraints

j -1 1 ~xp_t >= 1 ; * and simplify the above

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 43 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

All-Different Failures

v ∈ { 1 4 }
w ∈ { 1 2 3 }
x ∈ { 2 3 }
y ∈ { 1 3 }
z ∈ { 1 3 }

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 44 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

All-Different Failures

v ∈ { 1 4 }
w ∈ { 1 2 3 }
x ∈ { 2 3 }
y ∈ { 1 3 }
z ∈ { 1 3 }

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 44 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

All-Different Failures

v ∈ { 1 4 }
w ∈ { 1 2 3 } xw,1 + xw,2 + xw,3 ≥ 1

x ∈ { 2 3 }
y ∈ { 1 3 }
z ∈ { 1 3 }

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 44 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

All-Different Failures

v ∈ { 1 4 }
w ∈ { 1 2 3 } xw,1 + xw,2 + xw,3 ≥ 1

x ∈ { 2 3 } xx,2 + xx,3 ≥ 1

y ∈ { 1 3 } xy,1 + xy,3 ≥ 1

z ∈ { 1 3 } xz,1 + xz,3 ≥ 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 44 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

All-Different Failures

v ∈ { 1 4 }
w ∈ { 1 2 3 } xw,1 + xw,2 + xw,3 ≥ 1

x ∈ { 2 3 } xx,2 + xx,3 ≥ 1

y ∈ { 1 3 } xy,1 + xy,3 ≥ 1

z ∈ { 1 3 } xz,1 + xz,3 ≥ 1

→ −xv,1 + −xw,1 + −xy,1 + −xz,1 ≥ −1
→ −xw,2 + −xx,2 ≥ −1

→ −xw,3 + −xx,3 + −xy,3 + −xz,3 ≥ −1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 44 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

All-Different Failures

v ∈ { 1 4 }
w ∈ { 1 2 3 } xw,1 + xw,2 + xw,3 ≥ 1

x ∈ { 2 3 } xx,2 + xx,3 ≥ 1

y ∈ { 1 3 } xy,1 + xy,3 ≥ 1

z ∈ { 1 3 } xz,1 + xz,3 ≥ 1

→ −xv,1 + −xw,1 + −xy,1 + −xz,1 ≥ −1
→ −xw,2 + −xx,2 ≥ −1

→ −xw,3 + −xx,3 + −xy,3 + −xz,3 ≥ −1

−xv,1 ≥ 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 44 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

All-Different Failures

v ∈ { 1 4 }
w ∈ { 1 2 3 } xw,1 + xw,2 + xw,3 ≥ 1

x ∈ { 2 3 } xx,2 + xx,3 ≥ 1

y ∈ { 1 3 } xy,1 + xy,3 ≥ 1

z ∈ { 1 3 } xz,1 + xz,3 ≥ 1

→ −xv,1 + −xw,1 + −xy,1 + −xz,1 ≥ −1
→ −xw,2 + −xx,2 ≥ −1

→ −xw,3 + −xx,3 + −xy,3 + −xz,3 ≥ −1

−xv,1 ≥ 1

xv,1 ≥ 0

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 44 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

All-Different Failures

v ∈ { 1 4 }
w ∈ { 1 2 3 } xw,1 + xw,2 + xw,3 ≥ 1

x ∈ { 2 3 } xx,2 + xx,3 ≥ 1

y ∈ { 1 3 } xy,1 + xy,3 ≥ 1

z ∈ { 1 3 } xz,1 + xz,3 ≥ 1

→ −xv,1 + −xw,1 + −xy,1 + −xz,1 ≥ −1
→ −xw,2 + −xx,2 ≥ −1

→ −xw,3 + −xx,3 + −xy,3 + −xz,3 ≥ −1

−xv,1 ≥ 1

xv,1 ≥ 0

0 ≥ 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 44 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Other Forms of Reasoning

We can also do:

All-different filtering.

Distance filtering.

Neighbourhood degree sequences.

Path filtering.

Supplemental graphs.

Proof steps are “efficient” using cutting planes.

The length of the proof steps are no worse than the time

complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.

Worst case: all-different requires finding one additional

alternating path.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 45 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Limitations

Why trust the encoding?

Here we can use formal verification! Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms.

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms.

Works up to moderately-sized hard instances

Even an O(n3) encoding is painful.
Particularly bad when the psuedo-Boolean encoding talks about

“non-edges” but large sparse graphs are “easy”.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 46 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Performance for Subgraph Isomorphism

0

200

400

600

800

1000

1200

100 101 102 103 104 105 106 107 108 109

In
st
an
ce
sS

ol
ve
d

Time (ms)

Solve
Prove
Verify

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 47 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Performance for Subgraph Isomorphism

1

1K

1M

1G

100G

1 102 104 106

O
PB

+
Pr
oo

fL
og

Si
ze

Time with Proof Logging (ms)
(Colour: Time without Proof Logging)

1ms

10ms

100ms

1s

10s

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 47 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Code

https://github.com/ciaranm/glasgow-subgraph-solver

MIT Licence.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 48 / 69

https://github.com/ciaranm/glasgow-subgraph-solver

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

What About CP?

Non-Boolean variables?

Constraints?

Encoding constraints as Pseudo-Boolean constraints?

Justifying inference?

Reformulation?

Work in progress: more on Friday.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 49 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Variables, Take One

A ∈ {1, 2, 3, 4, 5}

becomes

a=1 + a=2 + a=3 + a=4 + a=5 = 1

But this is unusable for large domains.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 50 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Variables, Take Two

A ∈ {−3 . . . 9}

becomes

−32aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 + 16ab4 ≥ −3

and

32aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 + −16ab4 ≥ −9

Weakly propagating, but that doesn’t matter!

Really annoying for proofs, though. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 51 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Lazily Introducing Direct Variables

Whenever we propagate a value or bounds, introduce x≥i and x=i as
extension variables.

This works because for large domains, most values are never used.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 52 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Encoding Propagators

We already know how to do it for any propagator that has a sane

encoding using some combination of

CNF,

Integer linear inequalities,

Table constraints,

Auxiliary variables.

Simplicity is important, propagation strength isn’t.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 53 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Justifying Search

Nothing new to say.

Restarts are easy.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 54 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Justifying Inference

If it follows from unit propagation, nothing needed.

Some propagators and encodings need RUP steps for inferences.

A few need explicit cutting planes justifications.

What about inference during search?

Roughly speaking, you can pretend guessed assignments aren’t

there.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 55 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Reformulation

Auto-tabulation is possible.

Heavy use of extension variables.

Can re-encode maximum common subgraph as a clique problem,

without changing the pseudo-Boolean model.

a

b c d

1 2

3 4

1 2 3 4a ↦→ { }

1

2

3

4

b ↦→

1 2 3 4c ↦→ { }

1

2

3

4

↦→d

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 56 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

High Level Modelling Languages?

There are formally verified compilers, maybe these can be

inspirational?

Edge-case semantics of constraints aren’t obvious!

Experience so far: at least two bugs in my code that turns XCSP into

a low level model.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 57 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Code

https://github.com/ciaranm/glasgow-constraint-solver

MIT Licence.

All-different, integer linear inequality (including for variables with

very large domains), table, minimum / maximum of an array, element,

absolute value.

More on Friday at 12:00 in Taub 7.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 58 / 69

https://github.com/ciaranm/glasgow-constraint-solver

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

What’s Left?

Symmetries!

But first, some more about extension variables. . .

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 59 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

The Truth About Extension Variables

Recall: we want new, fresh variable a encoding

a ↔ (x ∧ y)

Introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Or constraints

a + x + y ≥ 1 2a + x + y ≥ 2

Resolution and cutting planes proof system inherently cannot certify

such derivations: they are not implied!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 60 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant clauses should be OK

Redundance-based strengthening [BT19, GN21] (extending DRAT)

C is redundant with respect to F iff there is a substitution 𝜔 (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies F but falsifies C,
then 𝛼 ◦ 𝜔 satisfies F ∧ C

Implication should be efficiently verifiable (which is the case, e.g., if

all clauses in (F ∧ C)↾𝜔 are RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 61 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant clauses should be OK

Redundance-based strengthening [BT19, GN21] (extending DRAT)

C is redundant with respect to F iff there is a substitution 𝜔 (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies F but falsifies C,
then 𝛼 ◦ 𝜔 satisfies F ∧ C

Implication should be efficiently verifiable (which is the case, e.g., if

all clauses in (F ∧ C)↾𝜔 are RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 61 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant clauses should be OK

Redundance-based strengthening [BT19, GN21] (extending DRAT)

C is redundant with respect to F iff there is a substitution 𝜔 (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies F but falsifies C,
then 𝛼 ◦ 𝜔 satisfies F ∧ C

Implication should be efficiently verifiable (which is the case, e.g., if

all clauses in (F ∧ C)↾𝜔 are RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 61 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant clauses should be OK

Redundance-based strengthening [BT19, GN21] (extending DRAT)

C is redundant with respect to F iff there is a substitution 𝜔 (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾𝜔

Proof sketch for interesting direction: If 𝛼 satisfies F but falsifies C,
then 𝛼 ◦ 𝜔 satisfies F ∧ C

Implication should be efficiently verifiable (which is the case, e.g., if

all clauses in (F ∧ C)↾𝜔 are RUP)

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 61 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)↾𝜔

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾𝜔
Choose 𝜔 = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾𝜔
Choose 𝜔 = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied after forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 62 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)↾𝜔

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾𝜔
Choose 𝜔 = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾𝜔
Choose 𝜔 = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied after forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 62 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Deriving a ↔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)↾𝜔

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))↾𝜔
Choose 𝜔 = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))↾𝜔
Choose 𝜔 = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied after forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 62 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= (F ∧ C)↾𝜔 ∧ f↾𝜔 ≤ f

Can be more aggressive if witness 𝜔 strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Applying 𝜔 should strictly decrease f .

If so, don’t need to show that C↾𝜔 holds!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 63 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= (F ∧ C)↾𝜔 ∧ f↾𝜔 ≤ f

Can be more aggressive if witness 𝜔 strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Applying 𝜔 should strictly decrease f .

If so, don’t need to show that C↾𝜔 holds!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 63 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= (F ∧ C)↾𝜔 ∧ f↾𝜔 ≤ f

Can be more aggressive if witness 𝜔 strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Applying 𝜔 should strictly decrease f .

If so, don’t need to show that C↾𝜔 holds!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 63 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= (F ∧ C)↾𝜔 ∧ f↾𝜔 ≤ f

Can be more aggressive if witness 𝜔 strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Applying 𝜔 should strictly decrease f .

If so, don’t need to show that C↾𝜔 holds!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 63 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).
2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).
3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.
4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.
6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).
3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.
4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.
6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).
2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).

3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.
4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.
6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).
2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).
3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.

4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f
(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.
6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).
2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).
3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.
4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.
6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).
2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).
3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.
4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.

6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).
2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).
3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.
4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.
6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).
2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).
3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.
4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.
6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution 𝜔 s.t.

F ∧ ¬C |= F↾𝜔 ∧ f↾𝜔 < f

Why is this sound?

1 Suppose 𝛼 satisfies F but falsifies C (i.e. satisfies ¬C).
2 Then 𝛼 ◦ 𝜔 satisfies F and f (𝛼 ◦ 𝜔) < f (𝛼).
3 If 𝛼 ◦ 𝜔 satisfies C, we’re done.
4 Otherwise (𝛼 ◦𝜔) ◦𝜔 satisfies F and f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
< f

(
𝛼 ◦ 𝜔

)
.

5 If (𝛼 ◦ 𝜔) ◦ 𝜔 satisfies C, we’re done.
6 Otherwise

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
◦ 𝜔 satisfies F and

f
(
((𝛼 ◦ 𝜔) ◦ 𝜔) ◦ 𝜔

)
< f

(
(𝛼 ◦ 𝜔) ◦ 𝜔

)
.

7 . . .

8 Can’t go on forever, so finally reach 𝛼 ′
satisfying F ∧ C.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 64 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution 𝜔 s.t.

F ∧ ∧m−1
i=1 Ci ∧ ¬Cm |= F↾𝜔 ∧ f↾𝜔 < f

Only consider F — no need to show that any Ci↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested.

Or pick solution 𝛼 minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between different orders in same proof.

See [BGMN22] for details.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 65 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution 𝜔 s.t.

F ∧ ∧m−1
i=1 Ci ∧ ¬Cm |= F↾𝜔 ∧ f↾𝜔 < f

Only consider F — no need to show that any Ci↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested.

Or pick solution 𝛼 minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between different orders in same proof.

See [BGMN22] for details.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 65 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution 𝜔 s.t.

F ∧ ∧m−1
i=1 Ci ∧ ¬Cm |= F↾𝜔 ∧ f↾𝜔 < f

Only consider F — no need to show that any Ci↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested.

Or pick solution 𝛼 minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between different orders in same proof.

See [BGMN22] for details.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 65 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution 𝜔 s.t.

F ∧ ∧m−1
i=1 Ci ∧ ¬Cm |= F↾𝜔 ∧ f↾𝜔 < f

Only consider F — no need to show that any Ci↾𝜔 implied!

Now why is this sound?
Same inductive proof as before, but nested.

Or pick solution 𝛼 minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between different orders in same proof.

See [BGMN22] for details.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 65 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Symmetry Elimination Constraints

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8

without repetition,

adjacent circles cannot

have consecutive numbers.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 66 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Symmetry Elimination Constraints

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8

without repetition,

adjacent circles cannot

have consecutive numbers.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 66 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Symmetry Elimination Constraints

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are all of the above valid

simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8

without repetition,

adjacent circles cannot

have consecutive numbers.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 66 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Symmetry Elimination Constraints

We can introduce these constraints

inside the proof, rather than as part of

the pseudo-Boolean model!

Can use permutation of

variable-values as the witness 𝜔 .

The constraints give us the order.

No group theory required!

Research challenge: a CP toolchain

supporting this.

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8

without repetition,

adjacent circles cannot

have consecutive numbers.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 66 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Lazy Global Domination

1

3

4

5

6

7

8

9

10

11

12

2

2b

Can ignore vertex 2b.

Every neighbour of 2b is also a neighbour of 2.

Not a symmetry, but a dominance.

Dominance rule can justify this.

Even when detected dynamically during search.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 67 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Making Your Solver Output Proofs

https://gitlab.com/MIAOresearch/VeriPB

It’s documented!

Worked examples in [GMM
+
20, EGMN20], and even more in

Stephan Gocht’s PhD thesis [Goc22].

More on

SAT on Thursday at 15:00 in Benjamin Auditorium,

CP on Friday at 12:00 in Taub 7.

We’re happy to collaborate with you. We even have money for this!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 68 / 69

https://gitlab.com/MIAOresearch/VeriPB

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end. Or rather, the beginning!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 69 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end.

Or rather, the beginning!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 69 / 69

Proof Logging In SAT Beyond SAT Subgraph Algorithms Towards CP Symmetries The Future

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end. Or rather, the beginning!

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Solving with Provably Correct Results: Beyond Satisfiability, and Towards Constraint Programming 69 / 69

References I

[ABM
+
11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An introduction to

certifying algorithms. it - Information Technology Methoden und innovative Anwendungen der Informatik und
Informationstechnik, 53(6):287–293, December 2011.

[AGJ
+
18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Metamorphic testing of

constraint solvers. In Proceedings of the 24th International Conference on Principles and Practice of Constraint
Programming (CP ’18), volume 11008 of Lecture Notes in Computer Science, pages 727–736. Springer, August 2018.

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and dominance

breaking for combinatorial optimisation. In Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI ’22), pages 3698–3707, February 2022.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT and QBF solvers.

In Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT ’10),
volume 6175 of Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended resolution. In Proceedings
of the 22nd International Conference on Theory and Applications of Satisfiability Testing (SAT ’19), volume 11628 of

Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18(1):25–38, November 1987.

[CHH
+
17] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp. Efficient

certified RAT verification. In Proceedings of the 26th International Conference on Automated Deduction (CADE-26),
volume 10395 of Lecture Notes in Computer Science, pages 220–236. Springer, August 2017.

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution proof checking.

In Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’17), volume 10205 of Lecture Notes in Computer Science, pages 118–135. Springer, April 2017.

References II

[Dub20] Catherine Dubois. Formally verified constraints solvers: a guided tour. CICM. Invited talk, 2020.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer programming.

In Proceedings of the 22nd International Conference on Integer Programming and Combinatorial Optimization
(IPCO ’21), volume 12707 of Lecture Notes in Computer Science, pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using

pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), pages
1486–1494, February 2020.

[GMM
+
20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.

Certifying solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the 26th
International Conference on Principles and Practice of Constraint Programming (CP ’20), volume 12333 of Lecture
Notes in Computer Science, pages 338–357. Springer, September 2020.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In Proceedings
of the Conference on Design, Automation and Test in Europe (DATE ’03), pages 886–891, March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In

Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean Reasoning. PhD
thesis, Lund University, Lund, Sweden, June 2022. Available at https://stephangocht.github.io/.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In Proceedings of
the 25th International Conference on Principles and Practice of Constraint Programming (CP ’19), volume 11802 of

Lecture Notes in Computer Science, pages 565–582. Springer, October 2019.

https://stephangocht.github.io/

References III

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In

Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design (FMCAD ’13), pages
181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended resolution. In

Proceedings of the 24th International Conference on Automated Deduction (CADE-24), volume 7898 of Lecture Notes
in Computer Science, pages 345–359. Springer, June 2013.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism problems faster

through clique neighbourhood constraints. In Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI ’21), pages 1396–1402, August 2021.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, May 2011.

[MPP19] Ciaran McCreesh, William Pettersson, and Patrick Prosser. Understanding the empirical hardness of random

optimisation problems. In Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 333–349. Springer, September

2019.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International Symposium on
Artificial Intelligence and Mathematics (ISAIM ’08), 2008. Available at
http://isaim2008.unl.edu/index.php?page=proceedings.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming using

expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer, July
2014.

http://isaim2008.unl.edu/index.php?page=proceedings

https://gitlab.com/MIAOresearch/VeriPB

https://github.com/ciaranm/glasgow-constraint-solver

https://github.com/ciaranm/glasgow-subgraph-solver

https://bitbucket.org/krr/breakid

https://gitlab.com/MIAOresearch/VeriPB
https://github.com/ciaranm/glasgow-constraint-solver
https://github.com/ciaranm/glasgow-subgraph-solver
https://bitbucket.org/krr/breakid

	Proof Logging
	In SAT
	Beyond SAT
	Subgraph Algorithms
	Towards CP
	Symmetries
	The Future
	Appendix

