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Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Proof Logging for Combinatorial Solving

Combinatorial Solving and Optimisation

Revolution last couple of decades in combinatorial solvers for

Boolean satisfiability (SAT) solving [BHvMW21]
1

Constraint programming (CP) [RvBW06]

Mixed integer linear programming (MIP) [AW13, BR07]

Solve NP problems (or worse) very successfully in practice!

Except solvers are sometimes wrong. . . (Even best commercial

ones) [BLB10, CKSW13, AGJ
+
18, GSD19, GS19]

1
See end of slides for all references with bibliographic details
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Proof Logging for Combinatorial Solving

The Controversial Slide

In the 2021 constraint programming MiniZinc challenge: for 1.28% of

instances, wrong solutions were claimed.

False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

This problem is worth taking seriously.

Not limited to a single solver, problem, or constraint.

Not even consistent — same solver on same hardware and same

instance can give di�erent results on di�erent runs.

Obviously, your solver doesn’t have this problem, but how do you

convince others of this?
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Proof Logging for Combinatorial Solving

Testing?

Various domain-specific testing methods [BLB10, AGJ
+
18, GSD19].

Definitely be�er than nothing, but is it enough?

Clearly not: bugs are found in thoroughly tested solvers as well.

Testing can only reveal the presence of bugs, not their absence.
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Proof Logging for Combinatorial Solving

Formal Methods?

Prove that solver implementation adheres to formal specification.

Current techniques cannot scale to level of complexity in modern

solvers.

In SAT solver competition, formally verified solvers are far

behind in terms of performance (and available techniques).

In constraint programming, even an ine�icient implementation

of all-di�erent is pushing the limits [Dub20].
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Proof Logging for Combinatorial Solving

A Simple but Crucial Change of Perspective

State-of-the-art SAT solvers instead use proof logging.

Make solvers certifying [ABM
+
11, MMNS11].

Output proof of correctness in standard format that is

independently verified.

A variety of proof logging formats introduced, including

DRAT [HHW13a, HHW13b, WHH14]

GRIT [CMS17]

LRAT [CHH
+
17]

. . .
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Proof Logging for Combinatorial Solving

Proof Logging Workflow

Solver

Checker

Result

Proof 3 or 7

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.
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Proof Logging for Combinatorial Solving

Requirements

Proofs produced by certifying solver should:

Be powerful enough for proof logging to incur minimal overhead.

Be based on very simple rules.

Not require knowledge of inner workings of solver.

Allow verification by stand-alone proof checker.

Much easier to trust a small, simple checker than a full solver.

Should even be simple enough to be formally verified.

Does not prove solver correct, but proves solution correct.
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Proof Logging for Combinatorial Solving

The Sales Pitch For Proof Logging

1 Certifies correctness of computed results.

2 Detects errors even if due to compiler bugs, hardware failures, or

cosmic rays.

3 Provides debugging support during development

[EG21, GMM
+
20, KM21].

4 Facilitates performance analysis.

5 Helps identify potential for further improvements.

6 Enables auditability.

7 Serves as stepping stone towards explainability.
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Proof Logging for Combinatorial Solving

The Rest of This Tutorial

VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Versatile proof logging system that can handle

Subgraph algorithms

Constraint programming

Symmetry and dominance reasoning

in a unified way.

But first we need to tell you about:

Proof logging for SAT.

Pseudo-Boolean reasoning and cu�ing planes.
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SAT

The SAT Problem

Variable x : takes value true (=1) or false (=0)

Literal ℓ : variable x or its negation x

Clause C = ℓ1 ∨ · · · ∨ ℓk : disjunction of literals

(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:

conjunction of clauses

The SAT Problem

Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)
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SAT

Proofs for SAT

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of clauses (CNF constraints).

Each clause follows “obviously” from everything we know so far.

Final clause is empty, meaning contradiction (wri�en ⊥).

Means original formula must be inconsistent.
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Unit Propagation and DPLL

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment d if d falsifies

all literals in C except ℓ .

Example: Unit propagate for d = {p ↦→ 0, q ↦→ 0} on

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.
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Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Davis-Putman-Logemann-Loveland (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack

when clause violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 13 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Unit Propagation and DPLL

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause [GN03, Van08]

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify e�iciently

Fact

Backtrack clauses from DPLL solver generate a RUP proof.
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Conflict-Driven Clause Learning

What About Conflict-Driven Clause Learning (CDCL)?

Run CDCL [BS97, MS99, MMZ
+
01] on our favourite CNF formula:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d

= 0

Unit propagation
Forced choice to avoid falsifying clause

Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide

Add to assignment trail

Until satisfying assignment or conflict
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Conflict-Driven Clause Learning

Conflict Analysis

Time to analyse this conflict and learn from it!

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
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=0

y
u∨x∨y
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z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by flipping last decision

But want to learn from conflict and cut

away as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &

removing z — must satisfy x ∨ y

Repeat til UIP clause with only 1 variable

at conflict level — learn and backjump
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Conflict-Driven Clause Learning

Complete Example of CDCL Execution

Backjump: undo max #decisions while learned clause propagates

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
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u
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q
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w
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= 1

x
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y
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y∨z

⊥

x ∨ y

u ∨ x

Assertion level 1 (2nd largest level in

learned clause) — trim trail to that level

Now UIP literal guaranteed to flip (assert)

— but this is a propagation, not a decision

Then continue as before. . .
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RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses
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In DIMACS
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Writing Proofs

More Ingredients in Proof Logging for SAT

Fact

RUP proofs are shorthand for so-called Resolution proofs.

See [BN21] for more on this and connections to SAT solving.

But RUP and Resolution aren’t enough for preprocessing,

inprocessing, and some other kinds of reasoning.
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Writing Proofs

Extension Variables, Part 1

Suppose we want new, fresh variable a encoding

a ⇔ (x ∧ y)

Extended Resolution: allow to introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Should be fine, so long as a doesn’t appear anywhere previously.

Fact

Extended Resolution (RUP + definition of new variables) is essentially

equivalent to the DRAT proof logging system.
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Writing Proofs

Deleting Clauses

In practice, important to erase lines to save memory and time during

verification.

Very easy to deal with from the point of view of proof logging.

So ignored in this tutorial for simplicity and clarity.
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Pseudo-Boolean Problems

Why Aren’t We Done?

Practical limitations of SAT proof logging technology:

Di�iculties dealing with stronger reasoning e�iciently.

Clausal proofs can’t easily reflect what other algorithms do.

Surprising claim: a slight change to 0-1 integer linear inequalities

does the job!

Can justify graph reasoning without knowing what a graph is.

Can justify constraint programming inference without knowing

what an integer variable is.

This even helps justify advanced SAT techniques (cardinality

reasoning, Gaussian elimination, symmetry breaking) so far

beyond reach for e�icient DRAT proof logging.
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Pseudo-Boolean Problems

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai,A ∈ Z
literals ℓi : xi or x i (where xi + x i = 1)

Sometimes convenient to use normalized form [Bar95] with

all ai,A positive (without loss of generality)

Write (partial) assignment d as

set of variable assignments d = {x ↦→ 1, y ↦→ 0, z ↦→ 1, . . .}, or

set of true literals d = {x, y, z, . . .}
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Pseudo-Boolean Problems

Some Types of Pseudo-Boolean Constraints

1 Clauses

x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints

x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Pseudo-Boolean Problems

RUP Revisited

Can define (reverse) unit propagation in a pseudo-Boolean se�ing.

Risk for confusion: Constraint programming people might call this

(reverse) integer bounds consistency.

Does the same thing if we’re working with clauses.

More interesting for general pseudo-Boolean constraints.

SAT people beware: constraints can propagate multiple times and

multiple literals.
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Pseudo-Boolean Problems

Propagation, Conflict, and Slack

Slack measures how far assignment d is from falsifying

∑
i aiℓi ≥ A

Assuming normalized form:

slack
(∑

i aiℓi ≥ A; d
)
=

∑
i : d (ℓi)≠0

ai − A

Consider C � x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

d slack (C; d) comment

{} 8

{x5} 3 propagates x4 (coe�icient > slack)

{x5, x4} 3 propagation doesn’t change slack

{x5, x4, x3, x2} −2 conflict (slack < 0)

Note: constraint can be conflicting though not all variables assigned
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Pseudo-Boolean Problems

Pseudo-Boolean Reasoning: Cu�ing Planes [CCT87]

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i caiℓi ≥ A∑

i aiℓi ≥
⌈A

c

⌉
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Pseudo-Boolean Problems

Cu�ing Planes Toy Example

w + 2x + y ≥ 2

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div
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Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Add

3w + 6x + 6y + 2z ≥ 9

z ≥ 0

Mul by 2

2z ≥ 0

Add

3w + 6x + 6y ≥ 7

Div by 3

w + 2x + 2y ≥ 3

Such a calculation can be wri�en in a proof line assuming handles

C1 � 2x + y + w ≥ 2

C2 � 2x + 4y + 2z + w ≥ 5

Ax (z) � z ≥ 0

using postfix notation something like

C1 2 Mul C2 Add Ax (z) 2 Mul Add 3 Div
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Extension Variables, Part 2

Suppose we want new, fresh variable a encoding

a ⇔ (3x + 2y + z + w ≥ 3)

This time, introduce constraints

3a + 3x + 2y + z + w ≥ 3 5a + 3x + 2y + z + w ≥ 5

Again, needs support from the proof system.
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Pseudo-Boolean Problems

Proof Logs for Extended Cu�ing Planes

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in

(slight extension of) OPB format [RM16].

Each constraint follows “obviously” from what is known so far.

Either implicitly, by RUP. . .

Or by an explicit cu�ing planes derivation. . .

Or as an extension variable reifying a new constraint
∗

Final constraint is 0 ≥ 1.

(*) Not actually implemented this way — details later. . .
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Beyond Decision Problems

Enumeration and Optimisation Problems

Enumeration:

When a solution is found, can log it.

Introduces a new constraint saying “not this solution”.

So the proof semantics are “unsatisfiable, except for all the

solutions I told you about”.

For optimisation:

Define an objective f =
∑

i wiℓi , wi ∈ Z, to minimise in the

pseudo-Boolean model.

To maximise, negate objective.

Log a solution U , get a solution-improving constraint∑
i wiℓi ≤ −1 +∑

i wiU (ℓi).
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solutions I told you about”.

For optimisation:

Define an objective f =
∑

i wiℓi , wi ∈ Z, to minimise in the
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To maximise, negate objective.
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Beyond Decision Problems

The VeriPB Format and Tool

https://gitlab.com/MIAOresearch/software/VeriPB

Released under MIT Licence.

Various features to help development:

Extended variable name syntax allowing human-readable names.

Proof tracing.

“Trust me” assertions for incremental proof logging.

Full details: Stephan Gocht’s PhD thesis [Goc22].
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Progress So Far

Progress So Far

We’ve seen proof logging, and how it works for SAT.

We’ve learned about

pseudo-Boolean constraints (0-1 linear inequalities),

cu�ing planes reasoning, and

VeriPB.

Coming next, some worked examples from dedicated graph solvers.
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The Maximum Clique Problem
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Maximum Clique Solvers

There are a lot of dedicated solvers for clique problems.

But there are issues:

“State of the art” solvers have been buggy.

O�en undetected: error rate of around 0.1% [MPP19].

O�en used inside other solvers.

An o�-by-one result can cause much larger errors.
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Maximum Clique

Making a Proof-Logging Clique Solver

1 Output a pseudo-Boolean encoding of the problem.

Clique problems have several standard file formats.

2 Make the solver log its search tree.

Output a small header.

Output something on every backtrack.

Output something every time a solution is found.

Output a small footer.

3 Figure out how to log the bound function.
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Maximum Clique

A Slightly Di�erent Workflow

Solver

Checker

Result

Proof 3 or 7

Input

Encoded Input
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Maximum Clique

A Pseudo-Boolean Encoding for Clique (in OPB Format)

3

4

6

7

9

10

11

12

1

2

5

8

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 . . . and so on. . . -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* . . . and a further 38 similar lines for the remaining non-edges
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Maximum Clique

First A�empt at a Proof

1
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12pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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Maximum Clique

First A�empt at a Proof

1

2
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4

5

6

7
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9
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12

Start with a header.

Load the 41 problem axioms.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10
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12

Branch on 12, 7, 9.

Find a new incumbent.

Now looking for a ≥ 4 vertex clique.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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First A�empt at a Proof

1
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5

6

7

8

9

10

11

12

Backtrack from 12, 7.

Only 6 and 9 feasible.

No ≥ 4 vertex clique possible.

E�ectively this deletes the 7–12 edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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First A�empt at a Proof
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Backtrack from 12.

Only 1, 6 and 9 feasible.

No ≥ 4 vertex clique possible.

E�ectively this deletes vertex 12.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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Maximum Clique

First A�empt at a Proof

1

2

3

4

5

6

7

8

9

10

11

Branch on 11 then 10.

Only 1, 3 and 9 feasible.

No ≥ 4 vertex clique possible.

Backtrack, deleting the edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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Maximum Clique

First A�empt at a Proof

1
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7

8

9

10

11

Backtrack from 11.

Clearly no ≥ 4 clique.

Delete the vertex.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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Maximum Clique

First A�empt at a Proof

1
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8

9

10

Branch on 8, 5, 1, 2.

Find a new incumbent.

Now looking for a ≥ 5 vertex clique.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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Maximum Clique

First A�empt at a Proof

1
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9

10

Backtrack from 8, 5.

Only 4 vertices, can’t have a ≥ 5 clique.

Delete the edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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Maximum Clique

First A�empt at a Proof

1

2

3

4
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7

8

9

10

Backtrack from 8.

Still not enough vertices.

Delete the vertex.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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First A�empt at a Proof

1
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Now obvious to solver that claim of

≥ 5 clique is contradictory

(we’ll see why).

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 40 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

First A�empt at a Proof

1
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Assert previous line has derived

contradiction, ending proof.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1
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Maximum Clique

Verifying This Proof (Or Not. . . )

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.
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Maximum Clique

Verifying This Proof (Or Not. . . )

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.
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Maximum Clique

Verifying This Proof (Or Not. . . )

$ veripb --trace clique.opb clique-attempt-one.veripb
line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: u 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: u 1 ~x12 >= 1 ;
ConstraintId 044: 1 ~x12 >= 1

line 006: u 1 ~x11 1 ~x10 >= 1 ;
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.
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Maximum Clique

Bound Functions

1

39
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Given a k-colouring of a subgraph, that subgraph cannot have a

clique of more than k vertices.

Each colour class describes an at-most-one constraint.

This does not follow by reverse unit propagation.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 42 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Maximum Clique

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we might use in the

pseudo-Boolean input.

But we can use cu�ing planes to recover colour classes lazily!

(x1 + x6 ≥ 1)
+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.

Each non-edge is used exactly once, v (v − 1) additions.

v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cu�ing planes to write this out.
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What This Looks Like

pseudo-Boolean proof version 1.2
f 41
o x12 x7 x9
u 1 ~x12 1 ~x7 >= 1 ;
* bound, colour classes [ x1 x6 x9 ]
p 71�6 191�9 + 246�9 + 2 d
p 42obj -1 +
u 1 ~x12 >= 1 ;
* bound, colour classes [ x1 x3 x9 ]
p 11�3 191�9 + 213�9 + 2 d
p 42obj -1 +
u 1 ~x11 1 ~x10 >= 1 ;
* bound, colour classes [ x1 x3 x7 ] [ x9 ]
p 11�3 101�7 + 123�7 + 2 d
p 42obj -1 +
u 1 ~x11 >= 1 ;
o x8 x5 x2 x1
u 1 ~x8 1 ~x5 >= 1 ;
* bound, colour classes [ x1 x9 ] [ x2 ]
p 53obj 191�9 +
u 1 ~x8 >= 1 ;
* bound, colour classes [ x1 x3 x7 ] [ x2 x4 x9 ] [ x5 x6 x10 ]
p 11�3 101�7 + 123�7 + 2 d
p 53obj -1 +
p 42�4 202�9 + 224�9 + 2 d
p 53obj -3 + -1 +
p 95�6 265�10 + 276�10 + 2 d
p 53obj -5 + -3 + -1 +
u >= 1 ;
c -1
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Maximum Clique

Verifying This Proof (For Real, This Time)

$ veripb --trace clique.opb clique-attempt-two.veripb
=== begin trace ===
line 002: f 41
ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: u 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: * bound, colour classes [ x1 x6 x9 ]
line 006: p 7 19 + 24 + 2 d

ConstraintId 044: 1 ~x1 1 ~x6 1 ~x9 >= 2
line 007: p 42 43 +

ConstraintId 045: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x8 1 x9 1 x10 1 x11 >= 3
...

ConstraintId 061: 1 ~x5 1 ~x6 1 ~x10 >= 2
line 028: p 53 57 + 59 + 61 +

ConstraintId 062: 1 x8 1 x11 1 x12 >= 2
line 029: u >= 1 ;

ConstraintId 063: >= 1
line 030: c -1
=== end trace ===

Verification succeeded.
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Maximum Clique

Di�erent Clique Algorithms

Di�erent search orders?

X Irrelevant for proof logging.

Using local search to initialise?

X Just log the incumbent.

Di�erent bound functions?

Is cu�ing planes strong enough to justify every useful bound

function ever invented?

So far, seems like it. . .

Weighted cliques?

X Multiply a colour class by its largest weight.

X Also works for vertices “split between colour classes”.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 46 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Subgraph Isomorphism

Subgraph Isomorphism

Find the pa�ern inside the target.

Applications in compilers, biochemistry, model checking, pa�ern

recognition, . . .

O�en want to find all matches.
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Subgraph Isomorphism

Subgraph Isomorphism in Pseudo-Boolean Form

Each pa�ern vertex gets a target vertex:∑
t∈V(T )

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑
p∈V(P)

−xp,t ≥ −1 t ∈ V(T )

Adjacency constraints, if p is mapped to t , then p’s neighbours must

be mapped to t’s neighbours:

xp,t +
∑

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T )
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Subgraph Isomorphism

Degree Reasoning in Cu�ing Planes

A pa�ern vertex p of degree deg(p) can never be mapped to a target

vertex t of degree deg(p) − 1 or lower in any subgraph isomorphism.

Observe N(p) = {q, r, s} and N(t) = {u, v}.
We wish to derive xp,t ≥ 1.

o

p

q

r

s

t

u

v

x

y

z
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Subgraph Isomorphism

Degree Reasoning in Cu�ing Planes

We have the three adjacency constraints,

xp,t + xq,u + xq,v ≥ 1

xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1

Their sum is

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3

o

p

q

r

s

t

u

v

x

y

z
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Subgraph Isomorphism

Degree Reasoning in Cu�ing Planes

Continuing with the sum

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3

Due to injectivity,

− xo,u + −xp,u + −xq,u + −xr,u + −xs,u ≥ −1

− xo,v + −xp,v + −xq,v + −xr,v + −xs,v ≥ −1

Add all these together, ge�ing

3xp,t + −xo,u + −xo,v + −xp,u + −xp,v ≥ 1

o

p

q

r

s

t

u

v

x

y

z
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Subgraph Isomorphism

Degree Reasoning in Cu�ing Planes

We’re more or less there. We have:

3xp,t + −xo,u + −xo,v + −xp,u + −xp,v ≥ 1

Add the literal axioms xo,u ≥ 0, xo,v ≥ 0, xp,u ≥ 0 and xp,v ≥ 0 to get

3xp,t ≥ 1

Divide by 3 to get the desired

xp,t ≥ 1

o

p

q

r

s

t

u

v

x

y

z
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Subgraph Isomorphism

Degree Reasoning in VeriPB

p 18p∼t:q 19p∼t:r + 20p∼t:s + * sum adjacency constraints
12inj (u) + 13inj (v) + * sum injectivity constraints
xo_u + xo_v + * cancel stray xo_*
xp_u + xp_v + * cancel stray xp_*
3 d * divide, and we're done

Or we can ask VeriPB to do the last bit of simplification

automatically:

p 18p∼t:q 19p∼t:r + 20p∼t:s + * sum adjacency constraints
12inj (u) + 13inj (v) + * sum injectivity constraints

j -1 1 ~xp_t >= 1 ; * desired conclusion is implied
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Subgraph Isomorphism

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph

solvers do:

Injectivity reasoning and filtering.

Distance filtering.

Neighbourhood degree sequences.

Path filtering.

Supplemental graphs.

Proof steps are “e�icient” using cu�ing planes.

The length of the proof steps are no worse than the time

complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.
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Subgraph Isomorphism

Limitations

Why trust the encoding?

Here we can formally verify the correctness of the encoding!

Work in progress. . .

Proof logging can introduce large slowdowns

Writing to disk is much slower than bit-parallel algorithms.

Verification can be even slower

Unit propagation is much slower than bit-parallel algorithms.

Works up to moderately-sized hard instances

Even an O(n3) encoding is painful.

Particularly bad when the pseudo-Boolean encoding talks about

“non-edges” but large sparse graphs are “easy”.
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Subgraph Isomorphism

Code

https://github.com/ciaranm/glasgow-subgraph-solver

Released under MIT Licence.
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Constraint Programming

What About Constraint Programming?

Non-Boolean variables?

Constraints?

Encoding constraints as Pseudo-Boolean constraints?

Justifying inference?

Reformulation?
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Non-Boolean Variables

Compiling CP Variables

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 58 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Non-Boolean Variables

Compiling CP Variables

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains.

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 58 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Non-Boolean Variables

Compiling CP Variables

Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains.

We could use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and

16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

This doesn’t propagate much, but that isn’t a problem for proof

logging.
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Non-Boolean Variables

Compiling CP Variables

We can mix binary and an order encoding. Where needed, define:

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4

a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5

a=4 ⇔ a≥4 ∧ a≥5

When creating a=i , also introduce pseudo-Boolean constraints

encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist.

We can do this:

Inside the pseudo-Boolean model, where needed.

Otherwise lazily during proof logging.
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Constraints

Compiling Constraints

Also need to compile every constraint to pseudo-Boolean form.

Doesn’t need to be a propagating encoding.

Can use additional variables.
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Constraints

Compiling Constraints

Given 2A + 3B + 4C ≥ 42, where A,B,C ∈ {−3 . . . 9},

−32aneg + 2ab0 + 4ab1 + 8ab2 + 16ab3

+ − 48bneg + 3bb0 + 6bb1 + 12bb2 + 24bb3

+ − 64cneg + 4cb0 + 8cb1 + 16cb2 + 32cb3 ≥ 42
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Constraints

Compiling Constraints

Constraints can be specified extensionally as list of feasible tuples,

called a table. We have to pick one of the tuples from the table, and

give it to the associated variables.

Given a table constraint (A,B,C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)], define

3t0 + a=1 + b=2 + c=3 ≥ 3 i.e. t0 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t1 + a=1 + b=4 + c=4 ≥ 3 i.e. t1 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t2 + a=2 + b=2 + c=5 ≥ 3 i.e. t2 ⇒ (a=2 ∧ b=2 ∧ c=5)

using a tuple selector variable

t0 + t1 + t2 = 1
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Constraints

Encoding Constraint Definitions

We already know how to do it for any constraint that has a sane

encoding using some combination of

CNF,

Integer linear inequalities,

Table constraints,

Auxiliary variables.

Simplicity is important, propagation strength isn’t.
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Proofs for Constraint Programming

Justifying Search

Mostly this works as in earlier examples.

Restarts are easy.

No need to justify guesses or decisions. We only justify backtracking.
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Proofs for Constraint Programming

Justifying Inference

If it follows from unit propagation, nothing needed.

Some propagators and encodings need RUP steps for inferences.

A lot of propagators are e�ectively “doing a li�le bit of

lookahead” but in an e�icient way.

A few need explicit cu�ing planes justifications.

Linear inequalities just need to multiply and add.

All-di�erent needs a bit more.
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Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 }
X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }
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Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 }
Y ∈ { 1 3 }
Z ∈ { 1 3 }
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Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1
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Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1

→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1
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Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1

→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1
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Proofs for Constraint Programming

Justifying All-Di�erent Failures
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Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1

→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1

v=1 ≥ 0
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Proofs for Constraint Programming

Justifying All-Di�erent Failures

V ∈ { 1 4 5 }
W ∈ { 1 2 3 } w=1 + w=2 + w=3 ≥ 1

X ∈ { 2 3 } x=2 + x=3 ≥ 1

Y ∈ { 1 3 } y=1 + y=3 ≥ 1

Z ∈ { 1 3 } z=1 + z=3 ≥ 1

→ −v=1 + −w=1 + −y=1 + −z=1 ≥ −1

→ −w=2 + −x=2 ≥ −1

→ −w=3 + −x=3 + −y=3 + −z=3 ≥ −1

−v=1 ≥ 1

v=1 ≥ 0

0 ≥ 1
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Other Constraint Programming Topics

Reformulation

Auto-tabulation is possible.

Heavy use of extension variables.

Can re-encode maximum common subgraph as a clique problem,

without changing the pseudo-Boolean model.

a

b c d

1 2

3 4

1 2 3 4a ↦→ { }

1

2

3

4

b ↦→

1 2 3 4c ↦→ { }

1

2

3

4

↦→d
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Other Constraint Programming Topics

High Level Modelling Languages?

High level modelling languages like MiniZinc and Essence have

complicated compilers.

How do we know we’re giving a proof for the problem the user

actually specified?

Future research. . .
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Other Constraint Programming Topics

Code

https://github.com/ciaranm/glasgow-constraint-solver

Released under MIT Licence.

Supports proof logging for global constraints including:

All-di�erent.

Integer linear inequality (including for very large domains).

Table.

Minimum / maximum of an array.

Element.

Absolute value.

Details in [GMN22].

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 66 / 86

https://github.com/ciaranm/glasgow-constraint-solver


Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetries and More

What’s Le�?

The truth about extension variables (redundance rule)

Some applications of this rule (parity reasoning & PB-to-CNF

translations)

Extensions of the redundance rule to optimization

Symmetry Breaking
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Redundance-Based Strengthening

The Truth About Extension Variables

Recall: we want new, fresh variable a encoding

a ⇔ (x ∧ y)

Introduce clauses

a ∨ x ∨ y a ∨ x a ∨ y

Or, in pseudo-Boolean language, constraints

a + x + y ≥ 1 2a + x + y ≥ 2

Resolution and cu�ing planes proof system inherently cannot certify

such derivations: they are not implied!
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Redundance-Based Strengthening

Redundance-Based Strengthening

C is redundant with respect to F if F and F ∧ C are equisatisfiable

Adding redundant constraints should be OK

Redundance-based strengthening [BT19, GN21] (extending RAT)

C is redundant with respect to F i� there is a substitution l (mapping

variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)�l
Proof sketch for interesting direction: If U satisfies F but falsifies C,

then U ◦ l satisfies F ∧ C

Witness l should be specified, and implication be e�iciently

verifiable (which is the case, e.g., if all constraints in (F ∧ C)�l are

RUP)
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Redundance-Based Strengthening

Deriving a ⇔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)�l

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))�l
Choose l = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))�l
Choose l = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied a�er forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 70 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Deriving a ⇔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)�l

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))�l
Choose l = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))�l
Choose l = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied a�er forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 70 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Redundance-Based Strengthening

Deriving a ⇔ (x ∧ y) Using the Redundance Rule

Want to derive

a + x + y ≥ 1 2a + x + y ≥ 2

using condition F ∧ ¬C |= (F ∧ C)�l

1 F ∧ ¬(2a + x + y ≥ 2) |= (F ∧ (2a + x + y ≥ 2))�l
Choose l = {a ↦→ 0} — F untouched; new constraint satisfied

2 F ∧ (2a + x + y ≥ 2) ∧ ¬(a + x + y ≥ 1) |=
(F ∧ (2a + x + y ≥ 2) ∧ (a + x + y ≥ 1))�l
Choose l = {a ↦→ 1} — F untouched; new constraint satisfied

¬(a + x + y ≥ 1) forces x ↦→ 1 and y ↦→ 1, hence 2a + x + y ≥ 2

remains satisfied a�er forcing a to be true

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 70 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Applications of Redundance Rule

CDCL Solvers on Pseudo-Boolean Inputs

Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]

Open-WBO [MML14]

NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1
xj ≥ k

k · si,k +
∑i

j=1
xj ≥ k

(i − k + 1) · si,k +
∑i

j=1
x j ≥ i − k + 1

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2

How to know translation

is correct?

VeriPB can certify pseudo-Boolean-to-CNF rewriting

[GMNO22, VDB22]
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Applications of Redundance Rule

Parity (XOR) Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply

x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]

But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too

ine�icient in practice!

Could add XORs to language, but prefer

to keep things super-simple
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Applications of Redundance Rule

Pseudo-Boolean Proof Logging for XOR Reasoning

Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive

x ∨ w

x ∨ w

Use redundance rule with fresh variables

a, b to derive

x + y + z + 2a = 3

y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)

Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1

x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
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Redundance and Dominance for Optimisation

Redundance and Dominance Rules for Optimisation

Redundance-based strengthening, optimisation version

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= (F ∧ C)�l ∧ f�l ≤ f

Can be more aggressive if witness l strictly improves solution.

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Applying l should strictly decrease f .

If so, don’t need to show that C�l holds!
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Redundance and Dominance for Optimisation

Soundness of Dominance Rule

Dominance-based strengthening (simplified)

Add constraint C to formula F if exists witness substitution l s.t.

F ∧ ¬C |= F�l ∧ f�l < f

Why is this sound?

1 Suppose U satisfies F but falsifies C (i.e. satisfies ¬C).

2 Then U ◦ l satisfies F and f (U ◦ l) < f (U).
3 If U ◦ l satisfies C, we’re done.

4 Otherwise (U ◦l) ◦l satisfies F and f
((U ◦ l) ◦ l )

< f
(
U ◦ l )

.

5 If (U ◦ l) ◦ l satisfies C, we’re done.

6 Otherwise

((U ◦ l) ◦ l ) ◦ l satisfies F and

f
(((U ◦ l) ◦ l) ◦ l )

< f
((U ◦ l) ◦ l )

.

7 . . .

8 Can’t go on forever, so finally reach U ′ satisfying F ∧ C.
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Redundance and Dominance for Optimisation

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified)

If C1,C2, . . . ,Cm−1 have been derived from F (maybe using

dominance), then can derive Cm if exists witness substitution l s.t.

F ∧ ∧m−1

i=1
Ci ∧ ¬Cm |= F�l ∧ f�l < f

Only consider F — no need to show that any Ci�l implied!

Now why is this sound?

Same inductive proof as before, but nested.

Or pick solution U minimizing f and argue by contradiction.

Further extensions:

Define dominance rule w.r.t. order independent of objective.

Switch between di�erent orders in same proof.

See [BGMN22a] for details.
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Symmetry Handling

Symmetry Elimination (CP)

Human modellers might add:

A < G (mirror vertically)

A < B (mirror horizontally)

A ≤ 4 (value symmetry)

Are these valid simultaneously?

The Crystal Maze Puzzle

A B

C D E F

G H

Place numbers 1 to 8 without

repetition, adjacent circles cannot

have consecutive numbers.

We can introduce these constraints inside the proof, rather than as

part of the pseudo-Boolean model!

Can use permutation of variable-values as the witness l .

The constraints give us the order.

No group theory required!

Research challenge: a CP toolchain supporting this.
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Symmetry Handling

Lazy Global Domination For Maximum Clique [MP16]

1

3

4

5

6

7

8

9

10

11

12

2

2b

Can ignore vertex 2b.

Every neighbour of 2b is also a neighbour of 2.

Not a symmetry, but a dominance.

Dominance rule can justify this.

Even when detected dynamically during search.
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Symmetry Handling

Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing

f �
∑n

i=1
2

n−i · xi

(search lexicographically smallest assignment satisfying formula)

2 Derive pseudo-Boolean lex-leader constraint

Cf � f ≤ f�f �
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB

constraint (in same spirit as [GMNO22])

y0 y j ∨ f (xj) ∨ xj

y j−1
∨ x j ∨ f (xj) yj ∨ y j−1

∨ x j

y j ∨ yj−1 yj ∨ y j−1
∨ f (xj)
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Symmetry Handling

Symmetry Breaking: Example

Example: Pigeonhole principle formula

Variables pij (1 ≤ i ≤ 4, 1 ≤ j ≤ 3) true i� pigeon i in hole j
Focus on pigeon symmetries — notation:

f (12) swaps pigeons 1 and 2

Formally: f (12) (p1j) = p2j and f (12) (p2j) = p1j for all j
f (1234) shi�s all pigeons

Order: “Pigeon 1 preferred in the smallest hole; next pigeon 2, ...”

f � 2
11 · p13 + 2

10 · p12 + 2
9 · p11 + 2

8 · p23 + · · · + 1 · p41

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 80 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Breaking: Example

Example: Pigeonhole principle formula

Variables pij (1 ≤ i ≤ 4, 1 ≤ j ≤ 3) true i� pigeon i in hole j
Focus on pigeon symmetries — notation:

f (12) swaps pigeons 1 and 2

Formally: f (12) (p1j) = p2j and f (12) (p2j) = p1j for all j
f (1234) shi�s all pigeons

Order: “Pigeon 1 preferred in the smallest hole; next pigeon 2, ...”

f � 2
11 · p13 + 2

10 · p12 + 2
9 · p11 + 2

8 · p23 + · · · + 1 · p41

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 80 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Symmetry Breaking: Example

Example: Pigeonhole principle formula

Variables pij (1 ≤ i ≤ 4, 1 ≤ j ≤ 3) true i� pigeon i in hole j
Focus on pigeon symmetries — notation:

f (12) swaps pigeons 1 and 2

Formally: f (12) (p1j) = p2j and f (12) (p2j) = p1j for all j
f (1234) shi�s all pigeons

Order: “Pigeon 1 preferred in the smallest hole; next pigeon 2, ...”

f � 2
11 · p13 + 2

10 · p12 + 2
9 · p11 + 2

8 · p23 + · · · + 1 · p41

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 80 / 86



Proof Logging In SAT Going Beyond SAT Subgraph Algorithms Constraint Programming Symmetries & More The Future

Symmetry Handling

Breaking a Single Simple Symmetry (Example)

F is a formula expressing PHP constraints with F�f (12) = F

Want to add constraint C12 breaking f (12) — should be satisfied

by U i� U “at least as good” as f (12) (U)

C12 � f ≤ f�f (12)

�
∑n

i=1
2

n−i · (f (12) (xi) − xi
) ≥ 0

�
(
2

11−2
8
) (p23−p13) +

(
2

10−2
7
) (p22−p12) +

(
2

9−2
6
) (p21−p11) ≥ 0

“Pigeon 1 in smaller hole than pigeon 2”

Can use redundance rule (the symmetry is the witness):

F ∧ ¬C12 |= F�f (12) ∧ C12�f (12) ∧ f�f (12) ≤ f

F ∧

¬(

f f�f (12)

)

|= F�f (12) ∧

(

f�f (12) ≤ f

)�f (12)

∧ f�f (12) ≤ f

Similar to DRAT symmetry breaking [HHW15]
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Symmetry Handling

Breaking More/Other symmetries

Problem

This idea does not generalize.

Breaking two symmetries

F ∧ C12 ∧ ¬C23 6 |= F�f (23) ∧ C12�f (23) ∧ C23�f (23) ∧ f�f (23) ≤ f

Intuitively: applying f (23) potentially falsifies C12

We might have to apply f (12) again

Breaking complex symmetries

F ∧ ¬C1234 |= F�f (1234) ∧ C1234�f (1234) ∧ f�f (1234) ≤ f

Intuitively, C1234 holds if shi�ing all the pigeons results in a

worse assignment.

Can “restore” its truth by applying f (1234) once, twice, or thrice.
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Symmetry Handling

Breaking Symmetries With the Dominance Rule (1/2)

Definition

Given a symmetry f , the (pseudo-Boolean) breaking constraint of f is

Cf � f ≤ f�f

Theorem

Cf can be derived from F using dominance with witness f

F ∧ ¬Cf |= F�f ∧ f�f < f
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Symmetry Handling

Breaking Symmetries With the Dominance Rule (2/2)

Breaking symmetries with the dominance rule

Surprisingly simple

Generalizes well

Works for arbitrary symmetries

Works for multiple symmetries (ignore previously derived

constraints)

F ∧ C12 ∧ ¬C23 |= F�f (23) ∧ f�f (23) < f

Why does it work?

Witness need not satisfy all derived constraints

Su�icient to just produce “be�er” assignment
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Ge�ing Started

Making Your Solver Output Proofs

The VeriPB proof verifier lives at

https://gitlab.com/MIAOresearch/software/VeriPB

And it’s documented!

See [GMM
+
20, EGMN20, BGMN22b, GN22, GMN22] for worked

examples, and even more in Stephan Gocht’s PhD thesis [Goc22].

We’re happy to collaborate with you! And we’re hiring!
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Future Work

Challenges and Work In Progress

Verification:

Formally verified encoding and proof checking.

Performance.

Proof-related:

“Lemmas”, or substitution proofs?

Approximate counting, uniform sampling, etc? Pareto fronts?

Proof trimming or minimisation?

Things to proof log:

Every single dedicated solving algorithm ever.

The 400 remaining global constraints not implemented yet

CP symmetries, dynamic symmetry handling, . . .

MaxSAT, MIP, SMT, . . .

The end. Or rather, the beginning!
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Experiments (Subgraph Algorithms)

Clique Results

Implemented in the Glasgow Subgraph Solver.

Bit-parallel, can perform a colouring and recursive call in under a

microsecond.

59 of the 80 DIMACS instances take under 1,000 seconds to solve

without logging.

Produced and verified proofs for 57 of these 59 instances (the

other two reached 1TByte disk space).

Mean slowdown from proof logging is 80.1 (due to disk I/O).

Mean verification slowdown a further 10.1.

Approximate implementation e�ort: one Masters student.
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Experiments (Subgraph Algorithms)

Subgrap Isomorphism Results

The Pseudo-Boolean models can be large: had to restrict to

instances with no more than 260 vertices in the target graph.

Took enumeration instances which could be solved without

proof logging in under ten seconds.

1,227 instances from Solnon’s benchmark collection:

789 unsatisfiable, up to 50,635,140 solutions in the rest.

498 instances solved without guessing.

Hardest solved satisfiable and unsatisfiable instances required

53,605,482 and 2,074,386 recursive calls.
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Experiments (Subgraph Algorithms)

Subgrap Isomorphism Results
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Experiments (Subgraph Algorithms)

Subgrap Isomorphism Results
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Experiments (Constraint Programming)

How Expensive is Proof Logging?

Laurent D. Michel, Pierre Schaus, Pascal Van Hentenryck:

MiniCP: a lightweight solver for constraint programming. Math.

Program. Comput. 13(1) (2021).

Five benchmark problems allowing comparison of solvers “doing

the same thing”:

Simple models.

Fixed search order and well-defined propagation consistency

levels.

Few global constraints (although we don’t have circuit yet).

Probably close to the worst case for proof logging performance.

Also: Crystal Maze and World’s Hardest Sudoku.
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Experiments (Constraint Programming)

How Expensive is Proof Logging?

Our solver: faster than the fastest of MiniCP, OscaR, and Choco.

Proof logging slowdown: between 8.4 to 61.1.

800,000 to 3,000,000 inferences per second.

Proof logs can be hundreds of GBytes.

No e�ort put into making the proof-writing code run fast.

Verification slowdown: a further 10 to 100.

Probably possible to reduce this substantially if we are prepared

to put more care into writing proofs.
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Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF Translation: Experiments

Certified translations for the following CNF encodings:
2

Sequential counter [Sin05]

Totalizer [BB03]

Generalized totalizer [JMM15]

Adder network [ES06]

Proof verified by proof checker VeriPB

Benchmarks from PB 2016 Evaluation:
3

SMALLINT decision benchmarks without purely clausal formulas

3 subclasses of benchmarks:

Only cardinality constraints (sequential counter, totalizer)

Only general 0-1 ILP constraints (generalized totalizer, adder

network)

Mixed cardinality & general 0-1 ILP constraints (sequential

counter + adder network)

2https://github.com/forge-lab/VeritasPBLib
3http://www.cril.univ-artois.fr/PB16/
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Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: CNF Size vs Proof Size in KiB
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Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: Translation vs Verification Time in Seconds
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Translation just generates clauses and proof

Verification slower, as reasoning has to be performed
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Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: Solving Time vs Verification Time in Seconds
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Solved with fork of Kissat
4

syntactically modified to output

pseudo-Boolean proofs

Room for improvement, but clearly shows approach is viable

4https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
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Experiments (Pseudo-Boolean to CNF Translation)

PB-to-CNF: Future Work

Improving performance:

Cu�ing Planes derivations instead of reverse unit

propagations [VDB22]

Backwards checking/trimming for verification (as in

DRAT-trim [HHW13a])

Extend proof logging further:

Sorting networks like odd-even mergesort, bitonic sorter [Bat68]

MaxSAT solving
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Improving performance:

Cu�ing Planes derivations instead of reverse unit

propagations [VDB22]

Backwards checking/trimming for verification (as in

DRAT-trim [HHW13a])

Extend proof logging further:

Sorting networks like odd-even mergesort, bitonic sorter [Bat68]

MaxSAT solving
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Experiments (Parity Reasoning)

Parity Reasoning: Experiments

Implemented parity reasoning and PB proof logging engine
5

Also DRAT proof logging as described in [PR16]

Experiments with MiniSat
6

Set-up:
7

Intel Core i5-1145G7 @2.60GHz × 4

Memory limit 8GiB

Disk write speed roughly 200 MiB/s

Read speed of 2 GiB/s

5https://gitlab.com/MIAOresearch/tools-and-utlities/xorengine
6http://minisat.se/
7
Tools, benchmarks, data and evaluation scripts available at

https://doi.org/10.5281/zenodo.7083485
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Experiments (Parity Reasoning)

Parity Reasoning: Proof Size

0.01

0.1

1

10

100

3 10 30 100
Instance Size (KiB)

P
ro

of
 S

iz
e 

(M
iB

)

Proof Format

DRAT

PBP

Proof sizes for Tseitin formulas using DRAT and PB proof logging

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 103 / 86



References Experiments From PB Breaking to Clauses

Experiments (Parity Reasoning)

Parity Reasoning: Solving and Verification Time

0.01

0.1

1

10

100

3 10 30 100
Instance Size (KiB)

T
im

e 
(s

)

Tool

DRAT−trim (DRAT verification)

VeriPB (PBP verification)

MiniSat+XOR (PBP)

MiniSat+XOR (DRAT)

Solving and verification time for Tseitin formulas

Bart Bogaerts, Ciaran McCreesh, Jakob Nordström

Combinatorial Solving with Provably Correct Results 104 / 86



References Experiments From PB Breaking to Clauses

Experiments (Parity Reasoning)

Parity Reasoning: Crypto Track of SAT 2021 Competition
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Experiments (Parity Reasoning)

Parity Reasoning: Crypto Track Proof Size
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Experiments (Parity Reasoning)

Parity Reasoning: Crypto Track Verification Time
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Experiments (SAT Symmetry Breaking)

Experimental Evaluation of SAT Symmetry Breaking

Evaluated on SAT competition benchmarks

BreakID [DBBD16, Bre] used to find and break symmetries
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proof logging overhead negligible

verification at most 20 times slower than solving for 95% of

instances
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Strategy for SAT Symmetry Breaking

1 Pretend to solve optimisation problem minimizing

f �
∑n

i=1
2

n−i · xi

(search lexicographically smallest assignment satisfying formula)

2 Derive pseudo-Boolean lex-leader constraint

Cf � f ≤ f�f �
n∑

i=1

2
n−i · (f (xi) − xi) ≥ 0

3 Derive CNF encoding of lex-leader constraints from PB

constraint (in same spirit as [GMNO22])

y0 y j ∨ f (xj) ∨ xj

y j−1
∨ x j ∨ f (xj) yj ∨ y j−1

∨ x j

y j ∨ yj−1 yj ∨ y j−1
∨ f (xj)
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Symmetry Breaking in CNF

In SAT symmetry breakers, symmetry is broken in CNF

Still need to show how to derive CNF encoding

We use the encoding of BreakID [DBBD16]:

y0

y j−1
∨ x j ∨ f (xj)

y j ∨ yj−1

y j ∨ f (xj) ∨ xj

yj ∨ y j−1
∨ x j

yj ∨ y j−1
∨ f (xj)

Define yj to be true if xk equals

f (xk) for all k ≤ j

yk ⇔ yk−1 ∧ (xk ⇔ f (xk))

(derivable with redundance

rule) If yk is true, xk is at most

f (xk)
(derivable from the PB breaking

constraint)
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