
Automating Algebraic Proof Systems is NP-Hard

Susanna F. de Rezende Mika Göös† Jakob Nordström
Institute of Mathematics of the Stanford University University of Copenhagen

Czech Academy of Sciences & Lund University

Toniann Pitassi Robert Robere Dmitry Sokolov
University of Toronto & IAS IAS St. Petersburg State University

& PDMI RAS

May 1, 2020

Abstract

We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula F ,
it is NP-hard to find a refutation of F in the Nullstellensatz, Polynomial Calculus,
or Sherali–Adams proof systems in time polynomial in the size of the shortest such
refutation. Our work extends, and gives a simplified proof of, the recent breakthrough
of Atserias and Müller (FOCS 2019) that established an analogous result for Resolution.

†Part of the work done while at Institute for Advanced Study.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 64 (2020)

Contents

1 Introduction 1
1.1 Our result . 1
1.2 Related work . 2

2 Proof Overview 3
2.1 Resolution basics . 3
2.2 Simpler Atserias–Müller . 3
2.3 Generalization . 5

3 Formulas 6
3.1 Ref(F) formula . 6
3.2 TreeRef(F) formula . 7
3.3 rPHP formula . 7

4 Decision Tree Reductions 8
4.1 What is a reduction? . 8
4.2 Block-aware reductions . 9

5 The Reduction 9
5.1 Overview . 10
5.2 Variables . 10
5.3 Axioms . 12
5.4 Tree-like extension . 12

6 Block Lifting 13
6.1 Lift(F) formula . 13
6.2 Upper bound for Lift(F) . 14
6.3 Lower bound for Lift(F) . 14

7 Algebraic Proof Systems 14
7.1 Definitions . 15
7.2 Algebraic reductions . 16

8 Algebraic Block Lifting 18
8.1 Upper bound for Lift(F) . 18
8.2 Lower bound for Lift(F) . 18

9 Algebraic Upper Bound 19
9.1 EoL formula . 19
9.2 Reduction to EoL . 20
9.3 Upper bound for EoL . 21

10 Algebraic Lower Bound 22
10.1 Reduction from aPHP . 23

References 24

1 Introduction

Automatability. A proof system S is automatable [BPR97] if there is an algorithm that takes
as input an unsatisfiable CNF formula F and outputs an S-refutation of F in time polynomial in
the size of the shortest S-refutation of F (plus the size of F). Intuitively, automatability addresses
the proof search problem: How hard is it to find a proof? Automatability (or lack thereof) for
well-studied proof systems is a central question for automated theorem proving and SAT solving.

For example, state-of-the-art SAT solvers using conflict driven clause learning (CDCL) are
based on the most basic propositional proof system, Resolution (Res for short). This means
that running a CDCL solver (without preprocessing) on an unsatisfiable formula F produces a
Resolution refutation of F [BKS04]. Thus non-automatability of Resolution (studied in a long
line of work [Iwa97, ABMP01, AB04, AR08, MPW19, AM19]) implies that any SAT solver based
on Resolution will require superpolynomial time even on formulas that are easy, that is, admit a
polynomial-size refutation.

Res NS

PC SA

SoS

R

RR

Figure 1: An arrow A−→B
means B efficiently simulates A
(only over R where indicated).

Algebraic proof systems. In this paper, we study the au-
tomatability of algebraic proof systems. We show that it is
NP-hard to automate any of the following standard systems:

• (NS) Nullstellensatz [BIK+94],
• (PC) Polynomial Calculus [CEI96, ABRW02],
• (SA) Sherali–Adams [SA94].

An important proof system that is missing above, and for which
we still leave open the question of its automatability, is

• (SoS) Sum-of-Squares [Sho87, Par00, Las01].

1.1 Our result

For the aforementioned proof systems (excluding SoS), our main result shows that it is NP-hard to
approximate the minimum refutation size up to a factor of 2nε for some constant ε > 0. In particular,
these proof systems are not automatable unless P = NP. We defer the standard definitions of the
algebraic proof systems to Section 7. Our result holds regardless of definitional details such as which
underlying field (real numbers, finite fields) we choose, or whether we allow twin variables (separate
formal variables for negated literals).

Theorem 1.1 (Main result). There is a polynomial-time algorithm A that on input an n-variate
3-CNF formula F outputs a CNF formula A(F) such that for any system S = Res,NS,PC, SA:

− If F is satisfiable, then A(F) admits an S-refutation of size at most nO(1).
− If F is unsatisfiable, then A(F) requires S-refutations of size at least 2nΩ(1).

We emphasize that our theorem handles all of the proof systems simultaneously. That is, there
is one common polynomial-time constructible formula A(F) that is either easy for all the proof
systems, or hard for all of them. This means that proof search is hard for Res and NS even if we are
allowed to search for proofs in a stronger system like PC and SA.

Previously, Galesi and Lauria [GL10a], building on [AR08], proved that NS and PC are not
automatable unless the fixed parameter hierarchy collapses. Our Theorem 1.1 upgrades this to
an optimal hardness assumption, namely P 6= NP. For SA, no previous non-automatability results

1

were known. As for upper bounds, the fastest-known search algorithms for PC, SA, and SoS run in
exponential time exp(Õ(

√
n log s)), where s is the proof size and the Õ-notation hides poly(logn)

factors. All these algorithms are based on general size–degree tradeoffs [CEI96, PS12, AH19].

Techniques. Our proof builds on the recent breakthrough of Atserias and Müller [AM19] that
showed that automating Resolution is NP-hard. Namely, they proved Theorem 1.1 for S = Res. We
give a simpler proof of their theorem that generalizes better, handling more systems simultaneously.
The key new ingredient in our approach is a reduction from the pigeonhole principle to prove the
lower bound in case F is unsatisfiable. See Section 2 for a detailed overview of our techniques.

1.2 Related work

Degree-automatability. Algebraic proof systems are central in an exciting body of research that
exploits their degree-automatability (as opposed to size-automatability), which is the ability to find
proofs of low degree efficiently. For our four systems, proofs of degree d can be found in time nO(d)

for n-variate formulas: for NS and SA this can be achieved by solving an LP; for PC see [CEI96];
for SoS (under technical assumptions that cover the case of CNF formulas) see [O’D17, RW17].

Degree-automatability yields a meta-approach for discovering new algorithms for search prob-
lems. Namely, one starts by certifying the existence of a solution by a low-degree proof, and
then applies degree-automatability to generate an efficient algorithm for finding a solution. This
proofs-as-algorithms approach has led to many beautiful and sometimes surprising new approxi-
mation algorithms for a variety of optimization and average-case parameter estimation problems.
Examples include dictionary learning [BKS15], tensor decomposition [MSS16], learning mixtures
of Gaussians [KSS18], and constraint satisfaction problems [HKP+17, OS19]. What makes these
algebraic proof systems special is that they hit a sweet spot, possessing strong power but also being
weak enough to admit nontrivial proof search. For example, SA (resp. SoS) gives a standard way of
tightening LP (resp. SDP) relaxations of boolean LPs in order to improve performance. Another
example of their power is that SA and SoS are able to prove many useful (anti-)concentration
inequalities in constant degree [OZ13]. For a comprehensive introduction to the interplay between
algebraic proofs and algorithms, see the monograph [FKP19].

Size–degree tradeoffs. Degree-automatability has an interesting consequence for they way non-
automatability results are proved: The formula A(F) we construct admits a short refutation when F
is satisfiable, but every such refutation must require large degree (otherwise degree-automatability
would allow us to find them quickly). Such formulas—admitting short proofs but none of small
degree—were known to exist for Res [BG01]; for NS it is implicit in [BCIP02]; and for PC [GL10b].
None are known for SoS so far.

Other proof systems. For standard textbook-style proof systems (Frege and Extended Frege)
automatability is equivalent to possessing feasible interpolation. More specifically, for any proof
system, automatability implies feasible interpolation, and for sufficiently strong proof systems (that
admit short proofs of their soundness), the converse holds. Under cryptographic assumptions, Frege,
Extended Frege, and bounded-depth Frege systems are known to not have feasible interpolation and
therefore are not automatable [KP98, BPR97, BDG+04].

By contrast, for weak systems that cannot reason about their own soundness (Res, NS, PC,
SA, SoS), deciding whether they are automatable has proven more challenging. Until the recent
breakthrough by Atserias and Müller [AM19], even the automatability of Resolution was unresolved.
In an important paper, Alekhnovich and Razborov [AR08] ruled out automatability of Resolution

2

under the assumption that the fixed parameter hierarchy is proper. However, the best upper bound
on the time complexity remained exponential, and it had been a longstanding question (until [AM19])
whether or not this upper bound could be improved. Following in the wake of Atserias and Müller,
other weak systems were shown NP-hard to automate: [GKMP20] proved it for Cutting Planes, and
[Gar20] for k-DNF Resolution.

2 Proof Overview

Our proof builds directly on the breakthrough of Atserias and Müller [AM19]. In this section:

(§2.1) We recall the Resolution proof system.
(§2.2) We outline a simpler proof of the Atserias–Müller theorem (Theorem 1.1 for Resolution).

The details appear in Sections 3–6.
(§2.3) We outline why our simplified proof generalizes, with some additional work, to the setting

of algebraic proof systems. The details appear in Sections 7–10.

Readers who only care about our simplified proof of Atserias–Müller are in luck: We have
organized the paper so that the initial Sections 3–6 present the simplified proof in a self-contained
fashion. In particular, no knowledge of algebraic proof systems is required there.

2.1 Resolution basics

Fix an unsatisfiable CNF formula F over variables x1, . . . , xn. We call the clauses of F axioms
and often think of them as sets of literals (xi or x̄i, where bar denotes negation). A Resolution
refutation P of F is a sequence of clauses P = (C1, . . . , Cs) ending in the empty clause Cs = ∅ such
that each Ci is either (i) an axiom of F ; or (ii) derived from clauses Cj , Cj′ , where j, j′ < i, using
one of the following rules:

• Resolution rule: Ci = (Cj \ {xk}) ∪ (Cj′ \ {x̄k}) where xk ∈ Cj and x̄k ∈ Cj′ .
• Weakening rule: Ci ⊇ Cj .

The size of the refutation is ‖P‖ := s. The Resolution size complexity of F , denoted Res(F), is
the least size of a Resolution refutation of F . Another important complexity measure of P is its
width w(P) defined as the maximum width |C| of any of its clauses C ∈ P. Define also the width
complexity w(F `⊥) of a formula F as the least width of a Resolution refutation of F .

For visualization purposes, a refutation P can be thought of as a directed acyclic graph (dag),
also called the refutation dag: Introduce a node vi for every clause Ci, and include a directed edge
(j, i) if Cj is used to derive Ci. The final clause Cs becomes a root node (no parent), while the
axioms are leaves (no children). A refutation is tree-like if this graph is a tree (note that the same
clause can label several different nodes), and otherwise it is dag-like.

2.2 Simpler Atserias–Müller

Suppose we are given an n-variate 3-CNF formula F as input. The algorithm A that Atserias and
Müller devised computes in two steps: In the first step, the algorithm constructs a “refutation
formula” denoted by Ref(F). In the second step, this formula is “lifted” to produce Lift(Ref(F)),
which is then output by A. We explain these two steps in detail.

3

Step 1: Block-width

The refutation formula Ref(F) (defined precisely in Section 3.1) intuitively states

Ref(F) ≡ “F admits a short dag-like Resolution refutation.”

For now, it suffices to say that the variables of Ref(F) come partitioned into some number of blocks.
For a clause C over the variables of Ref(F), we define its block-width bw(C) as the number of distinct
blocks that C touches, that is, from which it contains a variable. For a Resolution refutation P
(resp. formula F), we define its block-width bw(P) (resp. bw(F)) as the maximum block-width of its
clauses. Finally, for a formula F , we define its block-width complexity bw(F `⊥) as the minimum
block-width of a Resolution refutation of F .

The key property of Ref(F) is that its block-width depends drastically on F ’s satisfiability.

Lemma 2.1 (Atserias–Müller). There is a polynomial-time algorithm that on input an n-variate
3-CNF formula F outputs a block-width-O(1) CNF formula Ref(F) such that

(i) If F is satisfiable, then Ref(F) admits a size-nO(1) block-width-O(1) Res-refutation.
(ii) If F is unsatisfiable, then Ref(F) requires Res-refutations of block-width nΩ(1).

Simplification. We simplify the proof of the block-width lower bound in case (ii) of Lemma 2.1.
(We do not simplify the upper bound (i), although we do improve it in other ways in Section 2.3.)
Atserias and Müller originally proved the lower bound (ii) by a direct ad-hoc adversary argument.
This was the most involved step in their proof.

Our proof of (ii) is by a mere reduction from the usual pigeonhole principle. We define (Section 3.3)
a convenient, somewhat non-standard encoding of the principle, sometimes called the retraction
weak pigeonhole principle [Jer07, PT19]. This encoding, denoted rPHPm, is an O(logm)-width CNF
that claims there exists an efficiently invertible injection, encoded in binary, from 2m pigeons to m
holes. Our reduction (Section 5) translates, with modest loss, width lower bounds for rPHPn2 into
block-width lower bounds for Ref(F).

Lemma 2.2. bw(Ref(F) `⊥) ≥ Ω̃(w(rPHPn2 `⊥)/n) for any n-variate unsatisfiable formula F .

Our simplified proof of (ii) is concluded by invoking known width lower bounds for pigeonhole
principles. Indeed, standard techniques [PT19, Proposition 3.4] show that

w(rPHPm `⊥) ≥ Ω(m).

This lower bound and Lemma 2.2 imply that bw(Ref(F) `⊥) ≥ Ω̃(n), which proves (ii).

Step 2: Lifting

The goal of the second step is to transform the block-width gap in Lemma 2.1 into a size gap. A
popular way to achieve this is via lifting, although Atserias and Müller used a related relativization
technique; see also [Gar19]. Lifting techniques have produced a plethora of applications in proof com-
plexity; recent examples include [HN12, GP18, dRNV16, GGKS18, GKRS19, dRMN+19, GKMP20].

The general strategy in lifting is this: We start with a formula F that is hard in some weak sense
(for us, block-width). Then we compose (or lift) the formula with a carefully chosen gadget—usually,
each variable of F is replaced with a copy of the gadget—to produce a formula Lift(F), which we
then show is hard in a strong sense (for us, Resolution size).

4

Block lifting. We prove (Section 6) a lifting lemma whose notable feature is that it is block-aware:
the gadgets corresponding to a single block will share some input variables. This allows us to lift
block-width (rather than width) to Resolution size. The lemma is simple to prove via random
restrictions: a proof is implicit in Atserias–Müller, and an even stronger version (lifting to Cutting
Planes size) was proved in [GKMP20]. We formulate the lemma here for completeness, and also in
order to generalize it to algebraic systems later (Section 2.3).

Lemma 2.3 (Block lifting). There is a polynomial-time algorithm that on input a block-width-O(1)
CNF formula F outputs a CNF formula Lift(F) such that

2Ω(bw(F ⊥̀)) ≤ Res(Lift(F)) ≤ 2O(bw(P)) · ‖P‖,

where P is any Resolution refutation of F .

The main theorem for Resolution follows immediately by combining Lemma 2.1 and Lemma 2.3.
Namely, the algorithm that computes A(F) := Lift(Ref(F)) satisfies Theorem 1.1 for Resolution.
This completes our simplified proof of the non-automatability of Resolution.

2.3 Generalization

Generalizing the proof from the previous subsection to algebraic systems S = NS,PC,SA is now a
matter of generalizing the block-width-based Lemma 2.1 and 2.3.

Terminology. The algebraic proof systems are defined carefully in Section 7. For the purpose of
this overview, we only sketch some notation. The analogue of width in an algebraic system S is
degree. The degree of a monomial r is denoted deg(r); the maximum degree of a monomial in a
S-refutation P is denoted deg(P); the minimum degree of a S-refutation of a formula F is denoted
degS(F `⊥). Moreover, we define the block-degree bdeg(r) of a monomial r as the number of blocks
that r touches; we extend this definition to refutations and formulas as before. For convenience,
when talking about Resolution, we use (block-)degree to mean (block-)width. Finally, we use S(F)
to denote the least size ‖P‖ (number of monomials in P) of an S-refutation P of F .

Improved lemmas. We now formulate the improved versions of Lemma 2.1 and 2.3. The
statements are as expected, except we replace the formula Ref(F) with a tree-like variant TreeRef(F),
discussed shortly. Our main result (Theorem 1.1) follows by considering A(F) := Lift(TreeRef(F))
and applying the improved lemmas. The remainder of this section discusses how to prove them.

Lemma 2.4 (Improved Lemma 2.1). There is a polynomial-time algorithm that on input an n-
variate 3-CNF formula F outputs a block-width-O(1) CNF formula TreeRef(F) such that for systems
S = Res,NS,PC,SA:

(i) If F is satisfiable, then TreeRef(F) admits a size-nO(1) block-degree-O(1) S-refutation.
(ii) If F is unsatisfiable, then TreeRef(F) requires S-refutations of block-degree nΩ(1).

Lemma 2.5 (Improved Lemma 2.3). There is a polynomial-time algorithm that on input a
block-width-O(1) CNF formula F outputs a CNF formula Lift(F) such that for systems S =
Res,NS,PC, SA:

2Ω(bdegS(F ⊥̀)) ≤ S(Lift(F)) ≤ 2O(bdeg(P)) · ‖P‖,

where P is any S-refutation of F .

5

Upper bound (i). The first challenge in generalizing the proof for Resolution is that we do not
know whether Ref(F) for a satisfiable F admits a small Nullstellensatz refutation (we suspect not).
This is why we introduce (Section 3.2) a new tree-like variant of the formula that intuitively says

TreeRef(F) ≡ “F admits a short tree-like Resolution refutation,
whose non-leaves do not use weakening.”

This formula is a weakening of Ref(F) meaning that it is obtained from Ref(F) by adding new
variables and axioms. The addition of the tree structure allows us to show the upper bound for
Nullstellensatz. The upper bound for Resolution is inherited from Ref(F), and for other systems
they follow by simulations. See Section 9 for the proof of Lemma 2.4(i).

Lower bound (ii). Our simplified proof established the block-width lower bound for Ref(F)
by a reduction from rPHPn2 . In fact, the same reduction works even for TreeRef(F) without
modification. Moreover, it is known that pigeonhole formulas require large degree for PC [Raz98]
and SA [GM08]. We show, via low-degree reductions, that these degree lower bounds apply also to
our rPHPm encoding, and hence to TreeRef(F). See Section 10 for the proof of Lemma 2.4(ii).

Lifting block-degree. Algebraic proofs are equally amenable to analysis via random restrictions
(key technique behind the proof of Lemma 2.3) as Resolution. Hence it is straightforward to
strengthen Lemma 2.3 to Lemma 2.5. See Section 8 for the proof.

3 Formulas

In this section we define formulas that will be relevant throughout the paper. In (§3.1) we recall the
Atserias–Müller [AM19] construction of the formula Ref(F); in (§3.2) we modify Ref(F) to obtain
our tree-like variant, TreeRef(F); and finally in (§3.3) we define a convenient version of the usual
pigeonhole principle.

3.1 Ref(F) formula

Fix a CNF formula F with variables x1, . . . , xn and m = poly(n) clauses. We define Ref(F) [AM19]
that informally states “F admits a short dag-like Resolution refutation.” In preparation for our
improved upper bound in Section 9, our definition of Ref(F) differs slightly from the original.

Variables. The variables of Ref(F) come partitioned into n3 blocks B1, . . . , Bn3 . The intention is
for a block of variables to encode or represent a single clause in the purported Resolution refutation
of F . More precisely, each block Bi contains the following variables.

• Literal set. There are 2n many indicator variables y` for the literals ` ∈ {x1, x̄1, . . . , xn, x̄n}
of F . A boolean assignment to the y` is intended to define the set of literals for the clause
represented by Bi. As a minor detail (relevant in Section 9), we interpret y` = 0 to mean that
literal ` is included in the block.
• Block type. There are two boolean variables encoding the block’s type: either axiom, derived,

or disabled. Accordingly, one of the following groups of variables become relevant.
(1) Axiom. There are logm many variables that encode an axiom-index j ∈ [m]. The

intention is for an axiom block Bi to be a weakening of the j-th axiom of F .

6

(2) Derived. There are O(logn) many variables that encode a triple (j, j′, k) ∈ [n3]× [n3]× [n].
The intention is for a derived block Bi to be obtained from Bj and Bj′ by first resolving
on variable xk and then weakening.

(3) Disabled. In this case there are no additional relevant variables.

Axioms. It is now straightforward to write down a list of axioms expressing that a truth assignment
to the above variables encodes a valid dag-like Resolution refutation of F . A formal treatment was
given by Atserias and Müller [AM19]. Here we recall the axioms informally:

• Root. We require that the last block Bn3 (root of the dag) is not disabled and that it represents
the empty clause. That is, all literal indicator variables are set to 1.
• Derived. For every derived block Bi with an associated triple (j, j′, k) ∈ [n3]× [n3]× [n] we

require that j, j′ < i; and that Bj (resp. Bj′) is not disabled and contains literal xk (resp. x̄k);
and that every other literal in Bj (except xk) or Bj′ (except x̄k) also appears in Bi.
• Axiom. For every axiom block Bi with an associated axiom-index j ∈ [m] we require that

every literal appearing in the j-th axiom of F also appears in Bi.
• Disabled. We impose no constraints on disabled blocks.

In conclusion, Ref(F) can be written as an O(logn)-CNF formula with poly(n) clauses of block-
width ≤ 3 (the worst case is an axiom for a derived block that involves its two children).

3.2 TreeRef(F) formula

Next, we define a tree-like version of Ref(F) that informally states “F admits a short tree-like
Resolution refutation, whose non-leaves do not use weakening.” Indeed, TreeRef(F) is obtained by
starting from Ref(F) and adding some new variables and axioms. Here they are:

• New variables. We add to each block O(logn) many new variables that encode a parent pointer
p ∈ [n3]. The intention is for p to point to the unique parent in a tree-like refutation.
• New axioms (tree-likeness). For a derived block Bi, we require that both of its children have

their parent pointers set to i. In the other direction, for a non-root non-disabled block Bi, we
require that its parent Bp is a derived block having Bi as one of its children.
• New axioms (no weakening). For a derived block Bi, we require that every literal in Bi appears

in both of its children. This new axiom implies (together with the old axioms) that if a derived
block Bi (obtained by resolving on xk) has literal set C, then its children have sets {xk} ∪ C
and {x̄k} ∪ C. (Note that we still allow an axiom block to be a weakening of an axiom of F .)

3.3 rPHP formula

Finally, we formulate the retraction weak pigeonhole principle rPHPn [Jer07, PT19]. This variant
features 2n pigeons and n holes. It uses a binary encoding of the pigeon-mapping, and provides
an efficient way to invert the mapping. Specifically, the variables of rPHPn describe two functions,
f : [2n]→ [n] and g : [n]→ [2n], encoded as follows.

• Pigeon map. For every pigeon i ∈ [2n] there are variables fik, k ∈ [logn]. These variables
encode in binary a hole f(i) ∈ [n] that is expected to house pigeon i.
• Hole map. For every hole j ∈ [n] there are variables gj`, ` ∈ [log 2n]. These variables encode

in binary a pigeon g(j) ∈ [2n] that is expected to occupy hole j.

7

The axioms of rPHPn state that for every i ∈ [2n] and j ∈ [n],

f(i) = j =⇒ g(j) = i. (1)

In other words, g is a left-inverse of f (meaning g(f(i)) = i). Note that we do not require g
to be a right-inverse (meaning f(g(j)) = j), that is, the mapping f need not be surjective. In
conclusion, rPHPn can be written as a O(logn)-width CNF in the variables (f, g) = (fik, gj`).

4 Decision Tree Reductions

In this section, we define decision tree reductions, which will be used in Section 5 to prove a lower
bound on bw(Ref(F) `⊥). We assume the reader is familiar with the standard notion of a decision
tree computing a boolean function f : {0, 1}n → {0, 1} (see, e.g., the textbook [Juk12, §14]). In
particular, a depth-d decision tree T computing f naturally gives rise to both a d-DNF and a d-CNF
representation for f . Namely, the associated d-DNF is given by

∨
`C` where ` ranges over the leaves

of T that output 1, and C` is the conjunction of literals (query outcomes) on the path from root to
leaf `. The d-CNF is obtained by negating the d-DNF associated with the negated decision tree ¬T
(that is, T but with its output values flipped) computing ¬f .

4.1 What is a reduction?

A decision tree reduction between formulas F and G consists of relating the variables of G to the
variables of F via shallow decision trees, and moreover, showing that the axioms of F imply those
of G. We formalize this in the following.

Definition 4.1 (Reduction). Let F (x) and G(y) be CNF formulas over variables x = (x1, . . . , xn)
and y = (y1, . . . , ym). A depth-d reduction, denoted F ≤dt

d G, consists of the following.

• Variables. The reduction is defined by a function f : {0, 1}n → {0, 1}m such that each output
bit fi : {0, 1}n → {0, 1} (thought of as the value given to yi) for i ∈ [m] is computed by a
depth-d decision tree.
• Axioms. Let C(y) be a clause and view it as a function C : {0, 1}m → {0, 1}. Consider the

composed function C ◦ f . It can be computed by a depth-d|C| decision tree, and hence we
may naturally write it as a d|C|-CNF. We require that for every axiom C ∈ G, every clause
of C ◦ f is a weakening of an axiom of F .

The key property of a reduction is that it translates width complexity bounds.

Lemma 4.2. If F ≤dt
d G, then w(F `⊥) ≤ d · w(G `⊥).

This lemma is most elegantly proven using the standard game semantics (or top-down) charac-
terization of w(F `⊥) [Pud00, AD08]. We recall this game briefly.

Prover–Adversary games. The game associated with an n-variate formula F is played between
two competing players, Prover and Adversary. The game proceeds in rounds. In each round the
state of the game is recorded by a partial assignment ρ ∈ {0, 1, ∗}n to the variables of F . The game
starts with the empty assignment ρ = ∗n. In each round:

1. Query a variable. Prover chooses an i ∈ [n] with ρi = ∗, after which Adversary chooses
b ∈ {0, 1}. The state is updated by ρi ← b.

8

2. Forget variables. Prover chooses a subset I ⊆ [n]. The state is updated by ρi ← ∗ for all i ∈ I.

An important detail is that if Prover queries the i-th variable, forgets it, and then queries it again,
Adversary is free to respond with any value regardless of the answer given previously. The game
ends when ρ falsifies an axiom of F . The width complexity w(F `⊥) of F is characterized by the
least w such that there is a Prover strategy of width w (maximum number of non-∗ coordinates in
the game state at the end of a round) to end the game no matter how Adversary plays.

Proof of Lemma 4.2. Suppose the reduction F ≤dt
d G is computed by f . Let G be a width-w Prover

strategy for G. We construct a width-dw Prover strategy F for F by simulating G round-by-round.
We maintain the invariant that if the game state for G (partial assignment to y) records a value
yi = b for some b ∈ {0, 1}, then the game state ρ for F (partial assignment to x) satisfies fi(ρ) = b
by having enough (but at most d) values of the xj being recorded in ρ.

The simulation proceeds as follows. In each round:

1. G queries yi. Here we let F run the decision tree for fi(x), which queries ≤ d variables of F .
This returns a value fi(x) = b for some b ∈ {0, 1} depending on the choices of the Adversary.
We then simulate G by responding yi = b (that is, we play the role of Adversary for G).

2. G forgets yi for i ∈ I. Here we let F forget all xj ’s which are not required in knowing the
values fi′(x) for those i′ for which the value of yi′ remains in G’s game state.

These actions keep the width of F at most dw. When the game ends for G, we claim it does so
for F : If the state for G falsifies an axiom of G, then the state for F falsifies an axiom of F ; this is
the contrapositive of the weakening property in Definition 4.1.

4.2 Block-aware reductions

We also introduce a more fine-grained type of reduction, suitable for studying block-width.

Definition 4.3 (Block-aware reduction). Let F (x) ≤dt
d G(y) via f : {0, 1}n → {0, 1}m as in

Definition 4.1. Suppose further that the variables y = (y1, . . . , ym) of G are partitioned into blocks.
We say that the reduction F ≤dt

d G is block-aware if for each block B ⊆ [m] there is a depth-d
decision tree that computes all the values fB(x) := (fi(x) : i ∈ B) ∈ {0, 1}B simultaneously.

Lemma 4.4. If F ≤dt
d G via a block-aware reduction, then w(F `⊥) ≤ d · bw(G `⊥).

Proof. Prover–Adversary games can equally well characterize block-width (defined naturally for a
game state as the number of blocks that the state records values from). Hence we can simply run
the proof of Lemma 4.2, but now assuming a new invariant: For each block B such that G records
the value of some yi where i ∈ B, our simulation F knows fB(x) by recording at most d values of
the xj variables. By inspection of the previous proof, it follows that if G has block-width w, then F
has width at most dw.

5 The Reduction

In this section, we prove Lemma 2.2 that states that bw(Ref(F) ` ⊥) ≥ Ω̃(w(rPHPn2 ` ⊥)/n),
where F is any unsatisfiable n-variate CNF formula, and Ref(F) and rPHPm are as defined in
Sections 3.1 and 3.3, respectively. Our goal is to describe a block-aware reduction

rPHPn2 ≤dt
Õ(n) Ref(F). (2)

This reduction, together with Lemma 4.4, would complete the proof of Lemma 2.2.

9

5.1 Overview

As in the original proof of Atserias and Müller [AM19], our reduction is guided by the full tree-like
Resolution refutation T of the unsatisfiable formula F . More specifically, T is a binary tree of
height n, it has the empty clause at its root, and at depth i ∈ [n] the i-th variable is resolved. Thus
T has 2n leaves corresponding to all possible width-n clauses; each such leaf clause is a weakening
of an axiom of F .

For any truth assignment to rPHPn2 our reduction is going to produce an assignment to Ref(F)
that represents a purported refutation of F isomorphic to a subtree T ′ of the full tree T . We
note that T ′ will not be a valid refutation of F , because some nodes on the “boundary” of the
embedding T ′ ⊆ T are missing a child. However, the interior “local neighborhoods” of T ′ will be
indistinguishable from the corresponding neighborhoods of T , and those parts do not violate any
axioms of Ref(F). The only axiom violations of Ref(F) result from the “boundary” nodes.

We now describe the reduction in detail with heavy reference to Figure 2.

5.2 Variables

We start by defining how the variables of Ref(F) depend on the variables of rPHPn2 . We think
of the blocks of Ref(F) as being arranged in n + 1 layers with layer ` ∈ {0, 1, . . . , n} containing
min{2`, n2} many blocks; see Figure 2. The top-most layer ` = 0 contains just the root block Bn3 .
The remaining layers host blocks in an arbitrary but fixed way that respects the block ordering: If
block Bi is on a lower layer than block Bj , then i < j. A small detail is that so far we have not
quite used up all the available n3 blocks. Indeed, any such leftover blocks we define as disabled.
From now on, we ignore them and do not draw them in Figure 2.

We proceed to define the child pointers—which determine the topology of the purported
refutation—and then the literal sets (and other local structure).

Pointers. The pointers for the top-most 2 logn layers we assign so as to build a full binary tree
(which in particular matches the topology of T on these top-most layers). We say this part of the
pointer assignment is hardcoded, as it does not depend on the variables of rPHPn2 .

Defining the topology for the remaining non-hardcoded layers is the crux of our reduction.
Intuitively, we will copy-and-paste the pigeon-mapping described by the variables (f, g) of rPHPn2

between any two consecutive non-hardcoded layers. This results in several copies of the pigeon-
mapping being used in defining the topology.

We first define a partial matching (partial injection) h : [2n2]→ [n2] ∪ {∗} by

h(i) :=
{
f(i) if g(f(i)) = i,

∗ otherwise.
(3)

Given a pigeon i ∈ [2n2], we can evaluate h(i) by making O(logn) queries to the boolean variables
defining (f, g). Moreover, h is easy to invert with query access to f and g. Note that if h(i) = ∗,
meaning f(i) = j but g(j) 6= i, then this witnesses an axiom violation for rPHPn2 associated with
the pair (i, j) as per Equation (1). At the top of Figure 2, we illustrate one partial matching
resulting from a particular assignment to rPHPn2 .

Consider a layer ` ∈ {2 logn, . . . , n− 1} that contains n2 blocks. We think of the child pointers
originating from layer ` as the 2n2 pigeons (each of the n2 blocks names two children), and the
blocks on the next layer `+ 1 as the n2 holes. More precisely, we define the left (resp. right) child
of the i-th block on layer ` as the h(2i− 1)-th (resp. h(2i)-th) block on layer `+ 1. If ever h(i) is

10

rPHPn2 :

Ref(F) :

n2

n + 1

R
ed

uc
tio

n

: 2n2 pigeons

: n2 holes

H
ar

dc
od

ed
po

in
te

rs

: root block Bn3∅

x1 x̄1

x1 x2 x1 x̄2 x̄1 x2 x̄1 x̄2

x1 x̄2 x3 x1 x2 x̄3 x1 x̄2 x̄3

x1 x2 x̄3 x4 x1 x̄2 x3 x̄4 x1 x2 x̄3 x̄4

x1x̄2x3x̄4x5 x1x2x̄3x4x̄5 x1x̄2x3x̄4x̄5

Figure 2: Reduction from rPHPn2 to Ref(F). An assignment to the variables of rPHPn2 defines a partial
matching h : [2n2] → [n2] (drawn in blue). Using query access to h we construct an assignment to the
variables of Ref(F) that describes a purported refutation of F . The refutation consists of some n3 blocks
arranged in n+ 1 layers. Each block has a type: either derived (yellow), axiom (purple), or disabled (gray).
In the refutation dag (as defined in Section 2.1), we draw directed edges from children to parent (this is the
reverse direction of the child pointers). The top-most 2 logn layers are hardcoded with a tree topology, and
between any two remaining layers we insert the partial matching h. The literal set (and other local structure)
for each block is computed by locating its natural embedding in the full tree-like refutation T .

11

undefined (meaning an axiom of rPHPn2 associated with i is violated), we define the corresponding
pointer as null (say, by pointing to the root Bn3 , which results in an axiom violation for Ref(F)).

This completes the definition of the topology of the purported refutation described by the
variables of Ref(F). Note that the resulting topology (where we ignore null pointers) is a forest of
binary trees: it is constructed by stitching together a binary tree at the top with a layered sequence
of partial matchings where we have identified pairs of pigeons (each block couples two pigeons).

Literal sets. Recall that our overarching goal is to make the purported proof isomorphic to a
subtree T ′ ⊆ T (plus some disabled blocks). But now that we have already defined the topology of
our purported proof, the definitions of the literal sets (and other local structure) become forced.
Indeed, we describe an algorithm (implementable by a moderate-depth decision tree) for computing
the literal set for a block B: Starting from B walk up to its unique parent in the binary forest and
continue taking such upward steps until we reach a block without a parent. We have two cases
depending on whether the walk terminates at the root block Bn3 .

(1) Root is reached. Consider the (reverse) path p (sequence of left/right turns) from Bn3 to B.
This identifies a node v in the full tree T , namely, the node obtained by following the path p
starting at the root of T . We simply copy all the local structure at v into B: We make the
literal set of B equal that of v. If v is derived in T by resolving the k-th variable, we make B
a derived block and set its resolved-variable index to k. If v is a leaf of T , that is, a weakening
of some, say j-th, axiom of F , then we make B an axiom block and set its axiom-index to j.

(2) Root is not reached. In this case we make B a disabled block.
This completes the definition of how the variables of Ref(F) depend on the variables of rPHPn2 .

We finally note that the whole contents of a particular block can be computed by a single decision
tree of depth Õ(n). Indeed, the most expensive part is to perform the walk up the binary forest,
which involves at most n (the depth of the purported proof) evaluations of the inverse of h.

5.3 Axioms

It remains to show that the axioms of rPHPn2 imply those of Ref(F). We argue the contrapositive:
any axiom violation for Ref(F) implies an axiom violation for rPHPn2 . Since our reduction, by
construction, always produces a purported refutation isomorphic to a subtree T ′ ⊆ T (plus some
disabled blocks which do not violate axioms of Ref(F)), the only possible axiom violations are
caused by a block on layer ` ∈ {2 logn, . . . , n − 1} containing a null pointer. Any null pointer is
caused by the decision tree querying a pigeon i with h(i) = ∗. But this means the decision tree has
witnessed a violation of (1), that is, an axiom violation for rPHPn2 , by the discussion following (3).
This completes the reduction (2).

5.4 Tree-like extension

To conclude this section, we observe for later use (namely, in Section 10) that the reduction described
above can be easily extended to a block-aware reduction

rPHPn2 ≤dt
Õ(n) TreeRef(F). (4)

Indeed, we simply define the parent pointers (which are the “new” variables) as the inverses (given
by g outside the hardcoded region) of the child pointers defined by the original reduction. To see
that the axioms of rPHPn2 imply those of TreeRef(T), we argue similarly as in Section 5.3: Since T
is a tree-like refutation that uses no weakening (except at the axioms), the output of our reduction
(subtree T ′ of T) still has its axiom violations only at the “boundaries” of the embedding T ′ ⊆ T .

12

(
sB1 ∨ x0 ∨ ȳ0 ∨ sB2 ∨ z̄0 ∨ w0)

∧
(
sB1 ∨ x0 ∨ ȳ0 ∨ s̄B2 ∨ z̄1 ∨ w1)

∧
(
s̄B1 ∨ x1 ∨ ȳ1 ∨ sB2 ∨ z̄0 ∨ w0)

∧
(
s̄B1 ∨ x1 ∨ ȳ1 ∨ s̄B2 ∨ z̄1 ∨ w1)

Figure 3: The CNF formula for Lift(x∨ ȳ∨ z̄∨w) where x, y belong to block B1 and z, w belong to block B2.

6 Block Lifting

In this section, we prove Lemma 2.3, saying that for the lifted version Lift(F) of a CNF formula F
it holds that 2Ω(bw(F ⊥̀)) ≤ Res(Lift(F)) ≤ 2O(bw(P))‖P‖, where P is any Resolution refutation of F .
We start by describing how the formula Lift(F) is constructed.

6.1 Lift(F) formula

Fix a CNF formula F whose variables x1, . . . , xn are partitioned into m blocks. To construct the
block-lifted formula Lift(F), we replace each variable by a copy of a carefully chosen gadget, where
gadgets corresponding to the same block partially share variables. Namely, we consider the 3-bit
gadget g : {0, 1}3 → {0, 1} defined by g(x0, x1, s) := xs. Note that g is computed by a depth-2
decision tree. We now define Lift(F) formally:

• Variables. For every variable xi of F , the lifted formula will have two variables x0
i and x1

i .
Moreover, for every block B of F , we introduce a selector variable sB. Thus, altogether,
Lift(F) has 2n+m variables, called lifted variables.
• Axioms. Let C ∈ F be a clause and view it as a function C : {0, 1}n → {0, 1}. We define a

lifted constraint Lift(C) : {0, 1}2n+m → {0, 1} over the lifted variables as the composition

Lift(C) := C(g(x0
1, x

1
1, sB(x1)), . . . , g(x0

n, x
1
n, sB(xn))),

where B(xi) denotes the unique block containing xi. Note that Lift(C) can be computed by
composing a depth-|C| decision tree for C with depth-2 decision trees for the gadgets. This
results in a decision tree whose depth is only d := |C|+ bw(C) as the gadgets share selector
variables. Hence we may write Lift(C) naturally as a d-CNF (as discussed in Section 4).
Finally, we define Lift(F) :=

∧
C∈F Lift(C).

For concreteness, let us be more explicit about what the CNF expressing Lift(C) is by inspecting
the construction. First, for a literal ` (that is, xi or x̄i), understood as a singleton clause, we have
(using ¬g(x0, x1, s) = g(¬x0,¬x1, s) in case ` is a negated literal):

Lift(`) = g
(
`0, `1, sB(`)

)
=
(
sB(`) ∨ `0

)
∧
(
s̄B(`) ∨ `1

)
.

Then for an axiom C = `1 ∨ · · · ∨ `w in F , we have Lift(C) =
∨
i∈[w] Lift(`i) which can be written in

CNF form using the rule
∨
i∈[w] Fi = {C1 ∨ · · · ∨ Cw : Ci ∈ Fi} for CNF formulas Fi. From this we

see that Lift(C) has 2bw(C) clauses of width |C|+ bw(C); see Figure 3 for an example. In particular,
if F has block-width O(1), then Lift(F) can be constructed in polynomial time.

13

6.2 Upper bound for Lift(F)

Let us prove the upper bound Res(Lift(F)) ≤ 2O(bw(P))‖P‖. We again use the language of Prover–
Adversary games from Section 4.1. Besides width, such games can also capture the refutation
size [Pud00]. Namely, size is characterized by strategy size: the total number of states that can ever
arise in play (over several runs of the game). Thus let P be a Prover strategy for F of size ‖P‖ and
block-width bw(P). Our goal is to find a small-size strategy L for Lift(F).

We start by observing that Lift(F) ≤dt
2 F via f = (f1, . . . , fn) given by fi := g(x0

i , x
1
i , sB(xi)).

The strategy L is then constructed by simulating P as in the proof of Lemma 4.2. We proceed
to bound ‖L‖ by analyzing the simulation carefully. At the start of a simulation round, if P is in
state ρ, then L is in one of 2bw(ρ) many corresponding states; here the blow-up 2bw(ρ) comes from
having to record the values of bw(ρ) many selector variables. During a simulation step, L might
have to evaluate an fi, which gives rise to O(1) intermediate states before the start of the next
round. We conclude that there is a factor O

(
2bw(ρ)) overhead in a single round of the simulation.

Altogether we get ‖L‖ ≤ O
(
2bw(P))‖P‖, which proves the upper bound.

6.3 Lower bound for Lift(F)

Finally, we prove the lower bound, namely that 2Ω(bw(F ⊥̀)) ≤ Res(Lift(F)). We show an equivalent
claim: bw(F `⊥) ≤ O(log ‖P‖) for any refutation P of Lift(F). Fix such a P henceforth.

Some terminology: Let ρ denote a partial truth assignment. For a clause C, we define C �ρ to
be the trivially true clause 1 if ρ satisfies some literal in C, and otherwise C �ρ is the clause C with
all literals falsified by ρ removed. This definition extends to sets/sequences of clauses A in the
natural way by restricting all clauses in A, removing those which are satisfied. Given a Resolution
refutation F of a CNF formula F , it is a well-known fact that for any partial assignment ρ it holds
that F �ρ is a resolution refutation of the restricted formula F �ρ in at most the same size and width.

We start by defining a random restriction ρ to a subset of the variables of Lift(F) in two steps:

(1) Let ρ1 be a random restriction setting each selector variable sB to a uniform random bit.
(2) Define Xρ1 as the set of variables that contains, for every variable xi of F , the variable x1−s

i

where s := sB(xi) is determined by ρ1. Let ρ2 be a random restriction setting each variable
in Xρ1 to a uniform random bit. Let ρ be the concatenation of ρ1 and ρ2.

Note that variables from different blocks are assigned independently. Moreover, each literal evaluates
to true with probability at least 1/4. Thus the probability that a clause of block-width ≥ w is not
satisfied by ρ is at most (3/4)w. Consider the restricted refutation P �ρ. By a union bound,

Pr[P �ρ has a clause of block-width ≥ w] ≤ ‖P‖ · (3/4)w.

For w := 3 log ‖P‖ this probability is < 1, and hence there exists some fixed ρ such that bw(P �ρ) ≤ w.
But P �ρ is a refutation of the formula Lift(F)�ρ, which is the same as F after renaming variables.
Hence, bw(F `⊥) ≤ w = O(log ‖P‖), which completes the proof of Lemma 2.3.

7 Algebraic Proof Systems

In this section, we define: (§7.1) algebraic systems NS, PC, SA; and (§7.2) algebraic reductions.

14

7.1 Definitions

All the algebraic proof systems are going to share the following basic setup. We work over the
polynomial ring F[X] where F is a fixed field and X := {x1, x2, . . . , xn} is a set of formal variables.
We define the size ‖p‖ of a polynomial p ∈ F[X] as the number of its non-zero monomials.

For a CNF formula F over variables X we use the standard translation of F into a set of
polynomial equations F ∗ defined as follows. First, for each xi we include in F ∗ the boolean axiom
x2
i − xi = 0 (enforcing xi ∈ {0, 1}). Second, for each clause

∨
i∈I xi ∨

∨
j∈J x̄j of F we include in F ∗

the equation ∏
i∈I

(1− xi)
∏
j∈J

xj = 0.

This way, F and F ∗ have the same set of satisfying assignments. Henceforth, we will sometimes
identify F and F ∗. We are now ready to define our algebraic proof systems.

Nullstellensatz (NS). Nullstellensatz is a static algebraic proof system based on Hilbert’s
Nullstellensatz. An NS-proof of f = 0 from a set of polynomial equations F = {f1 = 0, . . . , fm = 0}
is a set of polynomials P = {p1, . . . , pm} such that, as formal polynomials,∑

i∈[m]
pifi = f.

The size of the proof is ‖P‖ :=
∑
i∈[m] ‖pi‖‖fi‖ and its degree is deg(P) := maxi∈[m] deg(pifi). An

NS-refutation of F is an NS-proof of 1 = 0 from F .

Polynomial Calculus (PC). Polynomial Calculus is a dynamic extension of Nullstellensatz. A
PC-proof of f = 0 from a set of polynomial equations F = {f1 = 0, . . . , fm = 0} is a sequence of
polynomials P = (p1, . . . , ps) such that ps = f and for each i ∈ [s] either (i) pi ∈ F or (ii) pi is
derived from polynomials earlier in the sequence using one of the following rules:

• Linear combination: From pj and pj′ derive αpj + βpj′ for any α, β ∈ F.
• Multiplication: From pj derive xpj for any x ∈ X.

The size of the proof is ‖P‖ :=
∑
i∈[s] ‖pi‖ and its degree is deg(P) := maxi∈[s] deg(pi). A PC-

refutation of F is a PC-proof of 1 = 0 from F .

Sherali–Adams (SA). Sherali–Adams is a static, (semi-)algebraic proof system that is based on
the Sherali–Adams hierarchy of LP relaxations. The system is only defined over real numbers, F = R.
An SA-proof of f ≥ 0 from a set of polynomial equations F = {f1 = 0, . . . , fm = 0} is a set of
polynomials P = {p1, . . . , pm, q} such that∑

i∈[m]
pifi + q = f,

and where q is a conical junta, that is, of the form

q =
∑
I,J αI,J

∏
i∈I xi

∏
j∈J(1− xj)

where αI,J ≥ 0 are non-negative reals. The size of the proof is ‖P‖ := ‖q‖+
∑
i∈[m] ‖pi‖‖fi‖ and

its degree is deg(P) := max{deg(q), deg(pifi) : i ∈ [m]}. An SA-refutation of F is an SA-proof of
−1 ≥ 0 from F .

15

Complexity measures. We define complexity measures uniformly across S = NS,PC,SA.

• The size complexity S(F) of a formula F is the minimum size of a S-refutation of F .
• The degree complexity degS(F `⊥) is the minimum degree of a S-refutation of F .
• Suppose that the variables X are partitioned into blocks. The block-degree bdeg(r) of a

monomial r is the number of distinct blocks that r touches. Moreover, we let bdeg(P) denote
the maximum block-degree of a monomial in P , and we define bdegS(F `⊥) as the minimum
block-degree of any S-refutation of F .

Twin variables. Every algebraic proof systems can be extended using so-called twin variables.
This means that for every variable x ∈ X we add another formal variable x̄, and include the
complementary axiom x + x̄ − 1 = 0. The translation of CNF formulas to polynomial equations
can be made more concise by the use of twin variables. Polynomial Calculus with twin variables is
often called Polynomial Calculus Resolution (PCR). Using twin variables does not affect the degree
complexity in any of the proof systems, but their introduction can drastically reduce size [ABRW02].
Our main result (Theorem 1.1) holds in the best of all possible worlds: All upper bounds hold
without twin variables, and the lower bounds hold with twin variables.

Relationships. It is well-known and easy to see that PC (and SA if the field is R) can efficiently
simulate NS. A surprising result of Berkholz [Ber18] (recorded in Figure 1) is that SoS efficiently
simulates PC over R. In this paper, we need only the easy simulations.

Fact 7.1 (Simulations). Suppose a polynomial f admits an NS-proof from a set of polynomials F in
size s and (block-)degree d. Then there is a PC-proof (and an SA-proof if the field is R) of f from
F in size poly(s, n) and (block-)degree d.

Multilinear polynomials. The multilinearization of a polynomial p is defined as the polynomial
obtained by replacing all terms in p of the form xi, i ≥ 2, with x; that is, we work modulo the
boolean axioms. It will be convenient to assume that all polynomials appearing in our algebraic
manipulations are implicitly multilinearized. For example, the product pq of two multilinear
polynomials p and q may not itself be multilinear, but pq can be efficiently proven equivalent to
its multilinearization by an application of the boolean axioms. It is well known that this implicit
multilinearization does not affect the degree complexity of a formula except by a constant factor,
and the size complexity is changed at most by a polynomial factor. Our assumption allows to equate
a polynomial’s syntactic representation as an element of F[X] with its semantic representation
as a boolean function {0, 1}n → {0, 1}: each boolean function has a unique representation as a
multilinear polynomial.

7.2 Algebraic reductions

We now develop algebraic analogues of the decision tree reductions introduced in Section 4. Notions
similar to the next definition have occurred before in the literature [BGIP01, LN17b, LN17a].

Definition 7.2 (Algebraic reduction). Let F and G be two sets of polynomials encoding CNF
formulas, defined on variables x = (x1, . . . , xn) and y = (y1, . . . , ym). An algebraic reduction, denoted
F ≤alg G, of degree d and size s consists of the following.

• Variables. The reduction is computed by a function r : {0, 1}n → {0, 1}m such that each
output bit ri : {0, 1}n → {0, 1} is computed by a degree-d size-s polynomial.

16

• Axioms. For any g ∈ G, the multilinearization of the polynomial g ◦ r has an NS-proof
from F (over any field) of degree d · deg(g) and size s.

This definition allows us to transform algebraic refutations of G into those of F .

Lemma 7.3. If F ≤alg G with degree d, then degS(F `⊥) ≤ d ·degS(G `⊥) for all S = NS,PC, SA.

Proof. We first prove the lemma for NS (the proof for SA is similar, so we omit it). Suppose the
reduction is computed by r and let b = |G|. Write G = {g1, . . . , gb}, and let P = (p1, . . . , pb) be an
NS-refutation of G. Consider the expression∑

i∈[b]
(pigi) ◦ r =

∑
i∈[b]

(pi ◦ r)(gi ◦ r) = 1. (5)

This expression is syntactically equal to 1, since P is a refutation of G. By the definition of reduction,
each polynomial gi ◦ r can be deduced from the axioms of F in degree d · deg(gi). Therefore, (5)
can be written as an NS-refutation of F of degree at most

max
i∈[b]

(deg(pi ◦ r) + d · deg(gi)) ≤ d ·max
i∈[b]

(deg(pi) + deg(gi)) = d · deg(P).

We now prove the lemma for PC. Let P be a PC-refutation of G. We construct a PC-refutation
P ′ of F . We argue by structural induction over P : whenever P derives p, in P ′ we will derive p ◦ r.

• Axioms. For any axiom g ∈ G used by P, by the definition of reduction we can derive the
polynomial g ◦ r in NS—and therefore, by Theorem 7.1, also in PC—in degree d · deg(g).
• Linear Combination. If the polynomial p3 is derived from p1 and p2 using a linear combination,

then we derive p3 ◦ r from p1 ◦ r and p2 ◦ r in P ′ using the same linear combination.
• Multiplication. If yip is derived from p by the multiplication rule, then we can derive

(yip) ◦ r = ri(p ◦ r) from p ◦ r.

Note that we can always derive p◦r in degree at most d·deg(p) and therefore deg(P ′) ≤ d·deg(P).

Next we define the algebraic analogue of a block-aware reduction.

Definition 7.4 (Algebraic block-aware reduction). Let F and G be two sets of (polynomials
encoding) CNF formulas over a field F, and suppose that F ≤alg G by a degree-d reduction
r : {0, 1}n → {0, 1}m as in the previous definition. Suppose further that the variables of G are
partitioned into blocks. The reduction r is block-aware if for each block B and each T ⊆ B the
following polynomial has degree ≤ d:

rT := multilinearization of
∏
i∈T

ri.

Lemma 7.5. If F ≤alg G via a degree-d block-aware reduction, then degS(F `⊥) ≤ d ·bdegS(G `⊥)
for all S = NS,PC, SA.

Proof. The case for Nullstellensatz and Sherali–Adams identically follows the proof of Lemma 7.3
except in each monomial of the proof we substitute the corresponding polynomial rT for each block
of variables yT when T ⊆ B is contained within a block.

For Polynomial Calculus we follow the proof of Lemma 7.3. Every line of a PC-proof is multilinear,
so, by the definition of a block-aware reduction and following the same accounting in the proof of
Lemma 7.3 we see that the degree of the new proof is at most d · bdeg(P).

17

8 Algebraic Block Lifting

In this section, we prove Lemma 2.5 that states that 2Ω(bdegS(F ⊥̀)) ≤ S(Lift(F)) ≤ 2O(bdeg(P))‖P‖
where P is any S-refutation of F and S = Res,NS,PC,SA. We use the same definition of the formula
Lift(F) as in Section 6. For Resolution this is exactly Lemma 2.3.

8.1 Upper bound for Lift(F)

To prove the upper bound S(Lift(F)) ≤ 2O(bdeg(P))‖P‖ for the algebraic proof systems, we start
by observing that Lift(F) ≤alg F via the degree-2 reduction r = (r1, . . . , rn) given by ri :=
g(x0

i , x
1
i , sB(xi)) = x0

i (1− sB(xi)) + x1
i sB(xi). Note that for any polynomial p over the variables of F ,

‖p ◦ r‖ ≤ 3bdeg(p) · ‖p‖.

We first prove the upper bound for Nullstellensatz by analyzing this reduction (the proof for
Sherali–Adams is analogous). Let F = {f1, . . . , fm} and let P = {p1, . . . , pm} be a NS-refutation
of F . Recall that ‖P‖ =

∑
i∈[m] ‖pi‖‖fi‖. Consider the expression∑
i∈[m]

(pifi) ◦ r =
∑
i∈[m]

(pi ◦ r)(fi ◦ r) = 1,

which, as argued in the proof of Lemma 7.3, is a refutation of Lift(F). Note that the polynomial
pi ◦ r has at most 3bdeg(pi) · ‖pi‖ ≤ 3bdeg(P) · ‖pi‖ monomials and that fi ◦ r is equal to the sum of the
2bdeg(fi) = O(1) axioms of Lift(fi), each of which has 3bdeg(fi)‖fi‖ = O(‖fi‖) monomials. Therefore,
we can conclude there is a NS-refutation of size

∑
i∈[m] 3bdeg(P) · ‖pi‖ ·O(‖fi‖) ≤ O(3bdeg(P)‖P‖).

We now prove the upper bound for PC. Let P be a PC-refutation of F . We construct a
PC-refutation P ′ of Lift(F) in the same way as done in the proof of Lemma 7.3: whenever P
derives p, in P ′ we will derive the polynomial p ◦ r (which has at most 3bdeg(p)‖p‖ monomials).

• Axioms. For any axiom f ∈ F , we noted already that the polynomial f ◦ r is equal to the sum
of the 2bdeg(f) = O(1) axioms of Lift(f), each of which has 3bdeg(f)‖f‖ = O(‖f‖) monomials.
Thus, f ◦ r can be derived in PC in size O(‖f‖).
• Linear Combination. If the polynomial p3 is derived from p1 and p2 using a linear combination,

then we derive p3 ◦ r from p1 ◦ r and p2 ◦ r using the same linear combination in P ′.
• Multiplication. If yip is derived from p by the multiplication rule, then we can to derive

(yip) ◦ r = ri(p ◦ r) from p ◦ r in size O(‖p ◦ r‖).

Therefore, the PC-refutation has size O(3bdeg(P)‖P‖).

8.2 Lower bound for Lift(F)

Finally, we prove the lower bound 2Ω(bdegS(F ⊥̀)) ≤ S(Lift(F)) for S = NS, SA,PC. This follows
the random restriction argument used for Resolution exactly (Section 6), so, we merely sketch the
argument. Namely, we show that bdegS(F `⊥) = O(log ‖P‖), where P is an algebraic proof in S.
The main claim that we need (which is obvious) is that if P is an S-refutation of any formula G,
and ρ is a partial restriction to the variables of G, then P � ρ is an S-refutation of G � ρ.

Letting ρ denote the same random restriction as used in the previous lower bound proof, we
observe that each (twin) variable evaluates to 0 with probability at least 1/4 under ρ. Thus, the
probability that any monomial of block-degree ≥ d in P remains nonzero after restriction is at

18

most (3/4)d. The same union bound implies that P �ρ has a monomial of block-degree ≥ d with
probability at most ‖P‖(3/4)d, which is < 1 if d > log4/3 ‖P‖. Since P �ρ is an S-refutation of F by
the claim made above, we have that bdegS(F `⊥) ≤ bdeg(P �ρ) ≤ d = O(log ‖P‖). This completes
the proof of Lemma 2.5.

9 Algebraic Upper Bound

In this section, we prove Lemma 2.4(i) that states that TreeRef(F), where F is satisfiable, admits
a size-nO(1) block-degree-O(1) S-refutation for S = Res,NS,PC,SA. We prove this for NS, which
implies the result for PC and SA by simulations (Fact 7.1). The result holds for Res by the original
upper bound for Ref(F) due to Atserias–Müller and the fact that TreeRef(F) was defined as a
weakening of Ref(F). Therefore, the goal of this section is to prove the following lemma.

Lemma 9.1 (Algebraic upper bound). Let F be a satisfiable n-variate formula. There is a size-nO(1)

block-degree-O(1) NS-refutation of TreeRef(F) (over any field, without twin variables).

Our proof has three steps: (§9.1) We first define the so-called end-of-line formula EoLn, which
is a size-nO(1) block-degree-O(1) CNF formula. (§9.2) Then we reduce TreeRef(F) to EoLn3 . (§9.3)
Finally, we recall from prior work [GKRS19] that EoLn admits a small NS-refutation. The last two
steps are formalized in the following two claims. As we want our result to be as general as possible,
in this section, we work over the integers Z (hence the computations are valid over any field), and
assume no twin variables.

Claim 9.2 (Reduction to EoL). Fix an n-variate satisfiable F . There is a block-aware reduction
TreeRef(F) ≤alg EoLn3 of size nO(1). Furthermore, for each subset T contained in a block of EoLn3 ,
the polynomial rT defined by the reduction has block-degree O(1) (relative to TreeRef(F)).

Claim 9.3 (Upper bound for EoL). EoLn admits a block-degree-O(1) NS-refutation (over Z).

The algebraic upper bound (Lemma 9.1) follows by combining these two lemmas.

Proof of Lemma 9.1. Let r be the reduction in Claim 9.2 and let
∑
i pifi = 1 be the NS-refutation

in Claim 9.3. We verify that the composed refutation
∑
i(pifi) ◦ r = 1 (discussed in Section 7.2)

satisfies the lemma. Consider any monomial t of pifi. We have bdeg(t) ≤ O(1), so when t is replaced
by a product of bdeg(t) many rT ’s (for various T ’s, each contained in a block of EoLn3), where each
rT has size nO(1) and block-degree O(1), this results in a polynomial of size (nO(1))bdeg(t) ≤ nO(1)

and block-degree bdeg(t) ·O(1) = O(1). We conclude that (pifi) ◦ r (and hence the whole refutation∑
i(pifi) ◦ r = 1) has size ‖pifi‖ · nO(1) ≤ nO(1) and block-degree O(1).

9.1 EoL formula

The end-of-line formula EoLn states that “there is an n-vertex digraph where every vertex has in/out-
degree 1, except for one distinguished vertex that has in-degree 0 and out-degree 1.” The combinatorial
principle underlying EoLn is central in the theory of total NP search problems [Pap94, BCE+98].

The variables of EoLn are intended to describe a digraph on vertices [n] where n ∈ [n] is thought
of as a distinguished vertex. Namely, for each i ∈ [n], there is a block of 2 logn boolean variables
zi := (~zi, ~zi) that encode, in binary, a predecessor pointer ~zi ∈ [n] and a successor pointer ~zi ∈ [n].
An assignment to the variables z = (z1, . . . , zn) defines a digraph Gz := ([n], Ez) where

(i, j) ∈ Ez iff ~zi = j and ~zj = i.

19

A small detail is that we allow any vertex to be a self-loop, achieved by setting ~zi = ~zi = i.
The axioms of EoLn are:

• Distinguished. The vertex n ∈ [n] has indegGz(n) = 0 and outdegGz(n) = 1.
• Non-distinguished. Every vertex i ∈ [n− 1] has indegGz(i) = outdegGz(i) = 1.

In particular, EoLn can be written as an O(logn)-CNF formula of block-width 2. The reader
familiar with pigeonhole principles can observe that our definition is equivalent to a variant of the
bijective pigeonhole principle: EoLn claims the edges of Gz define a bijection [n]→ [n− 1].

9.2 Reduction to EoL

Next we prove Claim 9.2: For an n-variate satisfiable F , we give a size-nO(1) block-aware reduction

TreeRef(F) ≤alg EoLn3 .

Intuition. Before launching into the proof, we sketch a strategy for refuting refutation formulas
in Resolution (building on Pudlák [Pud03]). It will guide us in defining our reduction.

Consider the Prover–Adversary game (Section 4.1) for TreeRef(F). Our goal, as Prover, is to
find a falsified axiom of TreeRef(F). Henceforth, fix some satisfying assignment x∗ of F . In short,
our Prover strategy is to walk down the purported proof maintaining the invariant that every clause
we visit is falsified by x∗. Namely, we start at the root block Bn3 and check that it is falsified by x∗.
If not, we find that Bn3 contains some literal, which falsifies an axiom of TreeRef(F) (that says
Bn3 contains no literals) and hence the game ends. So suppose the root is indeed falsified by x∗. If
the root block was obtained via a Resolution rule from blocks Bj , Bj′ we know by the soundness
of the rule and assuming the axioms of TreeRef(F) hold near the root block that a (unique) child
of the root, say Bj , is falsified by x∗. Our walk then steps into Bj , which maintains our invariant.
From Bj , we continue the walk iteratively: we always find the (unique) child falsified by x∗. As
long as no false axioms of TreeRef(F) are encountered in this walk, will eventually reach an axiom
block B. But since x∗ satisfies all axioms of F , and x∗ falsifies B (by the invariant), it must be the
case that B contains a mistake in the purported proof. This ends the game.

Our reduction is inspired by this walk. The i-th vertex in EoLn3 will correspond to the block Bi in
TreeRef(F). In particular, the distinguished vertex n3 ∈ [n3] will correspond to the root block Bn3 .
On input an assignment y to TreeRef(F), our reduction outputs an assignment to EoLn3 that
encodes the above walk in the purported proof encoded by y.

∧-decision trees. For ease of understanding, we describe the reduction as an ∧-decision tree,
that is, a decision tree that is allowed to query, in a single step, the logical-and

∧
x∈A x of any

subset A of variables. Note that ordinary “singleton” queries are still supported by choosing A to
contain a single variable. Such trees can be converted into polynomials by a standard method.

Fact 9.4. If r is computed by a depth-d ∧-decision tree, then r is computed by size-2O(d) polynomial.

Proof. For each leaf ` in the tree, let r`(x) denote the indicator function that is 1 iff the leaf ` is
reached on input x. Every query

∧
x∈A x can be simulated by the monomial xA :=

∏
x∈A x. Hence

we can compute r` by taking the product along the unique path from root to ` of either xA or 1−xA
(depending on the query outcome on the path). Hence, as a multilinear polynomial, r` satisfies
‖r`‖ ≤ 2d. Moreover, r can be written as r =

∑
` r` where the sum is over leaves ` that output 1.

There are at most 2d leaves, and thus ‖r‖ ≤ 22d.

20

Reduction. We describe a family of ∧-decision trees T = (T1, . . . , Tn3) where Ti outputs values
for the variables zi = (~zi, ~zi). Our goal is to satisfy the following condition, which implies the Axiom
property of a reduction (even weakening in Definition 4.1, a special case of an NS-proof).

(†) For each assignment y to TreeRef(F), if the output T (y) violates an axiom of EoLn3 involving
vertex-blocks j and j′, then the execution of Tj(y) or Tj′(y) has witnessed (by its singleton
queries) an axiom violation for TreeRef(F).

Henceforth, fix a satisfying assignment x∗ of F . Given an assignment y to TreeRef(F), we say
a block B is feasible iff the clause encoded by B is falsified by x∗. Note that the feasibility of a
given block can be decided by a single ∧-query (involving n indicator variables; here we use our
convention that literal indicators are set to 1 iff the literal is not included in the block). The tree Ti
computes zi = (~zi, ~zi) as follows. We start by checking whether Bi is feasible:
Bi is not feasible: Two cases depending on whether Bi is root (that is, i = n3).

• Non-root. We make vertex i into a self-loop by outputting ~zi = ~zi := i.
• Root. We know that Bn3 contains some literal consistent with x∗. By binary search (using
O(logn) many ∧-queries) we can discover a specific literal indicator of Bn3 that is set to 0.
This violates an axiom of TreeRef(F). Hence by (†), it is safe to output anything for (~zi, ~zi).

Bi is feasible: Query Bi’s type.

• Disabled: If Bi is non-root, we make vertex i into a self-loop. If Bi is root, then we have found
an axiom violation for TreeRef(F) (and by (†) we can output anything).
• Axiom: Here we can find an axiom violation. Query Bi’s axiom-index j. Since the j-th axiom

of F is satisfied by x∗, it contains some literal ` consistent with x∗. But since Bi is feasible,
Bi does not contain `. Hence ` is a literal in the j-th axiom not in Bi, which is a violation.
• Derived: Query Bi’s child pointers (j, j′), the resolved-variable index k, and the parent

pointer p. Query whether Bj and Bj′ are feasible, and query their type and parent pointers.
If Bi is non-root, query also the type and child pointers of Bp.

We may assume the variables that are singleton-queried above cause no axiom violations
for TreeRef(F) (as otherwise we are free to output anything). We may also assume we are in
the case where exactly one of Bj and Bj′ is feasible, say Bj (otherwise we may use binary
search to find a violation related to a literal indicator), and both have their parent pointers set
to i. We also assume that, if Bi is non-root, then it is a child of Bp. We output (~zi, ~zi) := (p, j).

We claim the condition (†) is satisfied: If the decision trees Ti′ for i′ = j, j′, p do not find a
violation either, then they will not produce an axiom violation involving vertex i. Namely,
they output ~zj := i and ~zp := i (if Bi is non-root) and the vertex j′ will be made a self-loop.

Our reduction is block-aware as each Ti outputs the whole contents of a block. It is also clear
that Ti has depth O(logn). Hence by Fact 9.4, each output bit (or even the product polynomial rT
for a subset T of output bits) of Ti can be converted to a polynomial of size nO(1). To see the
“furthermore” part of Claim 9.2, we note that any rT is a sum of leaf indicators r` of Ti (using
terminology from the proof of Fact 9.4), each of which has queried variables from at most 4 blocks
(the block Bi itself, its two children, and parent). This concludes the proof of Claim 9.2.

9.3 Upper bound for EoL

In this subsection we prove Claim 9.3. As mentioned, this was already observed by [GKRS19,
Remark 4.2], and so we include the proof only for completeness.

21

Consider the following functions qi(z), i ∈ [n], defined over the boolean variables of EoLn:

qi(z) := indegGz(i)− outdegGz(i) + δi where δi :=
{

1 if i = n,

0 if i 6= n.

Each qi can be computed by a decision tree Ti of depth O(logn). For example, to evaluate
indegGz(i) ∈ {0, 1} the tree queries the pointer ~zi, follows it, and checks whether ~z ~zi = i. Thus, as
in Fact 9.4, qi can be computed by a degree-O(logn) polynomial

∑
` r`(z) where the sum is over

leaves of Ti that output a non-zero value and

r`(z) :=
{

output value of ` if z reaches `,
0 otherwise.

Note that each ` that outputs a non-zero value has witnessed (by its queries) an axiom violation
of EoLn, say, an axiom encoded by the polynomial equation a` = 0. (That is, r`(z) 6= 0 implies
a`(z) 6= 0, or contrapositively, a`(z) = 0 implies r`(z) = 0.) This means that r` can be factored as
r` = t`a` where t` is an arbitrary polynomial. To summarize, we can express qi =

∑
` r` =

∑
` t`a`

as a sum of polynomial combinations of axioms of EoLn. Using the fact that, in any graph, the sum
of in-degrees equals the sum of out-degrees, we have our NS-refutation:∑

i∈[n]
qi =

∑
i∈[n]

δi = 1.

Finally, we note that each qi has block-degree 3, because any leaf of Ti queries at most 3 different
vertex-blocks (itself, its potential predecessor and successor). This proves Claim 9.3.

10 Algebraic Lower Bound

In this section, we prove Lemma 2.4(ii) that states that bdegS(TreeRef(F) `⊥) ≥ nΩ(1), where
F is unsatisfiable and S = Res,NS,PC, SA. We already know that bdegS(TreeRef(F) ` ⊥) ≥
Ω̃(degS(rPHPn2 `⊥)/n) by the reduction of Section 5.4 and Lemma 7.5. Hence it suffices to prove

degS(rPHPn `⊥) ≥ Ω̃(n). (6)

We show this follows from known degree lower bounds due to Razborov (for PC, any field) [Raz98]
and Georgiou and Magen (for SA) [GM08]. They used a different algebraic encoding of the pigeonhole
principle, which we recall below. In the rest of this section (Section 10.1), we show that our encoding
reduces to their algebraic encoding by a low-degree reduction. This will prove (6).

Algebraic PHP. Define aPHPn as the following system of polynomial equations over variables xij
where i ∈ [2n] and j ∈ [n]. (Strictly speaking, [GM08] did not consider the axioms Qi;j,j′ = 0, but
their result holds even if they are included.)

∀i : Qi :=
∑
j xij − 1 = 0 “each pigeon occupies a hole,”

∀i; j 6= j′ : Qi;j,j′ := xijxij′ = 0 “no pigeon occupies two holes,”
∀j; i 6= i′ : Qi,i′;j := xijxi′j = 0 “no hole houses two pigeons,”
∀i, j : Qi,j := x2

ij − xij = 0 “boolean axioms.”

(aPHPn)

Theorem 10.1 ([Raz98, GM08]). Refuting aPHPn requires degree Ω(n) in both PC and SA.

22

10.1 Reduction from aPHP

To prove (6), we translate the degree lower bound in Theorem 10.1 to our rPHP encoding via an
algebraic reduction. Namely, our goal is to show an algebraic degree-Õ(1) reduction

aPHPn ≤alg rPHPn.

Variables. We start by defining how the variables (f, g) = (fik, gj`) of rPHPn (where i ∈ [2n],
k ∈ [logn], j ∈ [n], ` ∈ [log 2n]) depend on the variables xij of aPHPn (where i ∈ [2n], j ∈ [n]). For
convenience, we think of [n] := {0, 1, . . . , n− 1} so that each hole i ∈ [n] (resp. pigeon j ∈ [2n]) can
naturally be thought of as a bit-string i ∈ {0, 1}logn (resp. j ∈ {0, 1}log 2n).

• Define fik :=
∑
j∈Jk xij where Jk := {j ∈ [n] : jk = 1} are the holes with k-th bit equal to 1.

• Define gj` :=
∑
i∈I` xij where I` := {i ∈ [2n] : i` = 1} are the pigeons with `-th bit equal to 1.

Axioms. We need to show that every axiom of rPHPn (that is, an axiom encoding g(f(i)) = i
or a boolean axiom), when substituted with the above linear forms, admit a low-degree NS-proof
(over any field) from the axioms of aPHPn. With a slight abuse of notation, we write p(x) ∼= q(x)
to mean that p(x)− q(x) = 0 can be derived from aPHPn in degree Õ(1). The boolean axioms of
rPHPn are easy to verify. Here they are for fik (the case of gj` is analogous):

f2
ik =

(∑
j∈Jk

xij
)2

=
∑
j∈Jk

x2
ij +

∑
j,j′∈Jk
j 6=j′

xijxij′ =
∑
j∈Jk

(
xij +Qi,j

)
+
∑

j,j′∈Jk
j 6=j′

Qi;j,j′ ∼=
∑
j∈Jk

xij = fik.

The crux of the reduction is to derive the main rPHPn axioms encoding f(i) = j ⇒ g(j) = i
for all i ∈ [2n] and j ∈ [n]. By the standard translation from clauses, we express these axioms as
polynomials; we write f1 := f and f0 := 1− f for short:[

f(i) = j ⇒ g(j) = i
]
≡
[
g(j) = i ∨ f(i) 6= j

]
≡
∧
`

[
gj` = i` ∨

∨
k fik 6= jk

]
≡
{
g1−i`
j`

∏
k f

jk
ik = 0 : ` ∈ [log 2n]

}
. (∗)

Before deriving these polynomial equations, we prove two helper claims.

Claim 10.2. f0
ik
∼=
∑
j∈[n]\Jk xij.

Proof. We have f0
ik = 1− fik =

(∑
j∈[n] xij −Qi

)
− fik =

∑
j∈[n]\Jk xij −Qi ∼=

∑
j∈[n]\Jk xij .

Claim 10.3.
∏
k f

jk
ik
∼= xij.

Proof. Expand each f jkik according to its definition (jk = 1) or by Claim 10.2 (jk = 0):∏
k f

jk
ik
∼= xlogn

ij +
∑
j′ 6=j′′ rj′j′′(x) · xij′xij′′ (where deg(rj′j′′) ≤ logn)

∼= xlogn
ij (xij′xij′′ = Qi;j′,j′′)

∼= xij . (boolean axioms)

23

We now derive (∗). By Claim 10.3, we have (∗) = g1−i`
j`

∏
k f

jk
ik
∼= g1−i`

j` · xij . Two cases:

Case i` = 0 (where i /∈ I`): (∗) =
(∑

i′∈I` xi′j
)
· xij

=
∑
i′∈I Qi,i′;j

∼= 0;

Case i` = 1 (where i ∈ I`): (∗) = (1−
∑
i′∈I` xi′j) · xij

= xij − x2
ij −

∑
i′∈I`\{i} xi′jxij

= −Qi,j −
∑
i′∈I`\{i}Qi,i′;j

∼= 0.

Since all derivations have degree O(logn) we have aPHPn ≤alg rPHPn via a degree-Õ(1) reduction.

Acknowledgements

We thank Shuo Pang, Aaron Potechin, and Madhur Tulsiani for discussions. R.R. was supported
by NSERC, the Charles Simonyi Endowment, and indirectly supported by the National Science
Foundation Grant No. CCF-1900460. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

[AB04] Albert Atserias and Maria Luisa Bonet. On the automatizability of resolution and
related propositional proof systems. Information and Computation, 189(2):182–201,
2004. doi:10.1016/j.ic.2003.10.004.

[ABMP01] Michael Alekhnovich, Sam Buss, Shlomo Moran, and Toniann Pitassi. Minimum
propositional proof length is NP-hard to linearly approximate. Journal of Symbolic
Logic, 66(1):171–191, 2001. doi:10.2307/2694916.

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi Wigderson. Space
complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211,
2002. doi:10.1137/S0097539700366735.

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323–334, 2008. doi:10.1016/j.
jcss.2007.06.025.

[AH19] Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for sums-of-squares
and positivstellensatz proofs. In Proceedings of the 34th Computational Complexity
Conference (CCC), volume 137, pages 24:1–24:20, 2019. doi:10.4230/LIPIcs.CCC.2019.24.

[AM19] Albert Atserias and Moritz Müller. Automating resolution is NP-hard. In Proceedings
of the 60th Symposium on Foundations of Computer Science (FOCS), pages 498–509,
2019. doi:10.1109/FOCS.2019.00038.

24

https://doi.org/10.1016/j.ic.2003.10.004
https://doi.org/10.2307/2694916
https://doi.org/10.1137/S0097539700366735
https://doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.4230/LIPIcs.CCC.2019.24
https://doi.org/10.1109/FOCS.2019.00038

[AR08] Michael Alekhnovich and Alexander Razborov. Resolution is not automatizable
unless W[P] is tractable. SIAM Journal on Computing, 38(4):1347–1363, 2008. doi:
10.1137/06066850X.

[BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.
The relative complexity of NP search problems. Journal of Computer and System
Sciences, 57(1):3–19, 1998. doi:10.1006/jcss.1998.1575.

[BCIP02] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi.
Homogenization and the polynomial calculus. Computational Complexity, 11(3-
4):91–108, 2002. Preliminary version in ICALP ’00. doi:10.1007/s00037-002-0171-6.

[BDG+04] Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann
Pitassi. Non-automatizability of bounded-depth Frege proofs. Computational Com-
plexity, 13(1-2):47–68, 2004. doi:10.1007/s00037-004-0183-5.

[Ber18] Christoph Berkholz. The relation between polynomial calculus, Sherali-Adams, and
sum-of-squares proofs. In Proceedings of the 35th Symposium on Theoretical Aspects
of Computer Science (STACS), volume 96, pages 11:1–11:14, 2018. doi:10.4230/LIPIcs.
STACS.2018.11.

[BG01] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution.
Computational Complexity, 10(4):261–276, 2001. doi:10.1007/s000370100000.

[BGIP01] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. Journal of
Computer and System Sciences, 62(2):267–289, 2001. doi:0.1006/jcss.2000.1726.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák.
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. In Proceedings
of the 35th Symposium on Foundations of Computer Science (FOCS), pages 794–806,
1994. doi:10.1109/SFCS.1994.365714.

[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence Research,
22:319–351, 2004. doi:10.1613/jair.1410.

[BKS15] Boaz Barak, Jonathan Kelner, and David Steurer. Dictionary learning and tensor
decomposition via the sum-of-squares method. In Proceedings of the 47th Symposium
on Theory of Computing (STOC), pages 143–151, 2015. doi:10.1145/2746539.2746605.

[BPR97] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. No feasible interpolation for
TC0-frege proofs. In Proceedings of the 38th Symposium on Foundations of Computer
Science (FOCS), pages 254–263, 1997. doi:10.1109/SFCS.1997.646114.

[CEI96] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Symposium on
Theory of Computing (STOC), pages 174–183, 1996. doi:10.1145/237814.237860.

[dRMN+19] Susanna de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere,
and Marc Vinyals. Lifting with simple gadgets and applications to circuit and proof
complexity. Technical Report TR19-186, Electronic Colloquium on Computational
Complexity (ECCC), 2019. URL: https://eccc.weizmann.ac.il/report/2019/186/.

25

https://doi.org/10.1137/06066850X
https://doi.org/10.1137/06066850X
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1007/s00037-002-0171-6
https://doi.org/10.1007/s00037-004-0183-5
https://doi.org/10.4230/LIPIcs.STACS.2018.11
https://doi.org/10.4230/LIPIcs.STACS.2018.11
https://doi.org/10.1007/s000370100000
https://doi.org/0.1006/jcss.2000.1726
https://doi.org/10.1109/SFCS.1994.365714
https://doi.org/10.1613/jair.1410
https://doi.org/10.1145/2746539.2746605
https://doi.org/10.1109/SFCS.1997.646114
https://doi.org/10.1145/237814.237860
https://eccc.weizmann.ac.il/report/2019/186/

[dRNV16] Susanna de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction
hinders real communication (and what it means for proof and circuit complexity).
In Proceedings of the 57th Symposium on Foundations of Computer Science (FOCS),
pages 295–304, 2016. doi:10.1109/FOCS.2016.40.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and
efficient algorithm design. Foundations and Trends in Theoretical Computer Science,
14(1-2):1–221, 2019. doi:10.1561/0400000086.

[Gar19] Michal Garĺık. Resolution lower bounds for refutation statements. In Proceedings of
the 44th Mathematical Foundations of Computer Science (MFCS), volume 138, pages
37:1–37:13, 2019. doi:10.4230/LIPIcs.MFCS.2019.37.

[Gar20] Michal Garĺık. Failure of feasible disjunction property for k-DNF resolution and NP-
hardness of automating it. Technical report, Electronic Colloquium on Computational
Complexity (ECCC), 2020. URL: https://eccc.weizmann.ac.il/report/2020/037/.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. In Proceedings of the 50th Symposium on Theory of Computing
(STOC), pages 902–911. ACM, 2018. doi:10.1145/3188745.3188838.

[GKMP20] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes
is NP-hard. In Proceedings of the 52nd Symposium on Theory of Computing (STOC),
2020. To appear.

[GKRS19] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in
monotone complexity and TFNP. In Proceedings of the 10th Innovations in Theoretical
Computer Science Conference (ITCS), pages 38:1–38:19, 2019. doi:10.4230/LIPIcs.ITCS.
2019.38.

[GL10a] Nicola Galesi and Massimo Lauria. On the automatizability of polynomial calculus.
Theory of Computing Systems, 47(2):491–506, 2010. doi:10.1007/s00224-009-9195-5.

[GL10b] Nicola Galesi and Massimo Lauria. Optimality of size-degree tradeoffs for polynomial
calculus. ACM Transactions on Computational Logic, 12(1), 2010. doi:10.1145/1838552.
1838556.

[GM08] Konstantinos Georgiou and Avner Magen. Limitations of the Sherali-Adams lift and
project system: Compromising local and global arguments. Technical report, University
of Toronto, 2008. URL: http://www.cs.utoronto.ca/pub/reports/csrg/587/CSRG-587.pdf.

[GP18] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensi-
tivity. SIAM Journal on Computing, 47(5):1778–1806, 2018. doi:10.1137/16M1082007.

[HKP+17] Samuel Hopkins, Pravesh Kothari, Aaron Potechin, Prasad Raghavendra, Tselil
Schramm, and David Steurer. The power of sum-of-squares for detecting hidden
structures. In Proceedings of the 58th Symposium on Foundations of Computer Science
(FOCS), pages 720–731, 2017. doi:10.1109/FOCS.2017.72.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time–space trade-offs in proof complexity. In
Proceedings of the 44th Symposium on Theory of Computing (STOC), pages 233–248.
ACM, 2012. doi:10.1145/2213977.2214000.

26

https://doi.org/10.1109/FOCS.2016.40
https://doi.org/10.1561/0400000086
https://doi.org/10.4230/LIPIcs.MFCS.2019.37
https://eccc.weizmann.ac.il/report/2020/037/
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1007/s00224-009-9195-5
https://doi.org/10.1145/1838552.1838556
https://doi.org/10.1145/1838552.1838556
http://www.cs.utoronto.ca/pub/reports/csrg/587/CSRG-587.pdf
https://doi.org/10.1137/16M1082007
https://doi.org/10.1109/FOCS.2017.72
https://doi.org/10.1145/2213977.2214000

[Iwa97] Kazuo Iwama. Complexity of finding short resolution proofs. In Mathematical
Foundations of Computer Science (MFCS), pages 309–318. Springer, 1997. doi:
10.1007/BFb0029974.

[Jer07] Emil Jerábek. On independence of variants of the weak pigeonhole principle. Journal
of Logic and Computation, 17(3):587–604, 2007. doi:10.1093/logcom/exm017.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of
Algorithms and Combinatorics. Springer, 2012.

[KP98] Jan Kraj́ıcek and Pavel Pudlák. Some consequences of cryptographical conjectures for S1
2

and EF. Information and Computation, 140(1):82–94, 1998. doi:10.1006/inco.1997.2674.

[KSS18] Pravesh Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation
and improved clustering via sum of squares. In Proceedings of the 50th Symposium on
Theory of Computing (STOC), pages 1035–1046, 2018. doi:10.1145/3188745.3188970.

[Las01] Jean Lasserre. An explicit exact SDP relaxation for nonlinear 0–1 programs. In Proceed-
ings of the 8th International Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 293–303, 2001. doi:10.1007/3-540-45535-3 23.

[LN17a] Massimo Lauria and Jakob Nordström. Graph colouring is hard for algorithms based on
Hilbert’s nullstellensatz and Gröbner bases. In Proceedings of the 32nd Computational
Complexity Conference (CCC), pages 2:1–2:20, 2017. doi:10.4230/LIPIcs.CCC.2017.2.

[LN17b] Massimo Lauria and Jakob Nordström. Tight size-degree bounds for sums-of-squares
proofs. Computational Complexity, 26(4):911–948, 2017. doi:10.1007/s00037-017-0152-4.

[MPW19] Ian Mertz, Toniann Pitassi, and Yuanhao Wei. Short proofs are hard to find. In
Proceedings of the 46th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), volume 132, pages 84:1–84:16. Schloss Dagstuhl, 2019. doi:
10.4230/LIPIcs.ICALP.2019.84.

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor decompositions
with sum-of-squares. In Proceedings of the 57th Symposium on Foundations of Computer
Science (FOCS), pages 438–446, 2016. doi:10.1109/FOCS.2016.54.

[O’D17] Ryan O’Donnell. SOS is not obviously automatizable, even approximately. In Pro-
ceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS),
volume 67, pages 59:1–59:10. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.ITCS.2017.59.

[OS19] Ryan O’Donnell and Tselil Schramm. Sherali–Adams strikes back. In Proceedings
of the 34th Computational Complexity Conference (CCC), pages 8:1–8:30, 2019. doi:
10.4230/LIPIcs.CCC.2019.8.

[OZ13] Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In Proceedings
of the 24th Symposium on Discrete Algorithms (SODA), pages 1537–1556, 2013. doi:
10.1137/1.9781611973105.111.

[Pap94] Christos Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.
doi:10.1016/S0022-0000(05)80063-7.

[Par00] Pablo Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods
in Robustness and Optimization. PhD thesis, California Institute of Technology, 2000.

27

https://doi.org/10.1007/BFb0029974
https://doi.org/10.1007/BFb0029974
https://doi.org/10.1093/logcom/exm017
https://doi.org/10.1006/inco.1997.2674
https://doi.org/10.1145/3188745.3188970
https://doi.org/10.1007/3-540-45535-3_23
https://doi.org/10.4230/LIPIcs.CCC.2017.2
https://doi.org/10.1007/s00037-017-0152-4
https://doi.org/10.4230/LIPIcs.ICALP.2019.84
https://doi.org/10.4230/LIPIcs.ICALP.2019.84
https://doi.org/10.1109/FOCS.2016.54
https://doi.org/10.4230/LIPIcs.ITCS.2017.59
https://doi.org/10.4230/LIPIcs.CCC.2019.8
https://doi.org/10.4230/LIPIcs.CCC.2019.8
https://doi.org/10.1137/1.9781611973105.111
https://doi.org/10.1137/1.9781611973105.111
https://doi.org/10.1016/S0022-0000(05)80063-7

[PS12] Toniann Pitassi and Nathan Segerlind. Exponential lower bounds and integrality gaps
for tree-like Lovász-Schrijver procedures. SIAM Journal on Computing, 41(1):128–159,
2012. doi:10.1137/100816833.

[PT19] Pavel Pudlák and Neil Thapen. Random resolution refutations. Computational
Complexity, 28(2):185–239, 2019. doi:10.1007/s00037-019-00182-7.

[Pud00] Pavel Pudlák. Proofs as games. The American Mathematical Monthly, 107(6):541–550,
2000. doi:10.2307/2589349.

[Pud03] Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer
Science, 295:323–339, 2003. doi:10.1016/S0304-3975(02)00411-5.

[Raz98] Alexander Razborov. Lower bounds for the polynomial calculus. Computational
Complexity, 7:291–324, 1998. doi:10.1007/s000370050013.

[RW17] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares
proofs. In Proceedings of the 44th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 80:1–80:13, 2017. doi:10.4230/LIPIcs.ICALP.2017.80.

[SA94] Hanif Sherali and Warren Adams. A hierarchy of relaxations and convex hull char-
acterizations for mixed-integer zero–one programming problems. Discrete Applied
Mathematics, 52(1):83–106, 1994. doi:10.1016/0166-218X(92)00190-W.

[Sho87] Naum Shor. An approach to obtaining global extremums in polynomial mathematical
programming problems. Cybernetics, 23(5):695–700, 1987. doi:10.1007/BF01074929.

28
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1137/100816833
https://doi.org/10.1007/s00037-019-00182-7
https://doi.org/10.2307/2589349
https://doi.org/10.1016/S0304-3975(02)00411-5
https://doi.org/10.1007/s000370050013
https://doi.org/10.4230/LIPIcs.ICALP.2017.80
https://doi.org/10.1016/0166-218X(92)00190-W
https://doi.org/10.1007/BF01074929

