
IN DEGREE PROJECT COMPUTER ENGINEERING,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2017

Study of efficient techniques for
implementing a Pseudo-Boolean
solver based on cutting planes

ALEIX SACREST GASCON

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION

ii

Undersökning av effektiva tekniker
för implementering av en pseudo-

boolsk lösare med hjälp av skärande
plan

ALEIX SACREST GASCON

Degree Project in Computer Science, DD142X
Supervisor: Dilian Gurov
Examiner: Örjan Ekeberg

School of Computer Science and Communication
KTH Royal Institute of Technology

June 2017

iii

Abstract

Most modern SAT solvers are based on resolution and CNF represen-
tation. The performance of these has improved a great deal in the past
decades. But still they have some drawbacks such as the slow effi-
ciency in solving some compact formulas e.g. Pigeonhole Principle [1]
or the large number of clauses required for representing some SAT in-
stances.

Linear Pseudo-Boolean inequalities using cutting planes as reso-
lution step is another popular configuration for SAT solvers. These
solvers have a more compact representation of a SAT formula, which
makes them also able to solve some instances such as the Pigeonhole
Principle easily. However, they are outperformed by clausal solvers in
most cases.

This thesis does a research in the CDCL scheme and how can be
applied to cutting planes based PB solvers in order to understand its
performance. Then some aspects of PB solving that could be improved
are reviewed and an implementation for one of them (division) is pro-
posed. Finally, some experiments are run with this new implemen-
tation. Several instances are used as benchmarks encoding problems
about graph theory (dominating set, even colouring and vertex cover).

In conclusion the performance of division varies among the differ-
ent problems. For dominating set the performance is worse than the
original, for even colouring no clear conclusions are shown and for
vertex cover, the implementation of division outperforms the original
version.

List of abbreviations

The following table shows the meaning of some of the most important
acronyms and abbreviations used in this thesis.

Abbreviation Meaning
BCP Boolean Constraint Propagation
CNF Conjunctive Normal Form
DNF Disjunctive Normal Form
DPLL Davis–Putnam–Logemann–Loveland
CDCL Conflict Driven Clause Learning
LPB Linear Pseudo-Boolean
PB Pseudo-Boolean

SAT Satisfiability Problem, could be used for Satisfiable
UNSAT Unsatisfiable

iv

Contents

1 Introduction 1
1.1 Problem statement . 3
1.2 Motivation . 3
1.3 Outline . 3

2 Background 4
2.1 The Satisfiability Problem 4

2.1.1 Resolution . 5
2.2 Conflict Driven Clause Learning 5

2.2.1 DPLL . 6
2.2.2 Organization of CDCL Solvers 8
2.2.3 Clause Learning 10
2.2.4 Unit Propagation: the two watched literal scheme 12

2.3 The Pseudo-Boolean approach 14
2.3.1 Cutting Planes . 15
2.3.2 Operations on LPB constraints 16
2.3.3 Boolean Constraint Propagation 17
2.3.4 Pseudo-Boolean Learning 18

3 Methodology 21
3.1 The Problem . 21

3.1.1 The Pigeonhole Principle 22
3.1.2 The AtMost-k encoding 23
3.1.3 The Focus . 24
3.1.4 The Approach . 25

3.2 Pseudo-Boolean topics under study 25
3.2.1 Constraint Propagation 25
3.2.2 Weakening criteria 26
3.2.3 Division . 27

v

vi CONTENTS

3.2.4 Cardinality constraints detection 27
3.3 The Solver . 28

3.3.1 CDCL-CuttingPlanes 29
3.4 Implementing division . 29

3.4.1 Original . 31
3.4.2 Div1 . 31
3.4.3 Div2 . 31
3.4.4 Div3 . 31

3.5 Benchmarks . 31
3.5.1 Dominating Set . 31
3.5.2 Even Colouring . 33
3.5.3 Vertex Cover . 33

4 Results 35
4.1 Dominating Set m = 6 . 36
4.2 Dominating Set m = 8 . 38
4.3 Even Colouring random deg = 4 40
4.4 Even Colouring random deg = 6 42
4.5 Vertex Cover v1 m = 10 . 44
4.6 Vertex Cover v2 m = 8 . 46
4.7 Vertex Cover v3 m = 10 . 48

5 Discussion 50
5.1 Dominating Set . 50

5.1.1 Runtime and number of conflicts 50
5.1.2 Number of divisions 51

5.2 Even Colouring . 52
5.2.1 Runtime and number of conflicts 52
5.2.2 Number of divisions 52

5.3 Vertex Cover . 53
5.3.1 Runtime and number of conflicts 53
5.3.2 Number of divisions 53

6 Conclusion 54
6.1 Future work . 55

Bibliography 56

CONTENTS vii

A Tables of execution times and conflicts 58
A.1 Vertex Cover v1 m = 10 . 59
A.2 Vertex Cover v2 m = 8 . 60
A.3 Dominating Set m = 6 . 61
A.4 Dominating Set m = 8 . 62
A.5 Vertex Cover v3 m = 10 . 63
A.6 Even Colouring random deg = 4 64
A.7 Even Colouring random deg = 6 65

Chapter 1

Introduction

A wide range of combinatorial problems can be codified in terms of
propositional logic. This means that such problems can be expressed
as propositional satisfiability (SAT) problems [2]. The key point of this
process is that such combinatorial problems expressed as satisfiability
problems, can often represent an easier approach. This is because the
satisfiability problem is a very studied topic and various well-known
techniques and algorithms are provided.

Because its nature, these combinatorial problems can be easily ex-
pressed using propositional logic’s language, so that solving the ade-
quate propositional logic statement gives a solution to the actual prob-
lem. It is important to acknowledge that in this process there are two
separated parts: on the one hand we have the codification of the prob-
lem according to the logic we are using; on the other hand we have the
actual solving of the reformulated problem. Consequently, this sec-
ond part raises the need of algorithms which solve such satisfiability
problem instances. Such algorithms are called SAT solvers.

As a result, SAT solving has become a procedure used in finding a
solution for many of these combinatorial problems; e.g. Model Check-
ing (hardware / software verification), cryptography, schedule plan-
ning, resource planning, combinatorial design and many others.

Nevertheless, very often the codification of complex combinatorial
problems into SAT leads to a very large number of propositional logic
equations. For this reason, efficiency in SAT solvers is a very important
issue.

SAT was one of the first problems which was proven to be NP-
complete, hence finding polynomial-time algorithm that solves any

1

2 CHAPTER 1. INTRODUCTION

SAT instance would involve proving P = NP . Despite the fact that
there is no such algorithm that can be considered to have polynomial
time, in practice, modern SAT solvers, which contain really advanced
heuristics, are capable of solving problems with formulas formed by
millions of symbols among tens of thousands of different variables.

There exist many different possible representations of the knowl-
edge in terms of logic. As a result of its simplicity and easy reasoning,
Conjunctive Normal Form (CNF), based on propositional logic, is the
most used among SAT solvers. This format is basically a conjunction
of disjunctions, namely a conjunction of clauses, having as clause a
disjunction of literals.

The satisfiability problem can also be expressed as set of Linear
Pseudo-Boolean (LPB) inequalities, where in each of them we have
Boolean variables instead of regular mathematical variables. This is
also a popular representation for SAT solvers. Whereas CNF solvers
use as solving technique resolution, LPB solvers use an analog opera-
tion called cutting planes. This is why these solvers can be often re-
ferred as PB solvers based on cutting planes.

Although state-of-the-art CNF SAT solvers are able to solve really
complex and long formulas, they spend a great amount of time or they
do not finish at all with some particular compact problems e.g. Pigeon-
hole Principle [1]. Another drawback of modern SAT solvers comes
from being (most of them) based on CNF representation. The power
of expression of Clausal Normal Form is very low compared to other
different representations for SAT instances, such as Linear Pseudo-
Boolean (LPB) inequalities. LPB has a much more higher level of ex-
pression compared to CNF. This means a prohibitively larger number
of clausal constraints is needed for expressing what in LPB domain
could be regarded as a short problem.

It seems reasonable that keeping a representation of information
more compact could lead to a more compact reasoning process when
solving. Moreover, due to the compact expression of LPB inequalities
in addition to specific Pseudo-Boolean (PB) techniques, some prob-
lems which may be intractable for a clausal solver, may actually be
easy for a LPB solver based on cutting planes. An example of this is
the Pigeonhole problem, which will be further detailed in this thesis.

The SAT solver field is in constant race for efficiency, which in terms
of time complexity means being able to afford problems that used to
be intractable in the past.

CHAPTER 1. INTRODUCTION 3

1.1 Problem statement

The main purpose of this thesis is to carry out a study about Pseudo-
Boolean solvers based on cutting planes in order to increase the ef-
ficiency of a Pseudo-Boolean solver. The approach will be studying
some not yet implemented specific techniques of PB and implement
them. This could be sumed up in the following research question:

Are there any Pseudo-Boolean techniques that could be applied to a SAT
solver based on cutting planes which could improve its efficiency?

1.2 Motivation

The vast majority of modern SAT solvers use the Conflict Driven Clause
Learning (CDCL) scheme with clausal (CNF) representation. This con-
figuration for the implementation of a solver is apparently getting the
best results considering time consumption while execution.

However, as it was introduced in the previous subsections Linear
Pseudo-Boolean inequalities have a higher expression capacity than
CNF clauses. Moreover, PB resolution step (called cutting planes) is
believed to be stronger than resolution for CNF clauses.

There are many operations that can be applied to PB constraints but
for most of them, there has not been found an efficient implementation
of them. This could be one of the main reasons why clausal solvers
outperform PB solvers. The purpose of this project is to develop an
efficient implementation of a PB solver that is competitive with state-
of-the-art solvers.

1.3 Outline

This thesis is structured into five chapters. In the first chapter the topic
is introduced, as well as, it is defined, in an introductory way, the
purpose and the problem statement. The second chapter explains the
background, giving basic knowledge about SAT, the CDCL scheme,
CNF and LPB. Whereas in the third chapter there is a formal defini-
tion of the problem, as well as, the method used. Finally the results
are shown and discussed in the fourth chapter and the conclusion is
developed in the fifth.

Chapter 2

Background

In this chapter we introduce some background on SAT solvers and the
satisfiability problem. The concepts of this chapter will be used and
referenced in the following chapters. There is a review of the main
features and characteristics of modern SAT solvers.

2.1 The Satisfiability Problem

The Boolean Satisfiability problem (SAT) [2] is defined as determin-
ing if there exists an interpretation (model) that satisfies a given set of
constraints expressed as a Boolean formula. In other words, its aim
is to find if there exists an assignment, for each of the variables in the
formula, which satisfies all the constraints. We say a formula is un-
satisfiable when there is no such combination of assignments for the
variables that evaluates the formula to true, fulfilling all constraints;
otherwise we say it is satisfiable.

There exists many different logics (e.g. propositional logic or first-
order logic) in terms of which it is possible to express the SAT problem
and each different logic may have different possible representations
(for propositional logic for instance CNF or DNF). In this thesis the fo-
cus will be on propositional logic. According to this, the SAT problem
will be further defined below in terms of propositional logic.

Let us consider x1, · · · , xn are Boolean variables. We say a Boolean
formula is formed by clauses C1, · · · , Cm. Each clause Cj = (l1 ∨ l2 ∨
· · · ∨ lk), where lz = xi or lz = (xi) is a literal. Then the formula F has
the following form:

F = C1 ∧ C2 ∧ · · · ∧ Cm

4

CHAPTER 2. BACKGROUND 5

This is expressed in Conjunctive Normal Form (CNF), which is a con-
junction of clauses. Consider the formula (2.1), this formula has two
clauses (x∨ y) and (x∨ y). And it is satisfiable because the assignment
of values x = 1 and y = 0 satisfies the formula and hence it is a model.

(x ∨ y) ∧ (x ∨ y) (2.1)

But for the formula (2.2) there is no combination of Boolean assign-
ments to the variables which satisfy the formula. We say it is unsatis-
fiable.

x ∧ x (2.2)

The SAT problem is proven to be NP-Complete. Problems in NP class
are those for which there is not an efficient (i.e. polynomial time com-
plexity) algorithm found to solve them, and it is believed that such
algorithm does not exist. However, state-of-the-art SAT solvers can
solve input formulas containing a high number of different variables
and a huge number of symbols.

2.1.1 Resolution

Resolution is the reasoning method applied to clauses in order to prove
that a given formula is unsatisfiable. Resolution implies a new clause
from two clause that have a complementary literal. Let us consider the
clauses x1 ∨ · · · ∨ xn ∨ c and y1 ∨ · · · ∨ ym ∨ c, resolution is applied as
follows:

x1 ∨ · · · ∨ xn ∨ c y1 ∨ · · · ∨ ym ∨ c
x1 ∨ · · · ∨ xn ∨ y1 ∨ · · · ∨ ym

However, to reach a conclusion this operation has to be applied cor-
rectly among the clauses, varying the order in which it is applied may
lead to proofs exponentially larger than others. The complexity in res-
olution process is the reason why efficient algorithms with advanced
heuristics are needed to get an approach for solving a formula.

2.2 Conflict Driven Clause Learning

There can be found a great deal of practical applications where SAT-
solvers are applied e.g. cryptography, bio-informatics, schedule plan-
ning and many others [2]. This could be said it is mainly because of the

6 CHAPTER 2. BACKGROUND

good performance of Conflict Driven Clause Learning (CDCL) solvers.
CDCL is the name given to the structure for the solving algorithm that
most modern SAT solvers are using.

CDCL structure was inspired by DPLL (Davis–Putnam–Logemann–Loveland)
[3, 4], a backtracking search algorithm from 1960s. Although CDCL
has many new features introduced, it still maintains the search struc-
ture in DPLL. For this reason in the following subsection (2.2.1) there
is explained some background about DPLL in order to get a better un-
derstanding of the modern algorithm.

2.2.1 DPLL

The main idea of DPLL is assigning values to the literals appearing in
the formula, keeping track of these assignments. Then, when a conflict
is found, act accordingly. To understand the DPLL algorithm it is eas-
ier to talk about its stages separately, these are also repeated in CDCL.
There are 4 stages in the algorithm [5]:

- Unit Propagation: the algorithm searches for all clauses in which
there is only one literal without value assigned and all other liter-
als in the clause, if any, falsified by the assignment. In order to get
a valid model, these literals have to be set to true, otherwise we
would have falsified clauses. Therefore, the corresponding val-
ues are assigned to each variable in order to satisfy the clauses.

- Conflict: this happens when the actual assignation of Boolean
values to variables gives a contradiction in the formula and hence
its evaluation with respect to the current assignment is false.

- Decision: this stage comes when there is no more assignments
to do in unit propagation and no conflict has appeared. Then an
unassigned variable is picked and a value is assigned to it. The
method how to pick the next variable and which value to assign
(True or False) depends on the heuristics used in the algorithm.
We will call this variable decision variable.

- Backtrack: it is the stage performed when a conflict is found.
Here it is important to notice that it is different a value assigned
to a variable in unit propagation (if we assigned the opposite
value to the variable it would give conflict, cannot be flipped)
than a value assigned in a decision. The backtracking consists

CHAPTER 2. BACKGROUND 7

in removing the value assigned to the variables in reverse order
until a decision variable is found. Then the value of the decision
variable is flipped.

The Davis–Putnam–Logemann–Loveland algorithm starts with Unit
Propagation, propagating literals that are alone in a clause (as no val-
ues will be yet assigned). After each propagation the assignation database
will be updated and each of them may produce more propagations as
consequence. When there are no more propagations to perform and no
conflicts are found, DPLL makes a decision. A variable with no value
assigned previously is chosen and a value is given to it, this is marked
as decision variable. After this, unit propagation takes place again as
there may be some literals to propagate, and so on.

Whenever a false clause is detected in Unit Propagation this pro-
cess stops and starts the backtrack. As it was already explained be-
fore, the algorithm backtracks until the last decision variable. The vari-
able is unmarked as decision variable and it is assigned the opposite
Boolean value to the one it had. After that, the execution follows with
unit propagation.

Finally, the algorithm can stop in two cases. First case is in the
decision step there are no unassigned variables left, then all variables
are assigned which means a model to the formula is found. This is
the case when DPLL returns SATISFIABLE. The opposite case is when
the backtracking undoes all assignments and no decision variable is
found, then UNSATISFIABLE is returned [6].

Example of DPLL execution

We will represent the trail of assignments as a string of literals; if in
this string the literal var appears means that false Boolean value is
assigned to var, being var any variable. Otherwise if what appears in
the string is just var, the value assigned would be true. The decision
variables will be shown with the upper-index vard. In this case, we
will say that var was a decision variable, and its value is false. Note
that literals not having this upper-index attached will be propagations.

Let us consider a formula (2.3) formed by the variables u, v, x:

(u ∨ v) ∧ (v ∨ x) ∧ (x ∨ u) ∧ (u ∨ x) (2.3)

The process depends totally on the order in which the variables are
picked, but let us fix that to u, v, x. Then the execution would be the

8 CHAPTER 2. BACKGROUND

following:

ud −→ decision (2.4)
udx −→ propagation (x ∨ u) (2.5)
udx −→ conflict (u ∨ x) (2.6)
u −→ backtrack (2.7)
u v −→ propagation (u ∨ v) (2.8)
u v x −→ propagation (v ∨ x) (2.9)
u v x −→ conflict (x ∨ u) (2.10)

In the last conflict (2.10) there is no branching decision to back-
track so that the algorithm finishes its execution returning UNSATIS-
FIABLE, hence the formula has no model that satisfies it.

2.2.2 Organization of CDCL Solvers

The CDCL scheme was introduced in the mid-90s and with it many
new features were introduced and the combination of them give the
good performance these SAT solvers. In general terms, the most im-
portant techniques found in CDCL SAT solvers a part from the DPLL
structure are the following [2]:

- Unit Propagation optimizations for speeding this process.

- Conflict analysis able of generating new clauses describing con-
flicts, the aim of this is avoiding to explore areas in the search
that lead to a conflict that was already seen.

- Backjump, the difference with backtrack in DPLL is that this back-
jump can be to any previous decision level, not necessarily the
one before the current when the conflict arises.

- Use of lazy data structures for the representation of formulas [2,
6, 7, 8].

- Better heuristics for choosing next decision variable.

- Restarting the search often. It is possible that eventually the
search goes very deep in the search tree, if the path leads to con-
flicts it may take a long time in backjumpings until the solver

CHAPTER 2. BACKGROUND 9

gets back into good tracks. To avoid this behavior in the solver,
restarts in the search are placed often [7, 9, 10]. With each restart
the trail of assignments is all erased, but learnt clauses stay in the
clause database.

Additional techniques can be found in CDCL solvers depending on
the implementation, this may include the different implementations
of the lazy data structures, also erasing unused learnt clauses periodi-
cally or the organization of unit propagations. For the purposes of this
project we will only focus on Conflict Analysis + Backjumping and
Unit Propagation as main characteristics of CDCL.

As it was mentioned before the structure of CDCL is based on the
DPLL with the integration of these features. There can also be seen the
stages of decision, unit propagation, conflict and backjumb (which
was called backtrack in DPLL). The pseudo-code is shown in Algo-
rithm 2.1 [11]. There are some functions which will be further ex-
plained below:

Algorithm 2.1 CDCL Algorithm [11]

1: procedure SEARCH

2: while true do
3: while propagate_gives_conflict() do
4: if decision_level == 0 then return UNSAT
5: else analyze_conflict()
6: restart_if_applicable()
7: remove_lemmas_if_applicable()
8: if !decide() then return SAT

- propagate_gives_conflict(): This function performs the unit prop-
agation and if a conflict is found during the process, it stops and
returns true, false is returned otherwise.

- decision_level: This represents the count of decisions taken. At
each decision level only one decision is performed, this may trig-
ger some propagations and these are also associated with that
level. If its value is zero no decisions are taken yet. If we find a
conflict in the initial decision level there is no model that satisfies
the current formula because there is no possible backtrack point.

10 CHAPTER 2. BACKGROUND

- analyze_conflict(): This function analyses the conflict. This func-
tion generates a new clause that explains the conflict and avoids
to explore it again, this clause is added to the clause database.
More information in section 2.2.3.

- restart_if_applicable(): According to some predefined parame-
ters a frequency of restart is fixed. Periodically a restart of the
search will be applied. This function evaluates the parameters
and if it is time for a restart it is applied. This avoids too long
dead-ends for solver.

- remove_lemmas_if_applicable(): As mentioned before one of the
possible features in CDCL is learnt clauses erasure. There are
also some parameters that define how often to do it, and how
many of them will be erased. In this function these parameters
are checked and if it is time, the predefined amount of clauses is
erased. Notice that erasures are always from learnt, never from
original clauses. It is also important to notice that clauses that are
currently reasons for propagated literals in the trail are locked
and cannot be erased.

- decide(): Applies the heuristics to find an unassigned variable,
decide its Boolean value and this is added to the trail.

Although Algorithm 2.1 is the main scheme of CDCL, in each dif-
ferent implementation of the algorithm the functions defined above
may differ, e.g. using different heuristics or data structures. These
heuristics and implementations of the data structures may make a big
difference between versions of the solver.

2.2.3 Clause Learning

CDCL solvers have several new techniques and rules that make the
difference with DPLL solvers, but the most important, which gives
the name to the Conflict Driven Clause Learning method is learning
clauses from conflicts. CDCL solvers are capable of extracting a clause
that explains the conflict in order avoid exploring the same conflict
again in future search. Once a conflict is found resolution is applied to
obtain the clause to learn. The clause learnt needs to contain only one
literal from the current decision level so that when the backjump is per-
formed it triggers unit propagation and we assure that same conflict

CHAPTER 2. BACKGROUND 11

does not happen again. These clauses that result form conflict analysis
that only contain one literal from the current conflicting decision level
are called Unique Implication Point (UIP).

Note that there can be more than one UIP found in the resolution
process from the conflict analysis. In this case, they will be sorted re-
lated in the order in which they are found in the resolution process,
and the first on the sequence will be the clause to learn. This is called
First UIP or 1UIP, the authors of [12] note that gives the best results in
CNF-based solvers.

The 1UIP, which is the clause that will be learnt, also determines
the level to which backjump. Among the decision levels of all literals
in the 1UIP clause, the backjumping level is the biggest that is not the
conflicting level. Once the clause is learned, all literals in the trail as-
serted later than the backjumping level are erased, so that they become
unassigned.

Example of Clause Learning

Let us consider the formula 2.11:

(u ∨ v ∨ y)∧
(u ∨ v ∨ x)∧
(u ∨ v ∨ x)∧
(u ∨ v ∨ x)∧
(u ∨ v ∨ x)∧
(a ∨ y)

(2.11)

Let us consider that the order in which the variables are picked for
decision is u, a, v, y, x and that the decision will set first the variables to
true. The decision level will be labelled as DLx being x the level. The
execution of CDCL goes as follows:

12 CHAPTER 2. BACKGROUND

DL1 ud −→ decision (2.12)
DL2 udad −→ decision (2.13)
DL1 udadvd −→ decision (2.14)
DL3 udadvdy −→ propagation (u ∨ v ∨ y) (2.15)
DL3 udadvdyx −→ propagation (u ∨ v ∨ x) (2.16)
DL3 udadvdyx −→ conflict (u ∨ v ∨ x) (2.17)

Now a conflict has been found, so conflict analysis is going to be
applied to get the clause to learn and also the level to which backjump:

u ∨ v ∨ x u ∨ v ∨ x
u ∨ v

(2.18)

Resolution 2.18 is applied between the conflict clause 2.17 and the
one that is the reason for the previous propagation 2.16. In this case a
UIP is immediately found and since it is the first resolution step it is a
1UIP. The learnt clause will be u ∨ v. It is in fact a UIP because it only
contains one variable decided in the current decision level, which is v.
As mentioned the backjump will be until the biggest decision level of
the variables in the clause which is not the conflicting level. That is
decision level 1.

It is possible that in the first resolution step the result clause is not a
UIP, then resolution will be applied again between the clause obtained
and the previous propagation reason, in this case would be 2.15.

2.2.4 Unit Propagation: the two watched literal scheme

Statistically what solvers spend most time doing is unit propagation,
approximately #propagations/#decisions = 323 in state-of-the-art CDCL
solvers. Hence, it is a matter of fact that a good implementation of unit
propagation is an important factor for the efficiency in SAT solvers. In
this section the watching literal scheme for unit propagation will be
introduced. This scheme is widely used in modern SAT solving.

When a value is assigned to a variable all clauses in which it is
present could become unit so the solver should be aware of that. Vis-
iting all clauses is not an efficient implementation. The watched literal
scheme keeps track only of two pointers per clause. In this method
at the beginning the first two positions of each clause are watched,
namely the pointers.

CHAPTER 2. BACKGROUND 13

X1 X2 X3 X4 X5

As long as, this two watched literals are not falsified there is no
need to visit this clause. When one of them is falsified, another not-
falsified literal in the clause is searched and this becomes the new
watch (keeping the old not-falsified and the new).

X1 X2 X3 X4 X5

X1 X2 X3 X4 X5

When one of the literals is falsified and there is no other not-falsified
literal in the clause to pick as watch, propagate the other one.

X1 X2 X3 X4 X5

X1 X2 X3 X4 X5

X1 X2 X3 X4 X5

When a watched literal is satisfied then the other literal does not
matter anymore because the clause is satisfied.

X1 X2 X3 X4 X5

If another a satisfied literal is found, that becomes watched.

X1 X2 X3 X4 X5

X1 X2 X3 X4 X5

With this scheme the solver only needs to keep track of two literals
per clause which represent unit propagation or not in that clause and
over which literal. The most part of the computational time of CDCL
solvers they are performing unit propagation, efficiency in this stage
is very important.

14 CHAPTER 2. BACKGROUND

2.3 The Pseudo-Boolean approach

As it was introduced before, there exists several representations for
expressing a Boolean formula. In this section it will be introduced the
Pseudo-Boolean (PB) interpretation and how the CDCL scheme can be
applied to it.

An ordinary SAT instance is defined as a conjunction of clauses,
which are formed by the disjunction of literals, as it was introduced
in the section 2.1. Let xi be a Boolean variable and l = xi or l = xi
be a literal. Then a clause is of the form C = (l1 ∨ l2 ∨ · · · ∨ lk) and
finally a the SAT instance expressed in clausal form can be defined as
F = C1 ∧ C2 ∧ · · · ∧ Cm.

For the Pseudo-Boolean interperetation, the representation of Boolean
formula in clauses is redefined. In this case the SAT represented is cod-
ified as inequalities of sums of weighted Boolean variables [13], which
may also be referred as Linear Pseudo-Boolean (LPB) constraints.

Let us consider x1, · · · , xn are Boolean variables and c1 · · · cn are in-
teger positive coefficients. The SAT instance is a set of m inequalities
C1, · · · , Cm. The right-hand side of the inequalities is an integer and it
is often referred as degree. Where each inequality is of the form

Cj =
∑
i

ci · li ≥ w, a, w ∈ Z, li ∈ {xi, xi}, xi = (1− xi)

Typically, the constraints may have coefficients with real values, for
the scope of this thesis, all coefficients are considered integer-valued as
it is assumed in [14].

For the formulas expressed in this thesis we will also make the con-
vention to have all coefficients with positive value, as well as, we will
also use "≥" as only inequality symbol. For instance given the inequal-
ity −5 · x + 3 · y ≤ 1, we can transform the inequality in the following
way so that we get the desired format (note that for LPB constraints
x = 1− x):

−5 · x+ 3 · y ≤ 1⇔ +5 · x− 3 · y ≥ −1⇔ +5 · x− 3 · (1− y) ≥ −1⇔

+5 · x+ 4 · y ≥ −1 + 3⇔ +5 · x+ 4y ≥ 2

The SAT problem in this case is the same, finding an assignment
that satisfies all inequalities or otherwise proving it is UNSAT. The

CHAPTER 2. BACKGROUND 15

SAT instance expressed as LPB constraints is much more powerful in
terms of representation, in fact, the number of CNF clauses required
for expressing the LPB constraints is prohibitively large [14]. This al-
lows us to compactly describe problems, note that given a LPB for-
mula it may take an exponential number of CNF clauses to express the
same problem. LPB problems can be solved by generic integer linear
programming (ILP) solvers. But this is a more mathematical approach
rather than Boolean, getting a wider search space due to not using spe-
cialized cutting planes methods.

As it is stated in [13] there are three keys to the modern SAT solvers
performance: 1) fast Boolean constraing propagation (BCP) based on
effective filtering of irrelevant parts of the problem structure; 2) learn-
ing of compact facts representing the large infeasible parts of the solu-
tion space; 3) fast selection of decision variables.

In terms of CDCL clausal solvers, the previous list can be mapped
as follows: 1) corresponds to Unit Propagation; 2) Clause Learning; 3)
decision heuristic for picking the next literal to be decided. In this sec-
tion there will be a review of how can 1 and 2 (sections 2.3.3 and 2.3.4)
be performed changing the definition of the solver representation to
LPB. For the scope of this thesis 3 will be considered independent from
the representation.

The main operation on CNF clauses that leads to the proof through-
out the SAT solver execution is resolution (2.1.1) and the analog resolu-
tion step for LPB inequalities is called cutting planes and it is explained
in the following sub-section. Note that this is a very characteristic op-
eration of solvers based on LPB inequalities, that is why these solvers
may be often referred as PB solvers based on cutting planes.

2.3.1 Cutting Planes

Cutting planes is the corresponding LPB operation to the CNF resolu-
tion. It consists in an addition of two constraints possibly multiplied
by a coefficient, namely a non-negative linear combination of them. It
can also be referred as clashing addition.

Consider the constraints
∑
ci · li ≥ w and

∑
c′i · li ≥ w′ and the

integer coefficients λ1 and λ2, the cutting planes operation is shown as

16 CHAPTER 2. BACKGROUND

follows:

λ1 · (
∑

ci · li ≥ w)

λ2 · (
∑

c′i · li ≥ w′)

λ1 · (
∑
ci · li) + λ2 · (

∑
c′i · li) ≥ λ1 · w + λ2 · w′

In LPB there exists many specific operations among the constraints,
a brief introduction to some of these operations can be found in the
next sub-section.

2.3.2 Operations on LPB constraints

Division

This can be applied when all coefficients have a gcd greater than 1.
Then they are all divided, consider the gcd is now a:∑

(a · ci) · li ≥ w∑
ci · li ≥ dw/ae

Coefficient Rounding

Because of the Boolean nature of the variables the coefficients may be
rounded up, note that dxe+ dye ≥ dx+ ye.∑

ci · li ≥ w∑
dcie · li ≥ dwe

Saturation

Saturation changes a coefficient of a constraint to w if the coefficient’s
value is greater than it, note that this operation is correct due to the
Boolean nature of the constraints. It can be expressed as follows:∑

ci · li ≥ w∑
min(ci, w) · li ≥ w

Weakening

This operation weakens the coefficients on the left-hand side of the in-
equality and reduces accordingly the the degree.∑

i 6=j ci · li + cj · lj ≥ w∑
i 6=j ci · li ≥ w − cj

CHAPTER 2. BACKGROUND 17

2.3.3 Boolean Constraint Propagation

This part is analog to the unit propagation in CNF clauses, here it is
presented an adaptation for LPB constraints. For CNF it suffices to
keep track of just two literals of each clause, as it is shown in 2.2.4.
This method is based on the rule that whenever a clause has all its
literals falsified but one, this has to be set to true in order to satisfy the
clause.

For the Pseudo-Boolean approach the idea is focused on the fact
that for LPB constraints whenever the falsification of one literal would
falsify the whole clause, this needs to be set to true. This happens
when the coefficient of such literal is greater than the maximum possible
amount by which a constraint can be over-satisfied. This is called slack and
it is computed with the coefficients whose literal has no value assigned
it is or set to true and the degree of the constraint, 2.19 shows how
the slack is computed. Let us consider S as the set of assignments to
variables at the current moment of computing the slack.

slack =
∑
i:li /∈S

ci − w (2.19)

An unassigned literal needs to be propagated when its coefficient
is greater than the slack. The slack represents how much over-satisfied
can be a constraint respect its degree. This takes into account all co-
efficients whose literal is still unassigned or is assigned to true. This
represents the maximum value that can get the left side of the inequal-
ity. If one literal lk has a coefficient such that slack − ck < 0 then it has
to be implied to true. The proof of this is given in 2.20.

slack − ck < 0⇔∑
i:li /∈S

ci − w − ck < 0⇔

∑
i:li /∈S∧i 6=k

ci − w < 0⇔

∑
i 6=k

ci · li − w < 0⇔∑
i 6=k

ci · li < w ⇔

constraint falsified

(2.20)

18 CHAPTER 2. BACKGROUND

It is important to note that the step∑
i:li /∈S∧i 6=k

ci − w < 0⇔
∑
i 6=k

ci · li − w < 0

is given because the coefficients not taking part in the slack are the
ones assigned to false, which are also the ones not taking place in the
sum, namely not adding value.

In conclusion, the literals which need to be watched are the ones
whose coefficient is greater than the slack.

2.3.4 Pseudo-Boolean Learning

This subsection shows how clause learning from conflict analysis can
be accomplished for a Pseudo-Boolean solver based on cutting planes.

For a clausal CDCL solver this process is based on applying reso-
lution among the conflicting clause and the reason clause for the last
propagated literal. If the result of this operation is not a UIP resolution
this step is performed once again with the resulting clause and the rea-
son clause of the previous propagated literal and so on, until a UIP is
found. Once a UIP is found, by definition it only contains exactly one
literal propagated in the conflicting decision level, which guarantees
that will trigger a propagation in a previous decision level. Following
the same pattern we need to ensure the following two premises for the
PB clause learnt:

- The learnt PB clause must guarantee that there exists a decision
level to which backjump, in which one or more propagations will
be implied, according to the variable assignment.

- The learnt PB clause has to remain in conflict with the variable
assignment, ensuring a backjump form the conflicting decision
level.

A clause fulfilling the first property will be referred as assertive. The
second property it is not mentioned with regular clauses since the op-
posite never occurs, hence it does not need to be checked for them.
But for PB constraints it is possible that after applying the analog of
resolution step with PB, the result is no longer in conflict with respect
to the trail of variable assignments.

Let us consider the trail of assignments {x, y}, the conflict clause
2.21 and the reason clause for the last assignment in the trail 2.22. Note

CHAPTER 2. BACKGROUND 19

that to see if a constraint is falsified under the current trail it is only
necessary compute its slack and see that it is negative. For instance
the slack of the constraint 2.21 is −2, therefore it is conflicting with the
current assignment.

1 · x+ 3 · y + 3 · z ≥ 5 (2.21)

3 · y + 1 · z ≥ 2 (2.22)

According to conflict analysis resolution (clashing addition for PB) is
applied to these two clauses:

1 · x+ 3 · y + 3 · z ≥ 5

3 · y + 1 · z ≥ 2

1 · x+ 3 · y − 3 · y + 3 · z + 1 · z ≥ 5 + 2− 3⇔ 1 · x+ 4 · z ≥ 4

Note that as it was introduced at the beginning of this section for PB
constraints y = 1− y. The resulting constraint of the resolution step is
1 · x+ 4 · z ≥ 4 which is no longer in conflict with the assignation trail,
since its slack has value 0. The resulting constraint does not show the
second property.

The slack of a constraint shows if it is falsified or not, namely a neg-
ative slack determines that a constraint is in conflict with the trail. In
order to maintain the second property when performing the conflict
analysis it is necessary to keep the learned clause with negative slack.
In the previous example we added the conflicting clause, which had
slack−2, with the reason clause, which has slack 2; the resulting clause
had slack 0. When resolving, the addition with a clause with positive
slack will increase the slack of the conflicting clause, eventually mak-
ing it positive or zero and therefore losing the conflict information.

Nevertheless, this can be avoided by weakening the reason clause
until its slack is lower than the absolute value of the conflict clause’s
slack. The weakening operation can be applied to slack contributing
literals until the clashing addition can be applied, this is shown in Al-
gorithm 2.2.

20 CHAPTER 2. BACKGROUND

Algorithm 2.2 Resolve for PB constraints [15]

1: procedure RESOLVE(Cconfl, l0, Creason, S)
2: while true do
3: C ← ClashingAddition(Cconfl, l0, Creason);

4: if slack(C, S) < 0 then return saturation(C);
5: l∗ ← any literal occurring in Creason \ {l0} such that ¬l∗ /∈ S;

6: Creason ← saturation(weaken(Creason, l
∗))

In the previous example the variable z would be picked as l∗ since
it is the only one not falsified (and it is not the variable which we want
to resolve). After applying weakening over z the result is:

3 · y ≥ 1

Then saturation is applied:

1 · y ≥ 1 (2.23)

Then considering the clause 2.23 the resolve step is as follows:

1 · x+ 3 · y + 3 · z ≥ 5

3 · (1 · y ≥ 1)

1 · x+ 3 · z ≥ 5

Note that for the clashing addition accomplishes its purpose (resolve
over y) both constraints need to have the same coefficient for oppo-
site literals. This is ensured by λ1, λ2 in the clashing addition. In this
example λ1 = 1 and λ2 = 3.

Chapter 3

Methodology

In this chapter the problem statement is described in depth, explaining
further details according to the concepts introduced in the Background
chapter 2. In addition, it is described the methodology used in order
to tackle with the problem stated.

3.1 The Problem

The great performance of state-of-the-art SAT solvers is mostly due to
the CDCL scheme. Its capacity of learning from errors, the techniques
for fast propagation of literals, in addition to some heuristics, make
the solvers being able to deal with formulas which were intractable
with previous implementations. Nowadays SAT solving has become a
very used tool for problem solving and optimization, with many prac-
tical applications e.g. Model Checking (hardware / software verifica-
tion), cryptography, schedule planning, resource planning, combina-
torial design and many others.

However, although state-of-the-art SAT solvers are able to solve
highly complex and long formulas, they spend a great amount of time
or they do not finish at all with some particular compact problems.
One example of this is the Pigeonhole Principle [1], which will be further
described in this subsection 3.1.1. Another drawback of modern SAT
solvers comes from being (most of them) based on CNF representation.
The capacity of expression of Conjunctive Normal Form is very low
compared to other different representations for SAT instances, such
as Linear Pseudo-Boolean (LPB) inequalities. LPB is much more ex-
pressive than CNF, in fact, the number of CNF clauses required for

21

22 CHAPTER 3. METHODOLOGY

expressing a LPB instance is exponential.
In order clearly represent the main topics, the problem formula-

tion is structured in the following subsections. The first two, 3.1.1
The Pigeonhole Principle and 3.1.2 The AtMost-k encoding show two
examples of the main drawbacks that can be found in clausal SAT
solvers, respectively, a simple problem that becomes intractable for
many solvers and an encoding of formulas that require extremely large
number of clauses. Then the subsection 3.1.3 The Focus explains where
the main study of this thesis is settled and finally 3.1.4 The Approach
describes how the problem is going to be undertaken.

3.1.1 The Pigeonhole Principle

The Pigeonhole Principle states that given a number n of pigeons and
a number m of holes, having n > m, it is impossible to place each
pigeon in one hole and not have more than one pigeon per hole. In
SAT terminology, this means that placing each pigeon in one hole and
having only one pigeon per hole is UNSATISFIABLE.

This problem can easily be translated into both CNF and LPB. Let
us consider the variable xi,h, which expresses if pigeon i is placed in
hole h, with the truth value assigned to it.

CNF representation:

xi,1 ∨ · · · ∨ xi,n,∀i (3.1)

xi,h ∨ xj,h,∀h,∀i 6= j (3.2)

The clauses 3.1 represent that every pigeon i has to be in at least
one hole h. And the clauses 3.2 represent that two pigeons cannot
be placed into the same hole. We could add some clauses restricting
physics laws, such as, that one pigeon cannot be placed in two holes
at a time, but since we want to keep it simple and it will be restricting
a part of the search space that is already unsatisfiable we leave them
apart.

LPB representation: ∑
h=1,··· ,m

xi,h ≥ 1,∀i (3.3)

CHAPTER 3. METHODOLOGY 23

∑
i=1,··· ,n

xi,h ≤ 1, ∀h⇔
∑

i=1,··· ,n

−xi,h ≥ −1,∀h⇔∑
i=1,··· ,n

−(1− xi,h) ≥ −1,∀h⇔
∑

i=1,··· ,n

xi,h ≥ n− 1,∀h
(3.4)

The representation for the LPB constraints it is analog to the CNF
the encoding, 3.3 represents that every pigeon has to be in at least one
hole. Whereas the constraint 3.4 represents that in each hole can be
placed at most 1 pigeon. The first inequality of the derivation in 3.4
is the most intuitive. However, the derivation to get to the last part
is done because we will use the convention of having all coefficients
with positive value and only the "≥" as inequality symbol. Note that
for PB x = 1− x.

This problem has clearly a compact number of formulas as input.
But for the clausal CNF approach, solved by resolution, having m =

n−1 it was proven by [1] that it takes an exponential length in terms of
resolution steps to solve it. Concretely, exp(Ω(m)), beingm the number
of holes. While for the LPB approach it becomes a much more shorter
process, by its construction of the constraints.

This kind of reasonably short formulas that take an exponential
time to solve is one of the main drawbacks in SAT solving. Its main
problem comes from a bad encoding of cardinality constraints. It will
be further explained in 3.2.4.

3.1.2 The AtMost-k encoding

Besides to this low efficiency in solving bad cardinality constraints en-
codings, as introduced above. LPB is also more compact in terms of
knowledge representation, requiring a prohibitively large number of
CNF clauses for representing LPB constraints [14]. An example of
this can be shown with the representation of the well-known encod-
ing AtMost-k. This states that at most k of certain variables can be true.
The encoding in LPB can be achieved with one constraint:

x1+· · ·+xn ≤ k ⇔ −(1−x1)+· · ·+−(1−xn) ≥ −k ⇔ x1+· · ·+xn ≥ n−k

Note that also in this encoding we follow the convention of having
only positive coefficients and "≥" as the only inequality symbol.

24 CHAPTER 3. METHODOLOGY

However, the encoding for CNF is gets larger in terms of clauses,
taking

(
n

k+1

)
clauses to encode it, with n being the number of variables.

It needs to be created a clause for each possible combination of k + 1

negated elements of n (without repetitions). For instance, if k = 2, n =

5:
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x4
x1 ∨ x2 ∨ x5
x1 ∨ x3 ∨ x4
x1 ∨ x3 ∨ x5
x1 ∨ x4 ∨ x5
x2 ∨ x3 ∨ x4
x2 ∨ x3 ∨ x5
x2 ∨ x4 ∨ x5
x3 ∨ x4 ∨ x5

And the number of clauses required for the encoding raises at high
speed, for n = 50, k = 2 we need 19, 600 clauses and for n = 50, k =

19 #clauses = 47, 129, 212, 243, 960.

3.1.3 The Focus

Taking into account these facts in addition to the different operations
that can be applied to PB constraints (2.3.2) together with the CDCL
scheme applied to PB solvers (2.3), it seems reasonable to bet for PB
solvers in the race for efficiency. However, CNF clausal CDCL solvers
still outperform PB solvers in terms of execution time. One possible
reason is that the advantages of these solvers do not overtake the over-
head related with saving and managing the coefficients of the inequal-
ities.

Nevertheless, PB solving and cutting planes resolution are very
complex and there is much research to be done related to LPB. Fur-
ther research in the field of PB solvers based on cutting planes could
possibly lead to techniques that have not been implemented yet.

CHAPTER 3. METHODOLOGY 25

3.1.4 The Approach

The intention of this thesis is to do research about the CDCL scheme
and the adaptation of it to PB solvers (2). Then study different topics
regarding PB solving and cutting planes that could be improved and
eventually develop some techniques that could speed up the execution
of a PB solver. And finally get involved with some actual PB solver and
implement those techniques with the aim to come to a better solution
in terms of solving time.

In the following sections of this chapter there is the introduction
and explanation of the different topics under study and description of
which techniques could be applied, a description of the solver used
as target for the implementation and finally the implementation of the
studied techniques.

3.2 Pseudo-Boolean topics under study

A Pseudo-Boolean solver implemented on top of cutting planes, re-
quires to be based on an adaptation of the CDCL scheme to be com-
petitive with the modern SAT solvers. But Pseudo-Boolean solving is
a complex field and there are many questions to be answered and as-
pects in which more research is needed. Fully understanding some
of this questions could lead to a more efficient implementation of a
cutting planes CDCL solver. In this section some of the topics under
study of PB cutting planes SAT solving are going to be reviewed. Fi-
nally, at the end of this chapter an implementation involving some of
the following questions will be proposed.

3.2.1 Constraint Propagation

SAT solvers spend most of the computational time performing Boolean
Constraint Propagation, hence the efficiency in this process plays an
important role in the SAT solver performance. For solvers based on
resolution, there exists a really efficient implementation in terms of
both memory usage and access time, the two-watched literal scheme
(2.2.4). It is based on the idea that, only two literals per clause need to
be watched to know if a constraint is propagating or not.

However, for solvers based on cutting planes it is not that easy.
The PB approach needs to keep track of the literals whose coefficient is

26 CHAPTER 3. METHODOLOGY

greater than the slack as explained in 2.3.3. The slack represents how
much a constraint can be over-satisfied. In other words if all remaining
unset literals where set to true, the sum on the left side of the inequality
would be greater than the weight by the value of the slack. Therefore,
the slack represents also how much weight can still be negated to keep
the constraint satisfied. Note that if a literal whose coefficient is greater
than the slack is falsified, the whole constraint is falsified.

The watching literals scheme for PB solvers is not nearly as efficient
as the one for clausal solvers. In fact, some experimental results, like
the ones in [13], determine that the performance is only good when the
value of the weight is low in comparison to the coefficients in the left
part of the inequality. Otherwise it is easy to end up watching a lot of
literals, maybe even all of them.

Consequently, we can say PB solvers do not have a very efficient
implementation of BCP in comparison with clausal solvers and this
is one of the keys for the good results of CDCL solvers. Finding an
efficient implementation would be crucial for boosting the efficiency
of PB cutting planes SAT solvers.

Nevertheless, this is a very studied topic. Since research does not
seem to come to a conclusion for the best implementation of BCP in PB
solvers, for the scope of this project the implementation used will be
based on the idea showed in 2.3.3, as it is how the target solver (3.3) is
implemented.

3.2.2 Weakening criteria

In the section 2.3.4 was introduced how the clause learning could work
according to the CDCL scheme for a SAT solver based on cutting planes.
When applying the cutting planes step it can happen with PB con-
straints that the resulting constraint has positive slack, not being in
conflict with the trail anymore. This can be avoided by following the
algorithm 2.2. The main idea is to systematically apply weakening and
saturation to the reason until the new clause’s slack is negative. This
will lower the value of the slack for the constraint and eventually get
a negative slack.

In order to make it work the chosen literals to weaken in the clause
have to be slack contributing, namely not being assigned to false. So
that its removal from the constraint can reduce the value of the slack.

Although it has been proved to work, there is no clue of which is

CHAPTER 3. METHODOLOGY 27

the best way to implement it. There is no knowledge about which
literal is better to be chosen when weakening, a part that it has to be
slack contributing.

3.2.3 Division

Division is a very powerful operation on LPB constraints. It is capable
of reducing the value of all coefficients, without loss of information,
when they have a GCD greater than 1.

An inefficient implementation of this operation during runtime could
take a lot of time. But one could imagine some efficient implemen-
tations to apply during conflict analysis so that the clauses get the
value of coefficients reduced, if possible, without losing information
expressed. Having lighter constraints (namely lower values of coeffi-
cients) could yield shorter resolutions of formulas.

3.2.4 Cardinality constraints detection

Constraints can sometimes be expressed in various different ways,
some of them may be more efficient than others when it comes to solv-
ing. An example of this can be found with the AtMost-k encoding that
was introduced in the subsection 3.1.2. The encoding showed for LPB
constraints is the easiest for both writing it and for the SAT solver to
solve it. But it can often happen that this is not the encoding we get in
the input formula.

Consider an input formula in CNF format encoding AtMost-k that
we want to translate to LPB constraints. It is easy to literally translate
the clauses so that we get a PB encoding that it is as inefficient as the
CNF encoding.

Let us consider the same example used above. Let us encode AtMost-
k for k = 2, n = 5 as follows:

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4
x1 ∨ x2 ∨ x5
x1 ∨ x3 ∨ x4
x1 ∨ x3 ∨ x5
x1 ∨ x4 ∨ x5

28 CHAPTER 3. METHODOLOGY

x2 ∨ x3 ∨ x4
x2 ∨ x3 ∨ x5
x2 ∨ x4 ∨ x5
x3 ∨ x4 ∨ x5

Whereas the LPB encoding the formula as showed in 3.1 for this exam-
ple is the following:

x1 + x2 + x3 + x4 + x5 ≥ 3

However one could translate the CNF clauses into LPB constraints and
get the following encoding:

x1 + x2 + x3 ≥ 1

x1 + x2 + x4 ≥ 1

x1 + x2 + x5 ≥ 1

x1 + x3 + x4 ≥ 1

x1 + x3 + x5 ≥ 1

x1 + x4 + x5 ≥ 1

x2 + x3 + x4 ≥ 1

x2 + x3 + x5 ≥ 1

x2 + x4 + x5 ≥ 1

x3 + x4 + x5 ≥ 1

This encoding for LPB constraints is as inefficient as the one showed
for CNF. The detection of this kind of bad encodings is called cardinal-
ity constraints detection and there are several methods for preprocessing
of the formula, before the execution of the solver. However, an effi-
cient implementation of this during runtime would make solvers able
to detect this bad encodings from the input formula as well as from
the constraints learned from conflict analysis.

3.3 The Solver

In this section it is presented the solver that is used as base for the
implementation.

CHAPTER 3. METHODOLOGY 29

3.3.1 CDCL-CuttingPlanes

The cdcl-cuttingplanes solver was developed by Jan Elffers [15] a PhD
student in the Theoretical Computer Science group (TCS) in KTH. The
solver was the best in the DEC-SMALLINT-LIN track of the Pseudo-
Boolean Evaluation 2016. It is a CDCL solver built on top of cutting
planes.

3.4 Implementing division

In the section 3.2 there is a review of some topics of PB SAT solving that
could be improved, some of them because they are not implemented
yet in these SAT solvers while others because its implementation could
be improved. In this section we propose an implementation of division
for the solver cdcl-cuttingplanes (3.3.1).

The idea is to implement this operation on the solver so that when
it is possible it is applied on a constraint in order to make it lighter
for the solver. The aim of this implementation is trying to redirect the
solver somehow to shorter solutions in terms of resolution steps (i.e.
cutting planes steps).

For applying division on a constraint we need to compute theGCD
of all the coefficients and then divide them by the value. For com-
puting the the GCD we will start with the first two coefficients and
compute the GCD of them, then we will compute the GCD of the
first result with the third coefficient and so on. Eventually, we will
get a 1 as result and that ends the computation process. Otherwise the
computation will end up finding a value by which all coefficients can
be integrally divided. The algorithm is structured as follows, where
coef and w are parameters passed by reference to the function which
respectively represent the array of coefficients and the weight of the
constraint:

30 CHAPTER 3. METHODOLOGY

Algorithm 3.1 Apply division to a constraint

1: procedure DIVISION(coef, w)
2: nCoefs ← coef .size()

3: if nCoefs ≤ 1 then return false
4: GCD ← coef [0]

5: for all i ∈ {1, · · · , nCoefs − 1} do
6: GCD ← gcd(GCD , coef [i])

7: if GCD == 1 then return false
8: for all i ∈ {0, · · · , nCoefs − 1} do
9: coefs [i] = coefs [i]/GCD

10: w = dw/GCDe
11: return true

There are many possible places throughout the CDCL scheme to
apply division. We are going to consider the following emplacements
for applying division:

- Learned clause: Apply the division operation at the end of the
conflict analysis procedure, to the clause that will be learnt.

- During conflict analysis: Apply the division operation during
conflict analysis, to each new clause appearing from cutting planes
resolution (Clashing Addition 2.3.1).

Both configurations will be tested and compared with the results of
executions without the division operation implemented.

In the cdcl-cuttingplanes solver there are various options for con-
figuring the execution. One of them involves rounding of the reason
when performing the cutting planes step. This option rounds the rea-
son in a way that it is divided by the coefficient to be resolved and then
rounded. This could reduce the effectivity of division. For this reason,
the experiments will be tested both with this rounding turned on and
off. By default this setting is enabled.

Consequently, it is decided to test and compare 4 different configu-
rations of division for the solver cdcl-cuttingplanes. All configurations
are described bellow and the name of each subsection will be the one
used to refer to them from now on. Note that the rounding of the rea-
son is enabled by default, so if nothing is said it means it is turned
on.

CHAPTER 3. METHODOLOGY 31

3.4.1 Original

This configuration corresponds to the solver as it was before the im-
plementation of division on it.

3.4.2 Div1

Here division is only applied to the learnt clause, namely not applied
during conflict analysis process.

3.4.3 Div2

Here the solver is configured to apply division to the learnt clause as
well as during the conflict analysis.

3.4.4 Div3

Finally, for this configuration we have same settings as in Div2 but
turning off the rounding of the reason setting.

3.5 Benchmarks

Several benchmarks have been used in order to systematically test the
performance of the different configurations of the implementation of
division in the solver. These benchmarks are grouped in three differ-
ent types of instances that codify three different problems about graph
theory. These problems are: finding a dominating set of a given size,
even colouring and finding a vertex cover of a given size. All of them are
detailed in the following subsections.

3.5.1 Dominating Set

A dominating set of a graph G = (V,E) is a subset of vertices V ′ ⊆ V

such that all vertices of the graph that are not in V ′ are adjacent to
at least one of its vertices. In figure 3.1 some dominating sets of the
graphs are highlighted in red.

32 CHAPTER 3. METHODOLOGY

Figure 3.1: Dominating sets highlighted in red.

In particular the benchmarks used where instances codifying the
dominating set problem for hexagonal grid graphs, an example of this
is shown in picture 3.2. But particularly where the picture finishes the
nodes are connected with the ones form opposite part in the picture,
having in fact a 3-dimensional graph like the one in figure 3.3.

Figure 3.2: Hexagonal grid graph.

Figure 3.3: 3-dimensional hexagonal grid.

This graphs are represented as shown in figure 3.4, so that there
is only needed two measures to define them, these are the height and
width in terms of vertices, this will be respectively represented with m
and n.

The size of the dominating set for the problems codified in the in-
stances is expressed in terms of thesem and nmeasures, |DS | = m·n/4.
It is important to notice that whenever this division has an integer as
result it is possible that the instance is satisfiable (only sometimes).

CHAPTER 3. METHODOLOGY 33

Note that dominating set will be the only type of benchmarks used
that has satisfiable instances, all others only contain unsatisfiable in-
stances.

Figure 3.4: Representation of the hexagonal grids.

3.5.2 Even Colouring

The even colouring problem is a particular case of the edge colouring
problem. The aim is to determine if given a graph G = (V,E) there
exists a 0/1 coloration of edges e ∈ E, such that all vertices v ∈ V have
the same amount of adjacent edges of each colour.

The benchmarks codify the even colouring problem for random
graphs.

Random Graphs

These graphs are randomly generated and they have two attributes
that define each of them. The total number of vertices which is named
n and the degree of each vertex, named deg.

There are two different values of degree among the instances: 4
and 6. For making instances with degree 4 unsatisfiable they all have
an even number of vertices and there is one of the edges which is split
into two inserting a vertex in the middle. For the instances with de-
gree 6, just having an odd number of vertices it suffices to make them
unsatisfiable.

3.5.3 Vertex Cover

A vertex cover of a graph G = (V,E) is a subset of vertices V ′ ⊆ V

such that, for all edges (u, v) ∈ E either u ∈ V ′ or v ∈ V ′ or both. In
figure 3.5 vertex covers of the graphs are highlighted in red.

34 CHAPTER 3. METHODOLOGY

Figure 3.5: Vertex covers highlighted in red.

In particular the benchmarks used are instances codifying the ver-
tex cover problem for regular grids. These are m × n size regular
grids. For these graphs the minimum possible size for a vertex cover
is m/2 · (n − 1) + m. Taking this into account the vertex cover size
searched in the benchmarks is smaller so that all instances are unsat-
isfiable. Three different sizes of vertex cover are found among the in-
stances. These are shown in table 3.1. For all families of instances (v1,
v2 and v3) they have all an odd n (width of the gird).

Table 3.1: Vertex cover sizes.

name Vertex Cover size
v1 m · bn/2c
v2 m · dn/2e − 1

v3 m · bn/2c − 1

Chapter 4

Results

In this chapter the results of the performance of the implementation
of division on cdcl-cuttingplanes are shown. As explained in in sec-
tion 3.4, 3 different configurations of the solver varying where divi-
sion operation is applied are tested. The experiments will be carried
out considering these 3 configurations plus the original solver imple-
mentation. Consequently, we have in total 4 different configurations
of the solver so each benchmark will be used 4 times. In this chapter
the names given to each configuration will be the same as in 3.4.

In the following sections the results for the different benchmarks
are presented. Further details of the benchmarks and its characteristics
are described in the section 3.5.

The results are divided in different families of instances, consid-
ering a family one of the three problems (i.e. dominating set, even
colouring or vertex cover) with a specific configuration. Each family
has a fixed value of m for dominating set and vertex cover and a fixed
value of deg in case of the even colouring. And for each family the in-
stances have an increasing n. The main idea is to observe the exponen-
tial growth respective to the value of n for each of the configurations
of the solver.

For each family the running times of the executions and the num-
ber of conflicts for each instance are plotted in order to visually display
the exponential growth. Then there is also a table showing the number
of divisions performed every 1000 conflicts for each of the configura-
tions of the solver in order to determine how often division is applied.
For further details about the runtimes in seconds and the number of
conflicts, in appendix A there are the tables showing the numbers for
each execution, note that the shorter running times are highlighted in
green.

35

36 CHAPTER 4. RESULTS

4.1 Dominating Set m = 6

10 20 30

0

200

400

600

value of n

ti
m

e
(s

)

Runtimes

original
div1
div2
div3

Figure 4.1: Comparison of runtimes for dominating set with m = 6.

10 20 30

0

2

4

6

8

·105

value of n

#c
on

fli
ct

s

Conflicts

original
div1
div2
div3

Figure 4.2: Comparison of conflicts for dominating set with m = 6.

CHAPTER 4. RESULTS 37

Table 4.1: Number of divisions for each 1000 conflicts for dominating
set with m = 6.

n #Divisions / 1000 Conflicts
div1 div2 div3

6 0.00 0.00 0.00
7 0.00 0.00 0.00
8 0.00 0.00 0.00
9 0.00 0.00 0.00

10 0.00 0.00 0.00
11 702.59 702.59 0.00
12 0.00 0.00 0.00
13 1.03 3.51 0.00
14 0.74 0.83 0.52
15 0.78 0.78 1.06
16 0.00 0.00 0.00
17 0.16 0.16 0.00
18 0.10 0.15 0.38
19 0.45 0.30 0.35
20 0.38 0.17 0.00
21 0.00 0.00 0.26
22 0.05 0.25 0.06
23 0.26 0.05 0.15
24 0.17 0.20 0.10
25 0.04 0.07 0.02
26 5.12 0.15 0.01
27 0.11 0.11 0.01
28 9.05 0.21 0.15
29 2.37 0.09 0.07
30 3.13 0.07 0.03
31 6.74 0.14 0.05

38 CHAPTER 4. RESULTS

4.2 Dominating Set m = 8

5 10 15 20

0

200

400

600

800

1,000

value of n

ti
m

e
(s

)

Runtimes

original
div1
div2
div3

Figure 4.3: Comparison of runtimes for dominating set with m = 8.

5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·106

value of n

#c
on

fli
ct

s

Conflicts

original
div1
div2
div3

Figure 4.4: Comparison of conflicts for dominating set with m = 8.

CHAPTER 4. RESULTS 39

Table 4.2: Number of divisions for each 1000 conflicts for dominating
set with m = 8.

n #Divisions / 1000 Conflicts
div1 div2 div3

6 0.00 0.00 0.00
7 0.00 0.00 0.00
8 0.00 0.00 0.00
9 0.73 1.09 0.00

10 0.00 0.00 0.00
11 0.00 0.00 0.00
12 0.00 0.00 0.38
13 0.10 0.10 0.00
14 0.13 0.20 0.00
15 9.15 0.17 0.03
16 7.40 0.07 0.21
17 0.03 0.06 0.04
18 0.79 0.03 0.00
19 0.08 0.11 0.00
20 0.02 0.22 0.04
21 2.18 0.05 0.09
22 1.18 0.05 0.02

40 CHAPTER 4. RESULTS

4.3 Even Colouring random deg = 4

0 50 100 150 200 250 300 350

0

200

400

value of n

ti
m

e
(s

)

Runtimes

original
div1
div2
div3

Figure 4.5: Comparison of runtimes for even colouring with deg = 4.

0 50 100 150 200 250 300 350

0

2

4

6

8
·105

value of n

#c
on

fli
ct

s

Conflicts

original
div1
div2
div3

Figure 4.6: Comparison of conflicts for even colouring with deg = 4.

CHAPTER 4. RESULTS 41

Table 4.3: Number of divisions for each 1000 conflicts for even colour-
ing with deg = 4.

n #Divisions / 1000 Conflicts
div1 div2 div3

10 44.44 68.18 68.18
20 20.76 46.81 51.72
30 11.97 18.79 44.58
40 18.00 57.57 7.11
50 3.27 4.82 3.04
60 8.29 8.26 10.26
70 81.29 65.90 1.57
80 2.07 2.07 14.65
90 71.45 133.04 2.77
100 50.05 15.32 7.29
110 122.30 24.83 3.42
150 76.66 25.63 1.59
200 1.61 4.78 0.54
250 1.13 12.66 0.25
300 39.00 1.89 0.11
350 3.84 4.07 0.32

42 CHAPTER 4. RESULTS

4.4 Even Colouring random deg = 6

0 50 100 150 200 250 300 350 400

0

200

400

value of n

ti
m

e
(s

)

Runtimes

original
div1
div2
div3

Figure 4.7: Comparison of runtimes for even colouring with deg = 6.

0 50 100 150 200 250 300 350 400

0

1

2

3

4

5

·105

value of n

#c
on

fli
ct

s

Conflicts

original
div1
div2
div3

Figure 4.8: Comparison of conflicts for even colouring with deg = 6.

CHAPTER 4. RESULTS 43

Table 4.4: Number of divisions for each 1000 conflicts for even colour-
ing with deg = 6.

n #Divisions / 1000 Conflicts
11 25.00 51.28 51.28
21 9.06 62.54 24.72
31 30.53 22.02 4.36
41 34.79 58.40 8.45
51 79.28 56.47 3.94
61 203.88 12.39 1.26
71 251.96 243.82 6.38
81 42.40 26.25 2.23
91 6.06 9.51 1.75
101 52.47 8.60 0.12
111 96.68 30.27 1.56
151 7.63 25.55 1.84
201 5.52 7.90 0.54
251 35.64 0.65 0.55
301 3.17 9.18 0.62
351 7.73 3.32 0.80
401 6.61 4.96 0.11

44 CHAPTER 4. RESULTS

4.5 Vertex Cover v1 m = 10

10 20 30 40 50

0

200

400

600

800

1,000

value of n

ti
m

e
(s

)

Runtimes

original
div1
div2
div3

Figure 4.9: Comparison of runtimes for vertex cover v1 with m = 10.

10 20 30 40 50

0

2

4

6

8

·105

value of n

#c
on

fli
ct

s

Conflicts

original
div1
div2
div3

Figure 4.10: Comparison of conflicts for vertex cover v1 with m = 10.

CHAPTER 4. RESULTS 45

Table 4.5: Number of divisions for each 1000 conflicts for vertex cover
v1 with m = 10.

n #Divisions / 1000 Conflicts
11 0.00 0.00 4.46
13 0.00 0.00 0.00
15 0.37 1.18 1.33
17 3.62 3.74 1.93
19 1.82 3.52 0.00
21 2.68 1.69 2.04
23 1.19 0.40 1.58
25 0.46 0.69 1.09
27 1.29 0.77 2.06
29 1.15 0.29 0.90
31 0.60 0.74 1.00
33 1.33 0.89 1.28
35 0.80 1.06 1.58
37 0.48 1.39 0.83
39 0.62 0.90 0.32
41 1.07 1.45 1.38
43 0.54 0.52 0.48
45 0.42 0.45 0.93
47 0.44 0.28 0.73

46 CHAPTER 4. RESULTS

4.6 Vertex Cover v2 m = 8

10 20 30 40 50

0

200

400

600

800

1,000

value of n

ti
m

e
(s

)

Runtimes

original
div1
div2
div3

Figure 4.11: Comparison of runtimes for vertex cover v2 with m = 8.

10 20 30 40 50

0

2

4

6

8
·105

value of n

#c
on

fli
ct

s

Conflicts

original
div1
div2
div3

Figure 4.12: Comparison of conflicts for vertex cover v2 with m = 8.

CHAPTER 4. RESULTS 47

Table 4.6: Number of divisions for each 1000 conflicts for vertex cover
v2 with m = 8.

n #Divisions / 1000 Conflicts
9 18.13 15.20 21.38

11 3.92 10.54 7.54
13 4.67 9.20 7.46
15 13.46 7.80 7.35
17 4.14 5.89 5.98
19 4.37 5.97 4.56
21 4.62 13.02 3.53
23 2.81 3.84 4.21
25 8.15 6.02 3.03
27 10.64 11.22 2.09
29 4.49 4.20 3.21
31 1.75 2.11 2.62
33 1.46 2.38 2.83
35 1.65 1.86 1.08
37 0.84 1.64 0.83
39 1.11 1.12 0.50
41 0.79 0.99 0.93
43 1.00 1.04 0.62
45 0.68 1.08 1.21
47 1.39 0.83 1.98
49 0.57 0.77 0.70

48 CHAPTER 4. RESULTS

4.7 Vertex Cover v3 m = 10

10 20 30 40 50 60

0

200

400

600

800

1,000

value of n

ti
m

e
(s

)

Runtimes

original
div1
div2
div3

Figure 4.13: Comparison of runtimes for vertex cover v3 with m = 10.

10 20 30 40 50 60

0

2

4

6

8

·105

value of n

#c
on

fli
ct

s

Conflicts

original
div1
div2
div3

Figure 4.14: Comparison of conflicts for vertex cover v3 with m = 10.

CHAPTER 4. RESULTS 49

Table 4.7: Number of divisions for each 1000 conflicts for vertex cover
v3 with m = 10.

n #Divisions / 1000 Conflicts
11 0.00 0.00 0.00
13 0.00 0.00 0.00
15 2.46 4.54 0.64
17 3.82 0.95 0.75
19 1.35 1.10 0.46
21 0.64 0.90 0.24
23 1.14 2.56 0.39
25 0.95 0.46 0.41
27 0.99 0.94 1.95
29 0.72 0.93 1.12
31 0.58 0.97 0.80
33 0.92 1.43 1.34
35 0.62 0.48 0.75
37 0.14 0.22 0.50
39 1.01 0.58 0.57
41 0.48 0.59 0.82
43 0.76 0.61 0.49
45 0.22 0.60 1.36
47 1.07 0.52 0.41
49 0.19 0.12 0.28
51 0.62 0.49 0.28
53 0.49 0.41 0.17
55 0.35 1.83 0.35
57 0.22 0.23 0.22
59 0.09 0.17 0.30

Chapter 5

Discussion

In this chapter, it is presented the correspondent discussion to the re-
sults shown in the previous chapter. This chapter is structured in three
different sections, one for each type of problem codified in the bench-
marks (i.e. dominating set, even colouring and vertex cover). Since the
results obtained are in general consistent throughout each problem to
solve, they will be presented accordingly. Grouping the discussion of
results for of each problem.

5.1 Dominating Set

5.1.1 Runtime and number of conflicts

In general, for the dominating set division does not seem to make an
improvement. This is clearer for the family of instances having m = 6

where it can be seen that the configurations of the solver with division
almost always perform at most as good as the original. Particularly
in plots 4.1 and 4.2 it can be observed that both running times and
number of conflicts of the div1 and div3 are normally above the per-
formance of original, getting worse results. Whereas for the configu-
ration div2 it gets similar results as the original, which is interesting.
This can be also observed in the table A.3 of the appendix, where it
is shown that div2 and original have really similar executions both in
terms of conflicts and runtimes. But in case of the number of conflicts
they both get the exact same number in several times.

In case of the family of benchmarks with m = 8 the results shown
are less clear. Due to a high pick of div3 and the small amount of

50

CHAPTER 5. DISCUSSION 51

instances is difficult to understand the behaviour of the solver. For
this family the instances where harder for the solver, this is the reason
why less instances are presented. Looking in detail at figure 4.4, at the
last part of the plot could seem that the exponential growth of div3
is slower. However this seems to be a visual effect due to the point
next to the last, because for the last execution both div3 and div1 grow
over the original in terms of number of conflicts. Hence it is difficult
to extract clear patterns for the dominating set m = 8. Nevertheless,
what is also observed in this families of instances is that the results for
div2 are also very similar to the ones from the original.

As a result of the performance of the different configurations seems
that in case division is applied during the conflict analysis it is better
to not disable the rounding options. As seen in the plots, div2 was
performing nearly as the original having better performance than div3
in general. Also it is clear that performing division during conflict
analysis is better than just at the end of it, as div2 performs also better
than div1.

As it was explained in subsection 3.5.1 among the instances of dom-
inating set some of them are satisfiable and others unsatisfiables. Tak-
ing this into account an interesting thing to observe was whether there
is a correlation between being SAT or UNSAT with the efficiency of di-
visions. This was not the case. As explained previously, in general the
performance of division can be seen as worse as the original version
for dominating set and it does not have anything to do with being SAT
or UNSAT.

5.1.2 Number of divisions

The results in terms of number of divisions are presented in the tables
4.1 and 4.2 for m = 6 and m = 8 respectively. This numbers show two
interesting aspects. First, the number of divisions applied is relatively
low. Compared to the number of conflicts for each of the executions.

Another interesting aspect about the number of divisions is that
several times the highest value is the one of div1. This fact is quite
interesting, since one would expect to be div2 and div3 larger than
div1. As explained in 3.4, for div1 division is only applied at the end
of the conflict analysis whereas for div2 and div3 if possible this is
applied also within the analysis of the conflict.

52 CHAPTER 5. DISCUSSION

5.2 Even Colouring

5.2.1 Runtime and number of conflicts

For the benchmarks encoding even colouring, there are two families
of instances encoding the problem for random graphs deg = 4 and
deg = 6. For neither of the families nor the runtimes nor number of
conflicts are highly conclusive.

For deg = 4 it can be noticed that in general when an instance is
hard it is specially hard for div3, since when a peak is found in general
terms div3 has a higher peak. Analyzing the last part of the plot we can
observe what appears to be an exponential growth. In the runtimes
plot figure 4.5, we can say that div1 has an exponential growth faster
than the rest. However this is not seen in the conflicts figure 4.6.

Taking into consideration the family of instances with deg = 6 the
results are also mixed. However, if we were to draw the exponential
curve of each of the configurations of the solver, div3 seems to have
the slower growth. This can be better seen in the runtimes plot 4.7
but the pattern it is also repeated (although slightly) with number of
conflicts, as observed in figure 4.8. It can also be said that div1 is the
configuration that appears to have the faster exponential growth. And
both div2 and original have very similar executions for this family of
instances.

5.2.2 Number of divisions

In contrast to the results shown for dominating set 5.1.2, for even colour-
ing the number of divisions seem to be larger in general. For both
families of instances as shown in tables 4.3 and 4.4, the number of di-
visions is greater than for dominating set compared to the numbers of
conflicts. Note that the number of conflicts is shown in the tables A.6
and A.7 of the appendix.

For these families of instances the pattern of the number of divi-
sions of div1 being often the greatest is repeated. Having several in-
stances in which div1 is the one performing more divisions compared
to the number of conflicts.

CHAPTER 5. DISCUSSION 53

5.3 Vertex Cover

5.3.1 Runtime and number of conflicts

The results for the vertex cover problem show that apparently divi-
sion is improving the efficiency of the solver when tested with these
benchmarks. Both in terms of runtimes and number of conflicts the
exponential growth can be appreciated and div3 appears to have the
best results. This is very clear for v2 with m = 8 in the plots in figures
4.11 and 4.12. Among the rest of configurations (div1, div2 and orig-
inal) there is no clear conclusion for any of the families of instances
tested, except that they seem worse in terms of execution than div3.
These results are very clear for v2 but they can also be observed for v1
and v3.

Consequently, it can be said that in case division is applied during
the conflict analysis it is better to disable the rounding options.

For vertex cover benchmarks it is also interesting to see that the
performance of div2 is also very similar to the original’s performance.
This is replicated both in terms of runtime and conflicts.

5.3.2 Number of divisions

The number of divisions observed in tables 4.5, 4.6 and 4.7 show that
here the number of divisions is larger in general than the ones from
dominating set but smaller than the ones from even colouring, com-
pared to the number of conflicts (shown in tables A.1, A.2 and A.5).

In this case, the pattern shown in dominating set and even colour-
ing, in which the number of divisions for div1 was often larger than
the rest, is not replicated. Here also there are instances in which this
occurs but not as many as for the other problems.

Finally as a comment the number of divisions for v2 with m = 8

is larger in general than the ones for v3 with m = 10 and for v1 with
m = 10 (tables 4.6, 4.7 and 4.5). Note that although the value of m is
larger for v3 and v1 than for v2, in general v2 instances are harder to
solve.

Chapter 6

Conclusion

Essentially the conclusions of this thesis are the following:

- The performance of the different configurations of division (i.e.
div1, div2 and div3) depends on the instances that are solved.

- For dominating set the original version of the solver performs
better than when division is applied (except with div2 that is al-
most the same).

- For dominating set if division is applied during conflict analysis
it is better to enable the rounding options.

- For the even colouring benchmarks although div3 seems to have
the lowest exponential growth (for deg = 6), it is not so clear. So
for even colouring no clear conclusions can be extracted.

- For vertex cover division seems to improve the efficiency. Con-
cretely with div3 configuration.

- For vertex cover if division is applied during conflict analysis it
is better to disable the rounding options.

- As seen with the dominating set in 5.1 there appears to be no
correlation between being SAT or UNSAT and the performance
of division.

- When division is applied during conflict analysis but with the
rounding options enabled (i.e. div2) the results are very similar
in general (both in terms of runtime and number of conflicts) to
the execution of the original.

54

CHAPTER 6. CONCLUSION 55

- The number of divisions is in general low compared to the con-
ficts, but this is even more clear for dominating set.

6.1 Future work

Pseudo-Boolean SAT solving is a wide field of study which still needs
a lot of research to be fully understood. The race of SAT for efficiency
keeps constantly upgrading so any possible improvements in the effi-
ciency of a solver are always welcome. This thesis is an introduction
to some of the research that can be done for improving the efficiency
of CDCL solvers based on cutting planes, but still much work can be
done. In section 3.2 there was a list of topics to be studied in this field
(among others), from which this thesis only focuses in one (division).
Future work extending this thesis could start doing more research on
the other topics and implementing the results.

Bibliography

[1] Armin Haken. “The intractability of resolution”. In: Theoretical
Computer Science 39.C (1985), pp. 297–308. ISSN: 03043975. DOI:
10.1016/0304-3975(85)90144-6.

[2] Armin Biere et al., eds. Handbook of Satisfiability. Vol. 185. Fron-
tiers in Artificial Intelligence and Applications. {IOS} Press, 2009.
ISBN: 978-1-58603-929-5.

[3] Martin Davis and Hilary Putnam. “A computing procedure for
quantification theory”. In: Journal of the ACM 7.3 (1960), pp. 201–
215. ISSN: 00045411. DOI: 10.1145/321033.321034.

[4] Martin Davis, George Logemann, and Donald Loveland. “A ma-
chine program for theorem-proving”. In: Commun. ACM 5.7 (1962),
pp. 394–397. ISSN: 00010782. DOI: 10.1145/368273.368557.
URL: http : / / portal . acm . org / citation . cfm ? id =
368557.

[5] Albert Oliveras and Enric Rodr. The DPLL algorithm Overview of
the session Problem Solving w ./ Prop . Logic DPLL : A Bit of History.
2009. URL: https://www.cs.upc.edu/%7B~%7Doliveras/
LAI/dpll.pdf.

[6] Jakob Nordström. Understanding Conflict-Driven SAT Solving Through
the Lens of Proof Complexity. 2016. URL: http://www.csc.kth.
se/%7B~%7Djakobn/research/TalkProofComplexityLensCDCL.
pdf.

[7] Daniel Le Berre. Introduction to SAT. 2014. URL: http://satsmt2014.
forsyte.at/files/2014/07/SAT-introduction.pdf.

[8] Jakob Nordström. “On the Interplay Between Proof Complexity
and {SAT} Solving”. In: ACM SIGLOG News 2.3 (2015), 19\nobreakdash–
44. URL: http://www.csc.kth.se/%7B~%7Djakobn/
research/TalkInterplaySummerSchool2016.pdf.

56

https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/368273.368557
http://portal.acm.org/citation.cfm?id=368557
http://portal.acm.org/citation.cfm?id=368557
https://www.cs.upc.edu/%7B~%7Doliveras/LAI/dpll.pdf
https://www.cs.upc.edu/%7B~%7Doliveras/LAI/dpll.pdf
http://www.csc.kth.se/%7B~%7Djakobn/research/TalkProofComplexityLensCDCL.pdf
http://www.csc.kth.se/%7B~%7Djakobn/research/TalkProofComplexityLensCDCL.pdf
http://www.csc.kth.se/%7B~%7Djakobn/research/TalkProofComplexityLensCDCL.pdf
http://satsmt2014.forsyte.at/files/2014/07/SAT-introduction.pdf
http://satsmt2014.forsyte.at/files/2014/07/SAT-introduction.pdf
http://www.csc.kth.se/%7B~%7Djakobn/research/TalkInterplaySummerSchool2016.pdf
http://www.csc.kth.se/%7B~%7Djakobn/research/TalkInterplaySummerSchool2016.pdf

BIBLIOGRAPHY 57

[9] Laurent Simon. Implementation of CDCL SAT Solvers. 2016. URL:
http://ssa-school-2016.it.uu.se/wp-content/
uploads/2016/06/LaurentSimon.pdf.

[10] Joao Marques-Silva. Introduction to SAT. 2014. URL: http://
ssa-school-2016.it.uu.se/wp-content/uploads/
2016/06/jpms-satsmtar16-slides.pdf.

[11] Albert Oliveras. From DPLL to CDCL SAT solvers. 2009. URL: https:
//www.cs.upc.edu/%7B~%7Doliveras/LAI/cdcl.pdf.

[12] Lintao Zhang et al. “Efficient Conflict Driven Learning in a Boolean
Satisfiability Solver”. In: Proceedings of the 2001 IEEE/ACM Inter-
national Conference on Computer-aided Design. 2001, pp. 279–285.
ISBN: 0-7803-7249-2. DOI: 10.1109/ICCAD.2001.968634.
URL: http://dl.acm.org/citation.cfm?id=603095.
603153.

[13] Donald Chai and Andreas Kuehlmann. “A fast pseudo-Boolean
constraint solver”. In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 24.3 (2005), pp. 305–317.
ISSN: 02780070. DOI: 10.1109/TCAD.2004.842808.

[14] F.A. A Aloul et al. “Generic ILP versus specialized 0-1 ILP: an
update”. In: IEEE/ACM International Conference on Computer Aided
Design, 2002. ICCAD 2002. (2002), pp. 450–457. ISSN: 1092-3152.
DOI: 10.1109/ICCAD.2002.1167571. URL: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1167571.

[15] Jan Elffers and K T H Royal. Pseudo-boolean CDCL SAT solvers.
2015.

http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/LaurentSimon.pdf
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/LaurentSimon.pdf
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jpms-satsmtar16-slides.pdf
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jpms-satsmtar16-slides.pdf
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jpms-satsmtar16-slides.pdf
https://www.cs.upc.edu/%7B~%7Doliveras/LAI/cdcl.pdf
https://www.cs.upc.edu/%7B~%7Doliveras/LAI/cdcl.pdf
https://doi.org/10.1109/ICCAD.2001.968634
http://dl.acm.org/citation.cfm?id=603095.603153
http://dl.acm.org/citation.cfm?id=603095.603153
https://doi.org/10.1109/TCAD.2004.842808
https://doi.org/10.1109/ICCAD.2002.1167571
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1167571
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1167571
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1167571

58

APPENDIX A. TABLES OF EXECUTION TIMES AND CONFLICTS 59

Appendix A

Tables of execution times and
conflicts

A.1 Vertex Cover v1 m = 10

Table A.1: Runtimes and #conflicts for vertex cover v1 with m = 10.

n Runtime (s) #Conflicts
original div1 div2 div3 original div1 div2 div3

11 0.024 0.024 0.024 0.092 427 427 427 1121
13 0.12 0.12 0.12 0.044 1302 1302 1302 546
15 0.22 0.364 0.216 0.26 1695 2710 1697 2255
17 0.7 0.528 0.776 0.38 4308 3311 4809 3116
19 0.324 0.32 0.328 0.26 2271 2193 2271 2046
21 1.012 1.328 1.012 0.86 5904 6723 5904 5872
23 5.092 3.588 5.124 1.448 20109 15119 20167 7600
25 3.724 7.804 3.72 2.008 17268 30685 17268 10058
27 2.476 2.388 2.484 4.664 11690 10822 11690 18461
29 3.208 6.784 3.22 4.284 13946 22628 13946 16698
31 4.78 28.3 5.028 5.46 19634 65356 20144 20964
33 30.64 44.128 40.696 3.872 67772 103171 82370 17137
35 11.428 18.336 11.536 5.136 34767 45194 34974 19000
37 46.112 56.292 45.628 19.948 104294 117691 103724 61740
39 84.816 24.984 73.736 44.912 157873 54752 142404 94222
41 46.716 214.116 29.112 25.484 62668 284702 52950 64639
43 244.384 303.144 234.384 238.724 308637 380850 301801 315084
45 872.696 777.056 522.128 284.2 767486 609287 542319 305972
47 767.396 422.624 999.756 207.592 626882 407325 730569 268084

60 APPENDIX A. TABLES OF EXECUTION TIMES AND CONFLICTS

A.2 Vertex Cover v2 m = 8

Table A.2: Runtimes and #conflicts for vertex cover v2 with m = 8.

n Runtime (s) #Conflicts
original div1 div2 div3 original div1 div2 div3

9 0.048 0.06 0.048 0.024 657 717 658 421
11 0.224 0.156 0.224 0.064 1991 1530 1993 796
13 0.34 0.316 0.34 0.308 2715 2567 2716 2546
15 0.576 0.36 0.58 0.556 4112 2748 4102 3807
17 1.368 1.34 1.42 1.14 7134 7255 7133 6022
19 1.392 1.076 1.276 1.576 6363 6174 6365 7234
21 0.6 0.432 0.604 2.92 3609 3029 3610 11901
23 2.5 4.188 2.54 3.368 9891 16026 9892 14012
25 0.796 1.196 0.796 2.708 4154 5887 4153 10237
27 0.776 1.328 0.696 11.128 4142 6014 3921 34502
29 6.548 4.092 6.592 0.968 16668 12925 16669 4986
31 43.732 42.448 45.608 8.832 81180 75804 84197 25531
33 7.324 102.224 7.34 6.676 20984 146467 20986 21560
35 46.1 29.724 46.392 64.368 88865 58193 89053 106642
37 147.1 126.412 68.632 157.38 210411 194845 121700 199168
39 127.7 248.988 98.792 132.5 150974 224031 129148 197816
41 282.592 434.944 200.412 108.048 255888 432285 206519 151666
43 302.468 177.268 302.644 73.98 281077 186779 281236 115701
45 999.728 999.756 999.664 97.924 723521 664532 734969 158793
47 286.376 326.096 249.328 231.6 289412 296761 263115 200676
49 674.668 999.844 576.508 445.344 466902 605769 428376 391567

APPENDIX A. TABLES OF EXECUTION TIMES AND CONFLICTS 61

A.3 Dominating Set m = 6

Table A.3: Runtimes and #conflicts for dominating set with m = 6.

n Runtime (s) #Conflicts
original div1 div2 div3 original div1 div2 div3

6 0 0.004 0.004 0.004 114 114 114 111
7 0 0.004 0.004 0 86 86 86 68
8 0 0 0 0 23 23 23 23
9 0.012 0.012 0.012 0.008 312 312 312 233

10 0.028 0.028 0.024 0.028 550 550 550 580
11 0.012 0.016 0.016 0.012 287 965 965 317
12 0.004 0.004 0.004 0.004 98 98 98 112
13 0.16 0.148 0.152 0.1 1988 1941 1993 1441
14 0.368 0.428 0.356 0.584 3716 4072 3600 5764
15 0.1 0.104 0.1 0.176 1283 1284 1284 1893
16 0.012 0.004 0.004 0.012 157 157 157 255
17 0.832 0.832 0.808 0.304 6126 6127 6126 2846
18 3.212 3.196 3.228 3.232 19438 19321 19438 18576
19 1.624 1.424 1.632 0.74 9922 8975 9922 5641
20 0.692 1.652 0.688 0.704 5881 10551 5881 5325
21 2.16 2.16 2.18 1.192 12064 12064 12064 7634
22 23.98 15.452 24.06 21.98 90760 55498 90751 72056
23 4.072 4.048 4.08 7.868 19562 19474 19562 32876
24 8.744 3.564 8.756 17.948 39433 17684 39433 52541
25 17.472 15.648 17.556 57.744 54265 50451 54265 133898
26 72.192 265.212 70.956 199.292 163893 485766 163895 351184
27 23.84 35.136 23.62 623.996 78400 103020 78400 873846
28 65.12 26.84 64.276 46.412 169309 85411 169309 112829
29 131.3 450.684 132.36 228.06 233021 640541 233614 346492
30 321.112 584.82 327.088 267.852 470841 784023 466739 353892
31 193.68 303.5 203.596 587.24 328691 513930 340167 889747

62 APPENDIX A. TABLES OF EXECUTION TIMES AND CONFLICTS

A.4 Dominating Set m = 8

Table A.4: Runtimes and #conflicts for dominating set with m = 8.

n Runtime (s) #Conflicts
original div1 div2 div3 original div1 div2 div3

6 0.008 0.008 0.008 0.008 253 253 253 254
7 0.028 0.024 0.024 0.02 549 549 549 509
8 0.004 0 0.004 0 31 31 31 31
9 0.216 0.24 0.24 0.14 2742 2747 2747 1823
10 0.308 0.312 0.348 0.228 3232 3232 3232 2418
11 0.104 0.1 0.1 0.164 1244 1244 1244 1838
12 0.924 0.96 0.896 0.244 6777 6777 6777 2658
13 3.496 3.5 3.508 0.84 20275 20277 20275 7106
14 7.22 10.336 7.312 7.444 34971 46197 35048 35165
15 26.536 20.516 26.776 58.208 94157 71495 94915 177593
16 9.44 6.044 9.448 7.068 41308 27429 41308 37797
17 21.796 23.244 19.704 89.044 70819 71731 64739 228763
18 86.516 94.548 85.676 995.14 189821 255296 189821 1285395
19 6.54 76.264 6.596 9.492 26616 157858 26616 37644
20 29.264 12.4 29.564 15.304 94473 51052 94473 50778
21 583.944 199.564 554.856 90.076 941477 405607 941477 227004
22 999.64 999.78 999.708 999.708 1112072 1243647 1114968 1332768

APPENDIX A. TABLES OF EXECUTION TIMES AND CONFLICTS 63

A.5 Vertex Cover v3 m = 10

Table A.5: Runtimes and #conflicts for vertex cover v3 with m = 10.

n Runtime (s) #Conflicts
original div1 div2 div3 original div1 div2 div3

11 0.032 0.032 0.032 0.012 436 436 436 265
13 0.068 0.072 0.072 0.068 816 816 816 674
15 0.228 0.208 0.228 0.168 1761 1624 1761 1573
17 0.288 0.24 0.312 0.144 2103 1834 2103 1335
19 0.688 0.396 0.736 0.252 4538 2959 4555 2170
21 3.688 0.584 3.676 0.632 11105 3140 11105 4137
23 0.528 0.5 0.552 0.292 3515 3500 3516 2563
25 3.08 1.38 3.004 2.148 15412 8452 15356 12184
27 1.936 2.428 1.98 1.848 9543 11109 9543 10234
29 1.62 1.352 1.672 1.536 8664 6957 8644 8939
31 4.244 6.276 4.312 2.604 15386 25761 15386 13668
33 4.92 3.736 4.8 4.212 16052 13069 16052 19472
35 11.112 20.392 9.892 6.844 40432 59368 37288 27909
37 36.692 13.016 37.268 12.848 86704 44003 87783 35942
39 8.732 20.92 7.564 11.9 24333 40569 22462 47108
41 19.216 45.976 25.596 24.8 34911 60438 40970 57007
43 22.972 60.512 23.36 81.536 50474 86990 50783 143404
45 36.252 310.244 38.112 23.644 78758 287068 83441 69293
47 10.396 7.132 10.752 27.204 26711 20594 26712 81350
49 235.572 105.58 278.984 100.548 335786 210820 380911 156128
51 191.788 139.784 170.924 54.416 260692 156473 244592 102371
53 438.596 150.484 795.704 68.428 324624 153790 445414 139817
55 196.14 999.812 204.972 43.512 172914 459342 153389 92255
57 999.46 136.08 999.476 198.588 692059 189316 701316 337863
59 999.692 536.752 999.46 151.412 852119 534459 808548 226415

64 APPENDIX A. TABLES OF EXECUTION TIMES AND CONFLICTS

A.6 Even Colouring random deg = 4

Table A.6: Runtimes and #conflicts for even colouring with deg = 4.

n Runtime (s) #Conflicts
original div1 div2 div3 original div1 div2 div3

10 0 0 0 0 43 45 44 44
20 0.01 0.01 0.01 0.01 228 289 235 290
30 0.04 0.04 0.04 0.03 956 1086 1011 830
40 0.03 0.82 0.61 0.1 687 9833 8667 1829
50 11.46 4.39 11.34 106.61 97931 57510 97921 753459
60 0.06 0.05 0.06 0.28 1087 1085 1089 4384
70 1.47 3.92 2.97 3.56 21309 37026 36311 58670
80 0.24 0.23 0.23 0.87 3378 3381 3380 10919
90 6.32 9.83 6.32 4.19 37265 58150 36891 39369
100 1.66 2.95 1.68 1.81 13902 20138 13904 18781
110 37.87 28.09 37 5.29 243023 119079 254122 50361
150 3.31 23.28 3.59 23.03 23087 103752 25512 151958
200 125.29 15.72 62.6 273.61 294974 74083 201443 723759
250 3.26 2.9 3.27 17.19 17484 15973 17698 71747
300 87.81 357.69 48.07 61.24 182530 301430 110790 235571
350 137.34 364.68 136.69 170.71 253805 259356 252014 290199

APPENDIX A. TABLES OF EXECUTION TIMES AND CONFLICTS 65

A.7 Even Colouring random deg = 6

Table A.7: Runtimes and #conflicts for even colouring with deg = 6.

n Runtime (s) #Conflicts
original div1 div2 div3 original div1 div2 div3

021 1.19 0.26 0.36 0.01 19855 3641 5660 445
031 0.13 0.07 0.13 0.22 1953 1310 1953 4821
041 0.21 0.63 0.21 0.12 3441 8565 3442 1893
051 0.38 0.43 0.38 1.27 5366 5966 5366 16731
061 0.24 1.21 0.25 1.60 3066 9947 3066 15078
071 5.78 5.42 11.59 1.90 32926 23270 63630 15058
081 10.83 4.58 8.92 7.69 44521 25026 42403 55106
091 11.79 4.15 11.82 35.64 48885 23448 48885 234293
101 5.10 26.17 5.13 8.88 30572 72766 30572 60093
111 6.80 3.52 6.81 52.61 37399 20821 37399 246365
151 12.63 2.15 12.69 17.77 35187 9957 35504 72171
201 26.97 21.06 26.94 35.14 54337 35713 54337 113989
251 344.01 59.08 343.95 11.41 486672 87645 456105 34278
301 56.86 275.38 56.79 35.91 79439 145550 79303 51901
351 491.31 524.95 477.27 191.97 442464 376029 427015 173053
401 140.25 161.39 140.50 375.66 81813 148375 81816 222190

www.kth.se

	Introduction
	Problem statement
	Motivation
	Outline

	Background
	The Satisfiability Problem
	Resolution

	Conflict Driven Clause Learning
	DPLL
	Organization of CDCL Solvers
	Clause Learning
	Unit Propagation: the two watched literal scheme

	The Pseudo-Boolean approach
	Cutting Planes
	Operations on LPB constraints
	Boolean Constraint Propagation
	Pseudo-Boolean Learning

	Methodology
	The Problem
	The Pigeonhole Principle
	The AtMost-k encoding
	The Focus
	The Approach

	Pseudo-Boolean topics under study
	Constraint Propagation
	Weakening criteria
	Division
	Cardinality constraints detection

	The Solver
	CDCL-CuttingPlanes

	Implementing division
	Original
	Div1
	Div2
	Div3

	Benchmarks
	Dominating Set
	Even Colouring
	Vertex Cover

	Results
	Dominating Set m = 6
	Dominating Set m = 8
	Even Colouring random deg = 4
	Even Colouring random deg = 6
	Vertex Cover v1 m = 10
	Vertex Cover v2 m = 8
	Vertex Cover v3 m = 10

	Discussion
	Dominating Set
	Runtime and number of conflicts
	Number of divisions

	Even Colouring
	Runtime and number of conflicts
	Number of divisions

	Vertex Cover
	Runtime and number of conflicts
	Number of divisions

	Conclusion
	Future work

	Bibliography
	Tables of execution times and conflicts
	Vertex Cover v1 m = 10
	Vertex Cover v2 m = 8
	Dominating Set m = 6
	Dominating Set m = 8
	Vertex Cover v3 m = 10
	Even Colouring random deg = 4
	Even Colouring random deg = 6

