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The success of portfolio approaches in SAT solving relies on the observation that 
different SAT solvers may dramatically change their performance depending on the 
class of SAT instances they are trying to solve. In these approaches, a set of features 
of the problem is used to build a prediction model, which classifies instances into 
classes, and computes the fastest algorithm to solve each of them. Therefore, the set 
of features used to build these classifiers plays a crucial role. Traditionally, portfolio 
SAT solvers include features about the structure of the problem and its hardness.
Recently, there have been some attempts to better characterize the structure of 
industrial SAT instances. In this paper, we use some structure features of industrial 
SAT instances to build some classifiers of industrial SAT families of instances. 
Namely, they are the scale-free structure, the community structure and the self-
similar structure. First, we measure the effectiveness of these classifiers by comparing 
them to other sets of SAT features commonly used in portfolio SAT solving 
approaches. Then, we evaluate the performance of this set of structure features 
when used in a real portfolio SAT solver. Finally, we analyze the relevance of these 
features on the analyzed classifiers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Boolean Satisfiability problem (SAT) is one of the most studied problems in Computer Science. It is 
the first known NP-complete problem [20,31]. However, the irruption of certain SAT solving technologies and 
their sophisticated implementations allows us to efficiently solve problems from many real-world domains, 
as planning, software and hardware verification, scheduling or cryptography, among others [13,43,29].

In the last decades, there have been many works dedicated to improve the efficiency of SAT solving algo-
rithms. One of the most promising approaches is the portfolio paradigm. This approach faces the Algorithm 
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Selection Problem [42], which is the problem of choosing, using a prediction model, the best algorithm, from 
a predefined set, to solve a particular instance of a problem. Such prediction is usually performed using 
machine learning techniques. Portfolio SAT solvers proceed as follows. First, the prediction model is built 
in an offline process. To this purpose, a representative set of instances is selected. A vector of (predefined) 
features and a vector of runtimes (of a predefined set of algorithms) is computed for each of these instances. 
Then, instances are grouped into classes based on their features, and the best algorithm is calculated for 
each class. Finally, given an input instance, its features are computed and it is assigned to a class (using 
the prediction model previously built), and it is solved by the correspondent solver assigned to that class. 
Some examples of portfolio approaches to SAT solving are [47,46,28,32,37,24,38,45].

A common classification used in SAT Competitions [26] divides the set of instances into 3 major cate-
gories: (i) random, (ii) industrial (or application) and (iii) crafted (or hard combinatorial). Random formulas 
are k-SAT instances randomly generated with an uniform distribution [1]. The clear model to generate them 
and its connections to statistical physics motivate this category. Industrial benchmarks encode problems of 
real-world domains, and its motivation is to analyze SAT solving technologies in real applications. Finally, 
crafted instances are designed to represent hard or challenging problems to SAT solvers, in order to reveal 
the limits of the current SAT solving techniques. Usually, industrial and crafted instances are grouped into 
families, according to their application domain (e.g., cryptography and planning are industrial families).

The success of portfolio algorithms is due to the observation that different SAT solving techniques perform 
better on different SAT instances. This has resulted into a specialization of SAT solvers. Some examples of 
this specialization are: Conflict-Driven Clause Learning (CDCL) SAT solvers are the dominant technique 
for solving industrial SAT instances; Look-Ahead SAT solvers are specially efficient solving random SAT 
problems; Stochastic Local Search (SLS) SAT solvers exhibit a very good performance on satisfiable random 
k-SAT.

In the case of industrial SAT instances, the remarkable success of CDCL SAT solvers has been reached af-
ter an extensive test-and-error process. However, understanding why these techniques exhibit this extremely 
good performance in this kind of instances remains open. The common wisdom in the SAT community is 
that CDCL SAT solvers exploit the hidden structure of industrial SAT instances. In the last years, there 
have been some attempts to characterize this structure. For instance, it has been shown that industrial SAT 
instances exhibit scale-free structure [8], community structure [11], and self-similar structure [6]. In [35,36], 
the community structure of SAT instances has been related to the hardness of solving them by CDCL 
techniques. In [9], the ratio between the runtimes needed by a CDCL solver and by a random-specialized 
solver is related to the scale-free structure of the formula. Also, in [23], it is proved that this ratio is also 
correlated to the modularity of the formula. Finally, there are some works where a more precise notion of 
hardness is defined [10,12].

In this paper, we show that these three notions of structure can be used to effectively classify industrial 
SAT families. This classification can be useful for further SAT solvers specializations. In particular, there 
may exist different techniques exploiting the singularities of different industrial families. We show that using 
these structure features can result into a classification with similar effectiveness than using other sets of 
SAT features commonly used in portfolio approaches, independently of the classifier used. Interestingly, 
for some classifiers, using structure features even improves the performance of the classifier. We evaluate 
the performance of a portfolio SAT solver using these structure features, observing that its performance is 
almost unaffected. Finally, we analyze the relevance of these structure features in the classifiers previously 
analyzed. This paper is a revisited version of [7].

The rest of the paper proceeds as follows. After some preliminaries presented in Section 2, we review 
some notion of structure in Section 3. In Section 4, we study how the structure features can be used to 
classify industrial SAT families. In Section 5, we analyze the performance of a portfolio SAT solver trained 
with this set of structure features w.r.t. other set of SAT features commonly used in portfolio approaches. In 
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Section 6, we analyze the relevance of these structure features presented in this paper. Finally, we conclude 
in Section 7.

2. Preliminaries

SAT is the problem of determining if there exists an assignment of the Boolean variables of a propositional 
formula such that the formula is evaluated as true. A literal is either a variable or its negation, a clause is 
a disjunction of literals, and a formula in conjunctive normal form (CNF) is a conjunction of clauses.

An undirected weighted graph is a pair (V, w) where V is a set of vertexes and w : V × V → R
+ satisfies 

w(x, y) = w(y, x). This definition generalizes the classical notion of graph (V, E), where E ⊆ V × V , 
by taking w(x, y) = 1 if (x, y) ∈ E and w(x, y) = 0 otherwise. The degree of a vertex x is defined as 
deg(x) =

∑
y∈V w(x, y). A bipartite graph is a tuple (V1, V2, w) where w : V1 × V2 → R

+.

Definition 1 (Variable incidence graph (VIG)). Given a SAT instance Γ over the set of variables X, its 
variable incidence graph is a graph (X, w) with set of vertexes the set of Boolean variables, and weight 
function:

w(x, y) =
∑
c∈Γ
x,y∈c

1(|c|
2
)

Definition 2 (Clause-variable incidence graph (CVIG)). Given a SAT instance Γ over the set of variables X, 
its clause-variable incidence graph is a bipartite graph (X, {c | c ∈ Γ}, w), with vertexes the set of variables 
and the set of clauses, and weight function:

w(x, c) =
{

1/|c| if x ∈ c

0 otherwise

In the previous definitions, edges are weighted in order to give the same relevance to all clauses, inde-
pendently of their length. Notice that, in both models, the sum of the weights of all the edges generated 
by one clause is equal to 1. Notice also that the sign of literals is not considered in these models, as done 
in [8,11,6].

3. The structure of industrial SAT instances

In this section, we review some notions of structure that have been previously analyzed in industrial SAT 
instances. Namely, they are the scale-free structure [8], the community structure [11], and the self-similar 
structure [6]. For more detailed and technical reports, we address the reader to the previous references.

3.1. The scale-free structure

In the classical Erdös–Rényi random graph model [21], the degree of nodes follows a binomial distribution. 
Therefore, the variability of this distribution is very small. In general, the variability of exponentially 
decreasing tail distributions, as normal, binomial or Poisson, is very small.

In contrast, the scale-free model is characterized by a big variability. This model was introduced in [3] to 
describe the structure of the World Wide Web, viewed as a graph, which cannot be described by the classical 
random graph model. In the scale-free model, the degree of nodes follows a power-law distribution p(k) ∼
k−α, and this distribution is scale-free. Power-law (zeta and Pareto) distributions are characterized by a big 
variability, consequence of a polynomially decreasing tail. These distributions are also called heavy-tailed, 
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and they are very frequent in nature. The popular rule known as 80:20 rule explains this behavior: a small 
fraction of the individuals is responsible for most of the average (i.e. 80% of the land is owned by the 20% 
of the population).

In the case of industrial SAT instances, the number of variable occurrences has been analyzed. More 
precisely, we can compute the function fv(k), which is the number of variables that have a number of 
occurrences equal to k, divided by the number of variables n. Assuming that this function follows a power-law 
distribution (i.e., fv(k) ≈ ck−αv ), we can estimate the exponent αv of the power-law distribution that best 
fits this collection of points. This estimation is computed by the method of maximum likelihood [17].

3.2. The community structure

The community structure of a graph is usually measured using the notion of modularity Q [34]. Having 
high modularity (or clear community structure) means that nodes can be grouped into communities, such 
that most edges connect nodes of the same community. Defined for a graph G and a partition C of its 
vertexes into communities, the modularity Q (see Eq. (1)) measures the fraction of internal edges (edges 
connecting vertexes of the same community) w.r.t. a random graph with same number of vertexes and 
same degree distribution. The second term avoids that the best partition is the one made up by an single 
community containing all vertexes.

Q(G,C) =
∑
Ci∈C

∑
x,y∈Ci

w(x, y)

∑
x,y∈V

w(x, y)
−

⎛
⎜⎜⎝

∑
x∈Ci

deg(x))

∑
x∈V

deg(x)

⎞
⎟⎟⎠

2

(1)

The modularity of a graph is the maximal modularity for any possible partition: Q(G) = max{Q(G, C) | C}.
In the case of industrial SAT instances, the community structure has been studied computing the mod-

ularity Q of the VIG. As computing the modularity of a graph is NP-hard [15], instead that computing 
the (exact) value of the modularity, most methods in the literature approximate a lower-bound in the value 
of Q. In [11], it is used the Louvain method [14], one of the most accurate algorithms in large graphs.

3.3. The self-similar structure

A self-similar graph keeps its structure after rescaling it. Rescaling means replacing groups of nodes by 
a single node. In these graphs, the diameter grows as dmax ∼ n1/d, where d is the fractal dimension of the 
graph, and not as dmax ∼ log n, which is the case in random graphs. Computing the fractal dimension of 
a graph is computing the number of tiles required to cover the graph. A tile of radius r and center c is a 
subset of nodes of the graph such that the distance between any of them and the node c is strictly smaller 
that r. Let N(r) be the minimum number of circles of radius r required to cover a graph. A graph has the 
self-similarity property if the function N(r) decreases polynomially, i.e. N(r) ∼ r−d, for some value d. In 
this case, we call d the fractal dimension of the graph [33].

In the case of industrial SAT instances, the fractal dimension has been analyzed computing the function 
N(r) for the VIG and for the CVIG. Assuming that this function decays polynomially (i.e., N(r) ∼ r−d), 
we can compute the degree d (i.e., the fractal dimension) that best fits the function N(r). This value is 
estimated by linear regression interpolating the points logN(r) vs. log r. In our experimentation, we name 
d and db the values estimated for the fractal dimension of the VIG and the CVIG, respectively. See [6] for 
more details about the computation of N(r) and the estimation of d.
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Fig. 1. Distribution of families according to the exponent of the power-law distribution of variable occurrences (αv), the fractal 
dimensions of the VIG and CVIG (d and db, respectively), and the modularity (Q). The heterogeneous families software-bit-verif
(14 instances) and software-bmc (3 instances) are not plotted.

4. Classifying industrial SAT families

Most industrial SAT instances exhibit a power-law distribution in the number of variable occurrences [8], 
a clear community structure with high modularity [11], and a fractal dimension that characterizes their 
self-similarity [6]. Therefore, for each industrial SAT instance we compute the exponent αv of a power-law 
distribution that best fits the number of variable occurrences, the modularity Q of its VIG, and the fractal 
dimensions d and db of its VIG and CVIG, respectively. Notice that the number of variable occurrences is 
exactly the degree of variable-nodes in the CVIG. In the case of the clause length, which corresponds to the 
degree of clause-nodes in the CVIG, it is not clear if the distribution that best fits these data is, in most 
of cases, a power-law. Also, the modularity Qb of the CVIG could be computed, but most methods in the 
literature are not adapted to be used in bipartite graphs (they are either not accurate or not fast enough 
for these graphs).

In this paper, we use the set of 300 industrial SAT instances of the SAT Competition 2013. These instances 
are grouped into 19 industrial families, according to their application domain: 2d-strip-packing, bio, crypto-
aes, crypto-des, crypto-gos, crypto-md5, crypto-sha, crypto-vmpc, diagnosis, hardware-bmc, hardware-bmc-
ibm, hardware-cec, hardware-velev, planning, scheduling, scheduling-pesp, software-bit-verif, software-bmc
and termination. All instances are industrial, in the sense that they come from a real-world problem.

In a first experiment, we analyze if the classification of industrial SAT instances into families according 
to their domain corresponds to a classification of families by structure features. In Fig. 1, we represent the 
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relation between the scale-free structure (αv), the community structure (Q) and the self-similar structure 
(d and db) for each industrial family. Each industrial SAT instance is represented by a different point, 
and each industrial family is characterized by a different symbol. In order to facilitate the visualization 
of this plot, we have omitted the industrial families software-bit-verif (14 instances) and software-bmc (3 
instances), due to their heterogeneity. We have observed that most industrial SAT families are homogeneous, 
and many of them are clearly characterized by these structure features. For instance, the industrial family 
hardware-velev is characterized by an exponent αv in the interval [1.4, 3], high fractal dimensions, with d > 4
and db > 7, and a modularity Q in the interval [0.5, 0.8].

Next, we want to determine if this reduced set of 4 structure features plus the clause/variable ratio 
m/n has similar results classifying industrial SAT families than other sets of SAT features commonly used 
in portfolio approaches. In particular, we use the set of SAT features used in the portfolio SAT solver 
SATzilla [47]. The version of SATzilla submitted to the SAT Competition 2012 uses 127 features grouped 
in several categories: problem size, graphs (including statistics about the degree or clustering coefficient of 
nodes in the VIG and CVIG, among others), hardness (including DPLL, LP-based, SLS, clause learning 
and survey propagation statistics), balance, and timing1 features. See [47] for a detailed description of these 
features. In this analysis, we consider the set of 115 resulting from removing the 12 timing features. We 
name the set of 5 structure features as Structure, and the set of 115 SATzilla features as SATzilla in our 
analysis.

In a second experiment, we build several classifiers using both the Structure and the SATzilla sets of 
features, in order to classify the industrial SAT family of a given instance. For each classifier, we measure 
the number of correctly classified instances (i.e., the number of SAT instances whose industrial family was 
correctly predicted). Notice that we know a priori the family each industrial SAT instance belongs to. 
Therefore, we use supervised machine learning techniques. In order to evaluate each classifier, we perform a 
k-folds cross-validation (i.e., dividing the set of instances into k folds such that each fold is evaluated using 
the classifier built with the other k − 1 folds), with k = 10. Let us introduce the classifiers used in this 
experiment:

• C4.5. This algorithm [41] generates a decision tree to determine the category of each element. It is an 
improved extension of the earlier ID3 algorithm.

• Random Forest (RF). This model [16] builds a combination, or forest, of random decision trees, such 
that each tree depends on the values of a random vector sampled independently and with the same 
distribution for all trees in the forest.

• Naïve Bayes (NB). This algorithm [27] models a probability distribution with a Bayesian network, and 
handles continuous variables using statistical methods for non-parametric density estimations.

• Multi-response Linear Regression (MLR). This classifier [22] transforms the classification problem into 
a problem of function approximation, and this approximation is performed using regression methods.

• Logistic Regression (LR). This algorithm [30] builds and uses a multinomial logistic regression model 
with a ridge estimator.

• Sequential Minimal Optimization (SMO). This classifier [40] trains a Support Vector Machine (SVM), 
reducing this training problem into a series of smallest possible quadratic programming problems.

• IBk. This method [2] implements the instance-based learning k-nearest neighbors algorithm, with a 
fixed value of k.

• K*. This model [18] uses the notion of entropy as a distance measure to determine the similarity between 
two instances.

1 In SATzilla, some features represent the runtime needed to compute some categories of features (e.g., the runtime of computing 
graph features).
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Table 1
Number of correctly classified instances (and its percentage over the total set 
of instances in brackets), using the Structure features (αv, Q, d and db plus the 
clause/variable ratio m/n) or the 115 SATzilla features, for some classifiers. 
In bold, we remark those classifiers whose effectiveness is higher than 90%.

Structure SATzilla
C4.5 259 (86.33%) 263 (87.67%)
RF 274 (91.33%) 288 (96.00%)
NB 254 (84.67%) 256 (85.33%)
MLR 247 (82.33%) 262 (87.33%)
LR 251 (83.67%) 280 (93.33%)
SMO 153 (51.00%) 241 (80.33%)
IBk 275 (91.67%) 264 (88.00%)
K∗ 273 (91.00%) 199 (66.33%)
JRip 246 (82.00%) 251 (83.67%)

• JRip. This algorithm [19] implements a propositional rule learner, Repeated Incremental Pruning to 
Produce Error Reduction (RIPPER).

In Table 1, we represent the number of correctly classified instances by these classifiers, using the features 
sets Structure and SATzilla. We run each classifier with their default parameters values used in Weka [25]. 
In bold, we remark those classifiers whose effectiveness is higher than 90%, i.e., they correctly classify the 
industrial family of more than 90% of the 300 industrial SAT instances. As we observe, the effectiveness of 
the classifier is, in some cases, very low. This is the case of SMO and K* for the classifications of Structure
and SATzilla sets, respectively, for which the reduced/large number of features has a negative effect on 
the classifier. However, most of these classifiers have a very high effectiveness. In general, using the set of 
features SATzilla slightly outperforms the results of the set Structure. However, the differences between these 
two sets are very small. It is worth noting that while the set SATzilla contains a total of 115 features, the 
proposed set Structure only contains 5 features, and even so, the obtained classification and its effectiveness 
is similar. Interestingly, the classifiers K* and IBk improve their performance when using the set Structure.

Let us conjecture why this is the case. SATzilla characterizes the structure of SAT instances using a 
total of 14 graph features. However, these features represent local properties of its structure. For instance, 
the distribution of node degree is analyzed in SATzilla using some statistical features: maximum, average, 
median, standard deviation and minimum. Even so, these 5 features only characterize some local properties 
of the graph. We say they are local in the sense that none of them (used separately) speaks about a common 
behavior in the whole graph. On the other hand, in our metrics we use the exponent αv, which characterizes 
the distribution of degrees, and thus it is a global property of the graph. Therefore, the previously mentioned 
5 graph features used by SATzilla may be implied using the exponent αv. Similarly, the clustering of variables 
is analyzed in SATzilla using the clustering coefficient, computing the values maximum, average, median, 
standard deviation and minimum for each node in the VIG. Again, these metrics only characterize a very 
local community structure. However, the modularity Q is a global metric of the graph, and therefore it gives 
a stronger information about this clustering.

In summary, SATzilla uses many (local) features to determine the structure of the formula, but even so, 
some global characteristics of such structure are not represented. On the other hand, we simply characterize 
it with 4 (global) graph features. Remark that we include the clause/variable ratio m/n in our set of features 
as a very simple metric about the hardness of the formula,2 while SATzilla analyzes it in a more exhaustive 
way using a total of 71 hardness features. Therefore, our characterization of their hardness is still weak.

2 While the hardness of random k-CNF can be characterized using the clause/variable ratio m/n, this is not the case in industrial 
SAT instances. However, bigger industrial SAT formulas may be intuitively harder.
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Table 2
Statistics results of the runtime (in seconds) of computing the set of SAT 
features over the set of 300 industrial SAT instances of the SAT Competition 
2013, for the set Structure, using only graph features of the VIG, and using 
graph features of both VIG and CVIG; and for the set SATzilla. We remark 
in bold the fastest method.

Runtime Structure SATzilla
VIG + CVIG VIG

Minimum 0.07 0.04 11.71
Median 4.9 3.31 49.24
Average 21.65 17.70 170.43
stdev 36.87 34.11 362.27
Maximum 287.12 275.11 3675.28

In conclusion, we observe that the proposed set of structure features can be useful for classifying industrial 
SAT families of instances. This can beneficial for the specialization of SAT solvers, which may exploit the 
particularities of each industrial SAT family, when used in portfolio SAT solving approaches.

5. Evaluation of structure features in a portfolio SAT solver

In this section, we analyze the performance of a portfolio SAT solver when it is trained with the set of 
structure features presented in the previous section. In particular, we evaluate the performance of the solver 
ISAC [28], and we compare it when it is trained with the set of SATzilla features. For each set of features, 
the performance is evaluated with a 10-fold cross validation. This means that the set of 300 SAT instances 
is randomly divided into 10 disjoints subsets, or folds. For each fold, ISAC is trained using the remaining 
9 folds (training set) to build a prediction model, and this is used it to predict the best (core) solver to solve 
each instance of this fold (testing set). We use all solvers submitted to the application track of the SAT 
Competition 2013 as core solvers. Finally, the reported runtime of solving a SAT instance is the runtime of 
computing its features plus the runtime of the (core) solver selected by ISAC.

Let us analyze first the cost of computing the set of structure features presented in this paper. Notice 
that this set contains features of both the VIG and the CVIG. Therefore, it is plausible to consider only 
computing the features of one of these graphs. In Table 2, we present some statistics of the runtime needed 
to compute these sets of features. For the case of the set Structure, we consider two cases: the features of 
the VIG, and the features of both VIG and CVIG. We observe that computing the structure features is, in 
general, more than one order of magnitude faster than computing the SATzilla features,3 even when we use 
our two graphs (VIG and CVIG). As expected, computing the structure features in only one graph (VIG) 
is faster than using both of them (VIG and CVIG).

In Fig. 2, we represent the cactus plot of solving the 300 industrial SAT instances of the SAT Competition 
2013 by ISAC when it is trained with the set of features SATzilla and some combinations of features from the 
set Structure. This plot represents the runtime (in seconds) needed to solve a certain number of instances, 
i.e., each point (x, y) represents that x instances were solved in at most y seconds (each of them). The 
combinations of structure features, named as StructureX , uses VIG features (i.e., αv, Q and d) when ‘V ’ 
∈ X, CVIG features (i.e., db) when ‘C’ ∈ X, and the clause/variable ratio when ‘r’ ∈ X. In Table 3, we 
also report some statistics about the results.

We observe that using the set of 115 SATzilla features is the best strategy, solving a total of 288 instances. 
Surprisingly, using the Structure set of features has very similar. In particular, using the features of the 
VIG and CVIG (i.e., StructureV C and StructureV Cr) solves 285 instances in both cases, while using only 
VIG features (i.e., StructureV and StructureV r) solves 281 instances in both cases. Moreover, using the 
clause/variable ratio m/n does not affect the performance. Therefore, the number of instances solved by 

3 We use the tool provided in the solver SATzilla.
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Fig. 2. Cactus plot for the solver ISAC trained with the set of features SATzilla and some subsets of features from the set Structure. 
Specifically, StructureV Cr uses αv , Q, d, db and m/n; StructureV C uses αv , Q, d and db; StructureV r uses αv, Q, d and m/n; 
and StructureV uses αv , Q and d. Each point (x, y) in the plot represents that x instances were solved in at most y seconds (each 
of them).

Table 3
Statistics about the runtime required to solve the set of 300 instances of the SAT Com-
petition 2013 by ISAC trained with different set of features.

Runtime StructureV Cr StructureV r StructureV C StructureV SATzilla
Minimum 0.26 0.26 0.26 0.26 0.26
Median 272.62 268.10 262.02 310.27 261.84
Average 874.59 863.32 876.84 881.15 831.61
stdev 1199.59 1197.70 1200.11 1207.83 1143.55
Maximum 4913.23 4913.23 4913.23 4913.23 4745.21

#Solved 285 281 285 281 288

these methods is very similar in all cases. Also, the runtime required for solving them is also very similar in 
all cases (see Table 3).

In conclusion, we show that computing structure SAT features is, in general, much faster than computing 
other sets of SAT features commonly used in portfolio approaches, as the set used by SATzilla. Also, we ob-
serve that the performance of a portfolio SAT solver is almost unaffected when, instead that training it with 
the 115 SATzilla features, we train it using just only 5 (or less) structure features, and the small differences 
between SATzilla and Structure are probably due to the richer study of the hardness performed by SATzilla.

6. Relevance of structure SAT features

In this section, we analyze the relevance of all features used in the previous experiments. They are the 
115 features of SATzilla plus the 4 structure features used in this paper. We want to evaluate their relevance 
independently of the classification method used (e.g, in a portfolio SAT solver). For this purpose we use a 
filtering method for feature selection, a classical method of machine learning.

In the minimal-Redundancy-Maximum-Relevance method (mRMR) [39], we try to select a subset of 
features mutually as dissimilar to each other as possible (minimal redundancy), but marginally as similar to 
the classification variable as possible (maximal relevance). This is achieved finding the subset S of features 
that maximizes:
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Table 4
Relevance of SAT features to classify industrial SAT families.

Rank Feature (and description) Category Relevance
1 SP-bias-mean:

mean of confidence of survey propagation (the higher 
of P (true)/P (false) or P (false)/P (true)) for each 
variable

Survey Prop 0.6359

2 d: fractal dimension for VIG Structure 0.5541
3 POSNEG-RATIO-VAR-max:

max of ratio of positive to negative occurrences of each 
variable

Balance 0.5231

4 POSNEG-RATIO-CLAUSE-coeff-variation:
variation coefficient of ratio of positive to negative 
literals in each clause

Balance 0.5171

5 db: fractal dimension for CVIG Structure 0.4769
6 SP-unconstraint-coeff-variation:

variation coefficient of probability that a variable is 
unconstrained in survey propagation

Survey Prop 0.4250

7 POSNEG-RATIO-VAR-mean:
mean of ratio of positive to negative occurrences of 
each variable

Balance 0.4168

· · · · · ·
22 logαv: powerlaw exponent Structure 0.2558

· · · · · ·
41 Q: modularity (for VIG) Structure 0.1844

· · · · · ·

max
S

⎛
⎜⎜⎝∑

j∈S

I(xj , c) −
1

M − 1
∑
i,j∈S
i<j

I(xi, xj)

⎞
⎟⎟⎠ (2)

where c is the classification variable, M is the number of features, and I(xi, xj) measures the mutual 
information between features xi and xj . Formally, the mutual information between two random variables 
xi and xj is defined as:

I(xi, xj) =
∫ ∫

p(xi, xj) log p(xi, xj)
p(xi)p(xj)

dxidxj

Computing mutual information is based on estimating the probability distributions p(xi), p(xj) and p(xi, xj). 
These distributions can be either discretized or estimated by density functions methods [44]. The first term 
of Eq. (2) computes the relevance and the second term the redundancy. For real applications, this objective 
function is difficult to compute exactly. In [39], they propose to use a greedy or gradient algorithm that, 
starting with S = ∅, proceeds adding the feature that most increases the objective function at each step.

In [44], they write the previous objective function as a pseudoBoolean quadratic function, and use a 
parameter α ∈ [0, 1] to regulate the relative weight between relevance and redundancy:

min
X∈{0,1}M

{
1
2(1 − α)XTQX − αFTX

}
(3)

where qij = I(xi, xj) and fj = I(xj , c). In general, values of α closer to 1 result into smaller sets of selected 
features optimizing the objective function. They use the Nyström method to approximate the optimum of 
this function.

In our experiments, we compute the relevance I(xj, c) of all the 119 features xj (i.e., the 115 SATzilla 
features plus the 4 structure features) as proposed in [44]. Recall that the classification variable c corresponds 
in our case to the industrial SAT family each instance belongs to. The relevance of a set of features is the 
matrix F according to Eq. (3). In Table 4, we report the most relevant features, as well as the ranking of 
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Fig. 3. Redundancy between pairs of features. Each point (x, y) represents the redundancy between features x and y, according to 
the gray scale. Features are grouped by SATzilla categories, and Structure category contains αv, d, db and Q (in this order).

the structure features, with their correspondent relevance value (higher is better). We observe that 2 of our 
4 structure features are between the 5 most relevant features. In particular, they are the fractal dimension 
for the VIG d (ranked in the second position), and the fractal dimension for the CVIG (ranked in the fifth 
position). The exponent αv appears in the position 22, and the modularity Q in the position 41. Remark 
that we use logαv (instead of using directly αv) because some industrial families are characterized by an 
exponent αv some orders of magnitude higher than the rest. Recall that we are considering a total of 119
SAT features. Therefore, structure features are very relevant features.

It is also interesting to remark that the 5 most relevant SATzilla features belong to the categories survey 
propagation and balance. Survey propagation is a technique, based on works of spin glasses and statistical 
physics, to estimate the probability that a Boolean variable has a certain value in all satisfying assignments. 
The category Balance refers to the ratio of positive and negative polarities of literals appearing in the 
formula. For instance, a totally unbalanced formula only contains variables appearing with the same polarity. 
Notice that this kind of formulas are trivially satisfiable by the pure literal rule. On the contrary, in [4,5] it is 
shown that balanced formulas produce hard SAT instances. Therefore, the most relevant SATzilla features 
are related to the hardness of the instance.

Finally, we analyze the redundancy between pairs of features. This is the matrix Q according to Eq. (3). 
We represent the results in Fig. 3 as a heat map, i.e., the redundancy between features xi and xj is 
represented in the point (i, j) (and (j, i)) according to the gray scale indicated in the figure.4 The values of 
this matrix are normalized between 0 and 1. Features are grouped into SATzilla categories: problem size, 
CVIG node degree statistics, balance, proximity to horn formula, VIG node degree and diameter statistics 
and CVIG node degree and clustering coefficient statistics, clause learning statistics (based on 2 seconds of 
running Zchaff_rand), survey propagation, and local search statistics (based on 2 seconds of running each 
of SAPS and GSAT). Finally, our set of structure features includes αv, d, db and Q.

We observe that the most redundant pairs of features are found within each category. For instances, many 
VIG/CIG features are very redundant with each other. In the case of our proposed 4 structure features, 

4 It has no sense to compute the redundancy for points (i, i).
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we observe the same behavior. In particular, the pairs (αv, Q) and (d, db) are the most redundant in this 
category. However, these redundancies have a normalized value around 0.3, i.e., they are not very redundant. 
Interestingly, the most redundant categories w.r.t. structure features are the categories balance and survey 
propagation, which are also the most relevant features.

7. Conclusions

In this paper, we have presented a set of structure features that (partially) defines the structure of 
industrial SAT instances. In particular, they are the exponent αv of the power-law distribution that best 
fits the number of variable occurrences, the modularity Q of its VIG, and the fractal dimension d and db of 
its VIG and CVIG, respectively.

We have shown that using this reduced set of 4 features (plus the clause/variable ratio m/n) to classify 
industrial SAT families results into an effective classification. Its effectiveness is comparable to the effective-
ness of the classification obtained with other sets of SAT features commonly used in portfolio approaches, 
as the set used by SATzilla.

Also, we have observed that computing this set of structure features is, in general, more than one order 
of magnitude faster than computing SATzilla features. We have evaluated the performance of the portfolio 
SAT solver ISAC after being trained with these two sets of SAT features (Structure and SATzilla). We 
observe that the performance of this solver is very similar in both cases.

Finally, we have analyzed the relevance of both set of features, and we show that structure features are 
very relevant, as other hardness features (as Survey Propagation or balance statistics) computed by SATzilla.
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