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Abstract. Program slicing is the process of removing statements from
a program such that defined aspects of its behavior are retained. For pro-
ducing precise slices, i.e., slices that are minimal in size, the program’s
semantics must be considered. Existing approaches that go beyond a
syntactical analysis and do take the semantics into account are not
fully automatic and require auxiliary specifications from the user. In this
paper, we adapt relational verification to check whether a slice candidate
obtained by removing some instructions from a program is indeed a valid
slice. Based on this, we propose a framework for precise and automatic
program slicing. As part of this framework, we present three strategies
for the generation of slice candidates, and we show how dynamic slicing
approaches – that interweave generating and checking slice candidates –
can be used for this purpose. The framework can easily be extended with
other strategies for generating slice candidates. We discuss the strengths
and weaknesses of slicing approaches that use our framework.
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1 Introduction

Program slicing, introduced by Weiser [40], is a technique to reduce the size of
a program while preserving a certain part of its behavior. Different kinds of slic-
ing approaches have been developed [31]. A static slice preserves the program’s
behavior for all inputs, while a dynamic slice preserves it only for a particular
single input. A backward slice keeps only those parts of the program that influ-
ence the value of certain variables at a certain location in the program, while
a forward slice keeps those program parts whose behavior is influenced by the
variables’ values. The form of slicing introduced by Weiser is now known as static
backward slicing and is the form of slicing which is pursued in this paper. Slicing
techniques can be used to optimize the results of compilers. Slicing is also a
powerful tool for challenges in software engineering such as code comprehension,
debugging, refactoring, and fault localization [8], as well as in information-flow
security [19].
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Fig. 1. (a) Original program, (b) slice w.r.t. variable x at line 11, (c) incorrect slice
candidate

All applications of slicing can benefit from small and precise slices. Most
existing slicing approaches, however, are only syntactical, i.e., they do not take
the semantics of the various program operations into account. On the other hand,
many existing approaches that do take the semantics into account are not fully
automatic and require auxiliary specifications from the user (e.g., precomputed
or user-provided functional loop invariants are used in [4,22]).

Figure 1 shows an example of static backward slicing. The goal is to slice the
program in Fig. 1a w.r.t. a slicing criterion which requires the value of x at the
statement in line 11 to be preserved. A valid slice for this criterion is shown in
Fig. 1b: The assignment in line 6 of the program has been removed. This line
has no effect on the value of x, as it is always set to 42 in the last loop iteration.
In fact, the statement is not completely removed but replaced with an effect
free skip statement to keep the program’s structure similar to that of the input
program. To show that this program is a valid slice, a syntactical analysis is
insufficient, as it would not be able to see that in the last iteration variable x
is overwritten. A semantic analysis is required to determine that the last loop
iteration always executes the else-branch. The slicing procedure needs to reason
about loops and path conditions, and in this paper we use relational verification
for this purpose.

Relational verification approaches that consider the program’s semantics and
automatically reason about loops have become available in the last couple of
years, e.g. [13,24,38]. These approaches can efficiently and automatically show
the equivalence of two programs – provided that the two programs have a similar
structure. Since slices are constructed by removing program statements, they
have a similar structure to the original program and are a good use case for
relational verification. In this paper we make the following contributions:

1. We provide an extensible framework for precise and automatic slicing of pro-
grams written in a low level intermediate representation language, as well as
a semantics therefor. The slicing approaches using this framework need no
(auxiliary) specification other than the slicing criterion.

2. We adapt a relational verifier to check if a slice candidate obtained by remov-
ing instructions from a program is a valid slice.

3. We adapt a dynamic slicing algorithm and use it to generate slice candidates.
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The feasibility of our framework has been shown in a tool paper [5] describing an
implementation. Here, we focus on the theoretical background of the framework.

Structure of the Paper. In Sect. 2, we formally describe the programs which we
handle and define what a valid slice is. We introduce relational verification in
Sect. 3 and extend it to prove the validity of a slice candidate. The framework
itself, as well as three slicing approaches based on this framework are described
in Sect. 4. Section 5 consists of a discussion of the framework. We present related
work in Sect. 6 and conclude in Sect. 7.

2 Static Backward Slicing

Static backward slicing as introduced by Weiser [40] reduces a program by remov-
ing instructions in a way that preserves a specified subset of the program’s
behavior. The slicing criterion – the specification of the behavioral aspects that
must be retained – is given in form of a set of program variables and a location
within the program. Instructions may be removed if and only if they have no
effect (a) on the value of the specified program variables at the specified location
whenever it is reached and (b) on how often the location is reached.

High level programming languages are feature rich, increasing the effort
needed for a program analysis. A solution for dealing with language complexity
is to perform the analysis on a simpler, intermediate representation. While the
implementation of our slicing framework [5] works on LLVM IR [1] programs,
to keep the definitions in this paper easy to understand, we here use a language
whose computational model is similar to that of LLVM IR but that has only
four instructions: skip, halt , assign, and jnz . We formalize the notions of slice
candidate, slicing criterion and valid slice using a computation model based on
a register machine with an unbounded number of registers. Thus we do not have
high-level constructs such as if or while statements but instead branching and
looping are done using conditional jump instructions. The advantage of using
such a language is the fact that the control flow is reduced to jumps, and, in
the context of slicing, a program remains executable no matter what statements
are removed. Figure 2 shows the examples from Fig. 1 written in our simple IR
language. The criterion location is now 12, the criterion variable is still x.

Fig. 2. The three examples from Fig. 1 translated into our IR language.
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Fig. 3. The semantics of our programming language for a fixed program P

We will now define the semantics of our IR language. Let Var be the set of
program variables, S the set of states, where a state is a function s : Var → N,
and pc ∈ N the program counter. An instruction I is an atomic operation that
can be executed by the machine. Let I be the set of all four instructions provided
by our IR language. When an instruction is executed, the system changes its state
and program counter as determined by the transition function ρ : S × N × I →
S×N. A program P is a finite sequence of instructions: 〈I0, I1, . . . In〉. We denote
a location i of program P as P [i] with P [i] = Ii for any i ∈ {0, 1, . . . n} with
0 ≤ i ≤ len(P ) − 1, where len(P ) is the length of the program.

The semantics of the four instructions in our IR language is shown in Fig. 3.
The instruction skip increments the program counter and has no other effects.
To obtain a slice candidate, instructions in the original program are replaced
with skip. To model the termination of programs we introduce a special state,
end , such that once the system reaches this state, it will remain in this state
forever. The instruction halt is used to bring the system to the end state. The
assignment instruction, assign, takes a variable v and an integer expression exp
as arguments. After the execution of this instruction, the value of the variable
v in the new state is updated with the result x of the expression exp and the
program counter is incremented. To obtain precise slices, we restrict exp to only
one operator. The conditional jump instruction, jnz , allows the register machine
to support branching and looping. The instruction gets a variable v and an
integer expression target as arguments. If the variable v evaluates to zero in
the state in which jnz is executed, then the program counter is incremented,
otherwise the program counter is set to the value of target . We will now define
program traces:

Definition 1 (Program trace). A trace T of a program P is a possibly infinite
sequence of state and program counter pairs 〈(s0, pc0), (s1, pc1), . . .〉 such that:

1. pc0 = 0
2. For each trace index i but the last, (si, pci) � (si+1, pci+1)
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We use T s[i] and T pc [i] to denote respectively the ith state and the ith
program counter of a trace. Also we use len(T ) ∈ N ∪ {ω} to denote the length
of trace T ; note that it can be infinite. We define F l

T to be the sequence comprised
of those states T s[i] for which T pc [i] = l, in the same order as they appear in T s.
We define the notions of a slicing criterion, slice candidate and valid slice:

Definition 2 (Slicing Criterion). A slicing criterion C for a program P is a
pair (iC ,VarC) where iC is a location in P and VarC ⊆ Var.

Definition 3 (Slice Candidate). A slice candidate for a program Po is a pro-
gram PL that is constructed by replacing the instructions at some locations in
Po with the skip instruction. That is, given a set L of locations of program Po:

PL[i] =

{
skip, i ∈ L

Po[i], i /∈ L

Definition 4 (Valid Slice). Given a slicing criterion (iC ,VarC), a slice can-
didate Ps for a program Po is a valid slice for Po if, for any two traces Ts of Ps

and To of Po with Ts[0] = To[0], the following holds:

1. len(F iC
To

) = len(F iC
Ts

),
2. F iC

To
[i](v) = F iC

Ts
[i](v) for every v ∈ VarC and every i with 0 ≤ i < len(F iC

To
).

The first requirement ensures that the criterion location is reached in both
the original program and the slice candidate the same number of times. The
second requirement ensures that the criterion variables have the same values
every time the criterion location is reached in the original program and in the
slice candidate.

Weiser [40] deals with the feature-richness of programming languages by
working on flow graphs, and slices are constructed by removing nodes from the
flow-graph. In his approach, however, only nodes with a single successor can be
removed while we can remove conditional jumps. Definition 4 is similar to the
concept of observation windows in [40]; however, we do not require the original
program to terminate. Thus, we extend the definition of Weiser to nonterminat-
ing programs, as opposed to many other slicing approaches (as stated in [34])
that are not termination sensitive. Compared to other extensions of the defini-
tion of Weiser, e.g. the one in [3], Definition 4 allows for slices which are not
quotients of the original program, i.e., it allows the removal of conditional jumps
while preserving the instructions which are in the program locations between
the conditional jump and the jump target. The program

0 assign x 42
1 halt

is thus a valid slice of the program shown in Fig. 2a, according to Definition 4.
Not requiring the slice to be a quotient allows the removal of additional state-
ments. However, the structure of a slice may differ significantly from that of the
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original program. When using slicing with the goal of program optimization a
further reduction of the program is a clear advantage. If the goal is program com-
prehension, however, then the slice not being a quotient of the original program
presents both advantages and disadvantages. One the one hand, a significantly
different structure of the slice compared to that of the original program, may
cause the user to have difficulties understanding the behavior of the original pro-
gram. On the other hand, the fact that some conditional jump statements are
not in the slice may indicate to the user that certain program branches are irrel-
evant with respect to the given slicing criterion and help him better understand
the program behavior.

3 Relational Verification of Slice Candidates

Relational verification is an approach for establishing a formal proof that if a
relational precondition holds on two respective pre-states of two programs P and
Q then the respective post-states of P and Q will fulfill a relational postcondition.
For two complex programs that yet are similar to each other, much less effort is
required to prove their equivalence than to prove that they both satisfy a complex
functional specification. The effort for proving equivalence mainly depends on
the difference between the programs and not on their overall size and complexity.
This is particularly beneficial for the verification of slice candidates, because the
candidates are obtained by replacing program instructions with skip and thus
have a structure similar to the original program.

We formally define the property that is checked by a relational verifier. To
that end, we call a predicate π a transition predicate for a program P if for any
two states, s and s′, π(s, s′) holds if and only if program P when started in state
s terminates in state s′. Thus, for two programs, P and Q, a relational verifier
checks the validity of the following proof obligation:

Pre(sP , sQ) ∧ π(sP , s′
P ) ∧ ρ(sQ, s′

Q) → Post(s′
P , s′

Q),

where π and ρ are transition predicates for P and Q, respectively, and Pre and
Post are respectively the relational precondition and postcondition.

However, a relational verifier that only checks this property is of limited use
for checking slice candidates. For the case in which the location of the slicing
criterion refers to the post-state (in Fig. 2a that corresponds to location 12 that
contains the halt instruction), relational verification can be used to check whether
a slice candidate is a valid slice. For a slice candidate Q obtained from a program
P , this is done by setting Pre to require equal pre-states sP and sQ and Post to
require the criterion variables to evaluate to the same values in the post-states
s′
P and s′

Q. However, a successful proof shows the validity of the slice candidates
only for inputs for which both P and Q terminate, as the transition predicates
may be false for certain pre-states. In the rest of this section we show how a
relational verifier can be adapted to support slicing on locations other than the
end of the program and how to use relational verification to also show that
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Fig. 4. The CFG for the program in Fig. 2a

the program and candidate run in lockstep (i.e. the two executions run through
corresponding states), ensuring thus mutual termination.

Our slicing framework is based on the LLRêve [14,24] relational verifier,
which works on programs written in LLVM IR. It analyzes the control flow graphs
(CFGs) of the programs and reduces the validity of the relational specification
to the satisfiability of a set M of Horn-constraints over uninterpreted predicates.
The satisfiability of the Horn-constraints in M can be checked with state of the
art SMT solvers such as Z3 [32] and Eldarica [35].

If the analyzed programs contain loops, their CFGs contain cycles, which con-
stitute a challenge for verification because the number of iterations is unknown.
LLRêve handles cycles by using so called synchronization points, at which the
program state is abstracted by means of predicates. The paths between synchro-
nization points are cycle free and can be handled easily. Synchronization points
are defined by labeling basic blocks of the CFG with unique numbers. The entry
and the exit of a function are considered special synchronization points B and,
respectively, E. Additionally, the user can also define synchronization points at
any location of the analyzed programs. The user must ensure that there is a syn-
chronization point for each basic block of the CFG of the two programs, and has
to match them appropriately. In general, it is difficult to find matching synchro-
nization points for two programs; however, in the case of program slicing this
can be done automatically by keeping the CFG of the original program. Figure 4
shows the CFG for the program in Fig. 2a and each basic block is labeled with
the number of a synchronization point. In the CFG of the slice in Fig. 2b, the
assign instruction in block 4 is replaced with skip, the synchronization points
remain the same, and matching them is trivial. If a conditional jump is replaced
with skip, we only remove the edge to the block containing the jump target, thus
keeping the same synchronization points for the slice candidate.

Given one synchronization point per basic block, the CFG can be viewed as
a set of linear paths 〈n, π,m〉, where n and m denote the starting and end syn-
chronization points of the path, and π(s, s′) is the transition predicate between
the two synchronization points, with s and s′ being the states before and, respec-
tively, after the transition. Because the linear paths consists of assignments only,
the transition predicates can be easily computed. For two programs with a sim-
ilar structure, it is expected that there exist coupling predicates that describe
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B n1 n2 . . . E

B n1 n2 . . . E

Pre Cn1 Cn2 Post

Fig. 5. Illustration of coupled control flow of two fully synchronized programs

the relation between the program states at two corresponding synchronization
points. For two programs P and Q we introduce an uninterpreted coupling pred-
icate Cn(sp, sq) for each synchronization point n, as shown in Fig. 5. The rela-
tional precondition Pre and postcondition Post are the coupling predicates for
the special synchronization points B and E, respectively. The set M consists of
Horn-constraints over these coupling predicates. For two linear paths between
synchronization points n and m in programs P and Q characterized by the two
transition predicates π and ρ, respectively, this constraint is added to M :

Cn(sp, sq) ∧ π(sp, s′
p) ∧ ρ(sq, s′

q) → Cm(s′
p, s

′
q) (1)

To ensure that there is no divergence from lockstep, for every two paths 〈n, π,m〉
and 〈n, ρ, k〉 in programs P and Q, respectively, with m 
= k,m 
= n, n 
= k the
following constraint is added to M :

Cn(sp, sq) ∧ π(sp, s′
p) ∧ ρ(sq, s′

q) → false (2)

Note, that even though the synchronization points m and k do not appear
in Eq. 2, they respectively determine the transition predicates π and ρ.

Theorem 1. Let P and Q be programs specified with the relational precondition
Pre and postcondition Post, for which matching synchronization points have been
found. Let M be the set of constraints generated according to 1 and 2. If M is
satisfiable, then for every pair of pre-states satisfying Pre:

1. The synchronization points are reached in the same order in P and Q,
2. If P terminates, then so does Q and Post holds for the two post-states.

Proof. For distinct synchronization points n,m, k, the fact that constraint 2 has
a model implies that (case 1) π or ρ is false, meaning that the execution of P or
Q cannot reach respectively m or k from n, or (case 2) Cn is false meaning that
n is not reachable in P or Q, or per (chaining of) constraint 1 the pre-states do
not satisfy the precondition. Thus, P and Q reach the synchronization points
(including E, thus implying mutual termination) in the same order. For two
synchronization points n,m, the fact that constraint 1 has a model implies that
(case 1) m cannot be reached from n in P or Q, or (case 2) Cn is false and
n is not reachable or the pre-states do not satisfy the precondition, or (case 3)
starting in n with Cn holding, both programs reach m and Cm holds there. The
constraints generated according to 1 are thus interpolants that show the validity
of the relational specification. ��
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To check the validity of a slice candidate for the cases in which the criterion
location is in the middle of the program, we adapt the constraints generated by
the relational specification. The relational precondition Pre still requires equal
pre-states, while the relational postcondition Post is set to true. We ensure a
synchronization point nC exists in the program and slice candidate at the loca-
tion of the criterion instruction. For example Fig. 2a nC is the synchronization
point 5 in Fig. 4. If the criterion location is part of a basic block with more
than one instruction, we split that basic block up such that we obtain a block
containing only the criterion location. For a program P with a slice candidate
Q and a given slicing criterion (iC , VC) with a synchronization point nC we add
the following constraint:

CnC
(sP , sQ) → ∀x ∈ VC sP (x) = sQ(x) (3)

Theorem 2. Let P be a program and Q a slice candidate specified with the
relational precondition Pre requires equal pre-states and postcondition Post is
true. Let M be the set of constraints generated according to 1, 2 and 3. If M is
satisfiable, then for every pair of pre-states that fulfill Pre:

1. The criterion location is reached equally often in P and Q,
2. At the i-th time (for i ≥ 1) the criterion instruction is reached in P and in

Q, the criterion variables are equal in P and Q,
3. If P terminates, then so does Q.

Proof. From Theorem 1 results that P and Q run in lockstep with respect to the
synchronization points. The instruction at the criterion location has its own syn-
chronization point. As a consequence of this, the criterion instruction is executed
in both P and Q the same number of times and the candidate terminates iff the
original program terminates. Due to Constraint 3, the coupling predicate corre-
sponding to the criterion locations ensures that each time the criterion location
is reached, the criterion variables have the same values. ��

Thus, for a program P with a slice candidate Q and a slicing criterion
(iC , VC), if the set M containing the constraints 1, 2 and 3 for every synchro-
nization point is satisfiable, then Q is a valid slice according to Definition 4.
Moreover, if the set M is unsatisfiable, then the SMT solver returns an unsatis-
fiability proof that contains a counterexample with two concrete inputs for which
the slice property is violated – provided the SMT solver does not time out.

4 A Framework for Automatic Slicing

Being able to use relational verification to check whether a slice candidate is
valid, we construct a framework for automatic program slicing. The framework
consists of two components which interact with each other. The first compo-
nent, the candidate generation engine, generates the slice candidates and sends
them to the second component, the relational verifier (in this case LLRêve).
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The relational verifier transmits one of three possible answers to the candidate
generation engine: (1) the candidate is a valid slice, (2) the candidate is not valid
along with an input that leads to a violation of the slice property (Definition 4),
or (3) a timeout. The candidate generation engine can use the answer to adapt
its candidate generation strategy.

An advantage of the framework is that the candidate generation engine does
not need to care about the correctness of the slice candidates it generates –
as this is taken care of by the relational verifier. The framework can easily be
extended with candidate generation strategies other than those that we present
in this paper. Thus, it provides a platform for relational verification based slicing
for the software slicing community.

We distinguish between two types of candidate generation strategies. On the
one hand there are strategies that generate candidates by replacing program
instructions by skip according to some heuristics without using any information
from the relational verifier other than the existence of a counterexample. Exam-
ples for such properties are described in Sect. 4.1. On the other hand there are
strategies that also consider the values from the counterexample when gener-
ating the next slice candidates. We present one such strategy, counterexample
guided slicing, in Sect. 4.2.

4.1 Removing Instructions Based on Heuristics

The brute forcing (BF) strategy generates all possible slice candidates. As their
number is exponential w.r.t. the number of instructions in the original program,
it is clear that this strategy does not scale for large programs. Nevertheless,
this strategy has the benefit of generating the smallest possible slice with our
framework. Brute forcing can be used as part of a divide and conquer strategy to
slice parts of programs which are small enough. As an improvement, this strategy
can start by generating the candidates in ascending order with respect to their
size, i.e. the number of instructions that the candidate retains from the original
program. Once a candidate is shown to be a valid slice, no further candidates
need to be checked, as their size cannot be smaller than that of the found slice.

The single statement elimination (SSE) strategy successively replaces a single
instruction of the original program with skip, and checks whether the obtained
program is a valid slice. If this is the case, the strategy attempts to successively
remove every other instruction as well. The strategy requires, in the worst case,
quadratically many calls to the relational verifier, which occurs when in each
iteration the last candidate is shown to be a valid slice. Although this approach
scales better than BF, it finds only slices in which program instructions can
be removed individually. Groups of instructions such as assign x (x + 50)
and assign x (x - 50) where the removal of a single instruction results in
an invalid slice candidate, but removing the entire group would result in a valid
slice cannot be removed. The SSE strategy can be generalized to support the
removal of groups of up to a given number of instructions.
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4.2 Counterexample Guided Slicing

The counterexample guided slicing (CGS) strategy uses dynamic slicing to gen-
erate slice candidates. Dynamic slicing was first introduced in [27], and a sur-
vey on dynamic slicing approaches can be found in [28]. For the CGS strategy
we adapted the dynamic slicing algorithm from [2], which is a syntactic app-
roach based on the Program Dependence Graph (PDG) [15]. The PDG is a
directed graph in which nodes represent program instructions, conditions, or
input parameters, and edges represent possible dependencies between the nodes.
An edge from node n1 to node n2 encodes that n1 may depend on n2. There are
roughly two types of dependencies in the PDG. On one hand data dependencies
arise when one node uses program variables which are defined in another node.
Control dependencies, on the other hand, arise when the execution of a node
depends on the other, control, node (e.g. an instruction may be executed only if
the condition of a conditional jump is true). Whether an edge exists between two
nodes in the PDG is determined syntactically by analyzing the CFG. Because
the CFG represents an over-approximation of the possible program executions,
the PDG edges also represent an over-approximation of the real dependencies in
the program. Using the PDG, a backward slice is computed by finding all nodes
that are reachable from a node representing the criterion location. On the most
basic level, the algorithm in [2], which receives the PDG and an execution trace
as inputs, works by computing the subgraph of the PDG which contains only
the nodes corresponding to those instructions which have been executed in the
program trace. The dynamic slice is computed using this subgraph and further
optimizations are possible, as it has to be valid only for a single input.

A PDG node can depend on multiple other nodes, but some of these depen-
dencies are determined by the execution path of the program (e.g. a variable
can be assigned on more than one branch, resulting in multiple dependencies for
instructions that use that variable). Unlike static slicing, for dynamic slicing only
one execution path is relevant – the one corresponding to the input for which the
dynamic slice is computed. Thus, PDG edges representing dependencies that are
relevant only for other inputs can be removed. A similar situation arises with
loops: at different loop iterations, a node inside the loop body may have different
dependencies. When performing dynamic slicing, the number of iterations done
by a loop is known (assuming the program terminates for the input), and the
PDG can be extended with nodes representing the body instructions at different
iterations, which also leads to an increased precision of the dynamic slice. The
extended PDG is called a dynamic dependence graph (DDG) in [2]. Based on
the observation that the nodes inside the loop body can depend on only a finite
number of other nodes, a new node is added to the PDG just for those iterations
in which the corresponding instruction has different dependencies than in all
previous iterations. These optimizations give rise to the reduced dynamic depen-
dence graph (RDDG). Thus, by ignoring dependencies caused by other inputs
than the one for which the dynamic slice is computed, additional instructions
can be removed than in the case of static slicing. To ensure compatibility with
the slicing property from Definition 4, we adapt this algorithm to support cri-
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Data: Program P , Slicing criterion (iC , VC)
Result: Program Slice Ps

Ps ← Φ; s ← 0̄; b ← false;
repeat

Pd ← dynamicSlice(P, s, (iC , VC));
Ps ← SDS(Ps, Pd);
(b, s) ← relationalVerification(P, Ps, (iC , VC));

until b ∨ timeout ;
if timeout then

Ps ← P ;
end
return Ps;

Algorithm 1. The CGS Strategy

terion locations other than the end of the program. For this, when computing
the dynamic slice with the RDDG we do not mark the return statement, as is
done in [2], but rather all nodes that correspond to the criterion location. If the
criterion location is inside a loop, then multiple nodes are marked.

The adapted RDDG dynamic slicing algorithm is purely syntactical and thus
scales much better than a semantic approach. Thus we can use it as part of
the candidate generation strategy, as relational verification of slice candidates
remains the bottleneck of our framework.

For the CGS strategy we wish to merge several dynamic slices Pd1 , . . . , Pdn

for the respective input states s1, . . . , sn into a single dynamic slice Pu that is a
valid for all inputs s1, . . . , sn. In general, the union slice of dynamic slices (which
contains all program instructions that are in at least one dynamic slice) is not
a correct dynamic slice for all respective inputs of the given dynamic slices. A
solution to this was presented in [18] in the form of an iterative algorithm called
simultaneous dynamic slicing (SDS), which computes a single dynamic slice valid
for each input in a given set.

We can now present the CGS strategy, shown in Algorithm1. It starts with an
initialization of the slice candidate Ps with a program Φ, in which all instructions
have been replaced with skip, of an arbitrary initial state s, e.g. one in which
all variables are set to 0 and of the variable b which will be set to true when a
valid slice will be found. The strategy uses the initial state s with the criterion
(iC , VC) to compute a dynamic slice Pd. The instructions from Pd are then added
to the slice candidate Ps which is checked for validity by the relational verifier. If
Ps is a valid slice candidate, the variable b is set to true and the strategy returns
Ps. Otherwise, the relational verifier delivers a counterexample, which is used as
the initial state s in the next iteration. Both the dynamic slicer and relational
verifier may timeout, in which case the strategy returns the original program P .

Theorem 3. Let P be a program and Pd be a dynamic slice for all initial states
s ∈ Sd, and sce be the counterexample obtained when checking whether Pd is a
valid slice of P . Then the following holds:
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1. sce /∈ Sd.
2. The dynamic slice Pce for the initial state sce contains at least one instruction

which is not in Pd.

Proof. Both properties follow from the correctness of the relational verifier and of
the dynamic slicer and of the SDS algorithm. (1) If sce ∈ Sd then the relational
verifier delivered a spurious counterexample, the dynamic slicer delivered an
invalid dynamic slice, or the SDS algorithm computed a wrong simultaneous
dynamic slice. (2) If Pce contains no additional instruction compared to Pd,
then Pd ∪ Pce = Pd which means that Pd is a dynamic slice for sce. This implies
that the relational verifier delivered a spurious counterexample. ��

Theorem 3 guarantees that the CGS strategy adds at least one instruction
back after each iteration. Thus, the number of calls of the relational verifier is
linear in the number of program instructions. The SDS algorithm is needed for
this theorem to hold. The validity of the slice computed with CGS, however,
is guaranteed by the relational verifier. Thus, if the CGS algorithm computes
the simple union of dynamic slices, the relational verifier my return a counterex-
ample that it already provided in a previous CGS iteration. In this case the
CGS algorithm needs to terminate and return the original program. Given the
fact that computing the union of dynamic slices is much easier than computing
the simultaneous dynamic slice, the user of the framework must make a choice
between performance and completeness. Our implementation of CGS computes
the union of dynamic slices.

The CGS strategy has the least number of calls to the relational verifier com-
pared with the other strategies presented in this paper. Nevertheless, it comes
with some disadvantages. First, the program needs to be executed at each itera-
tion, which – depending on the analyzed program – can cause performance issues
and for some inputs the program may not even terminate. Second, the CGS
strategy is vulnerable to timeouts of the relational verifier. If a timeout occurs,
then the strategy fails entirely and must return the original program as the slice
candidate, while the BF and SSE strategies could continue their search for a
valid slice candidate. Third, the precision of CGS depends on the precision of
the dynamic slicing approach used in the candidate generation. Even though the
used dynamic slicing approach can remove more statements than static syntactic
slicing approaches, the dynamic slices it computes are still over-approximations.

5 Discussion

We start the discussion by reiterating the evaluation results [6] of the prototyp-
ical implementation of the framework consisting of the tool SemSlice [5,7], as
shown in Table 1. For the evaluation, we used a collection of small but intricate
examples (e.g., the example of Fig. 1 or a routine in which the same value is
first added and then subtracted), each focusing on a particular challenge which
cannot be handled by syntactic state of the art slicers. Some examples are taken
from slicing literature [4,9,16,22,39]. The second column indicates the source of
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Table 1. Evaluation
Original BF SSE CGS

Example Source #stmts time (s) #stmts #calls time (s) #stmts #calls time (s) #stmts #calls

count occurrence error self 50 13 42 11

count occurrence result self 50 16 44 13

dead code after ssa [39] 4 < 1 2 4 < 1 2 4 < 1 2 1

dead code unused variable self 3 < 1 2 2 < 1 2 3 < 1 2 1

identity not modifying [16] 8 < 1 3 3 < 1 7 5 < 1 6 1

identity plus minus 50 [4] 5 < 1 2 4 < 1 5 4 < 1 5 1

iflow cyclic [39] 18 62 14 2197 < 1 16 6 < 1 17 1

iflow dynfamic override self 15 23 8 1298 < 1 11 8 < 1 12 1

iflow endofloop (Fig. 1) self 19 118 15 4065 < 1 16 7 < 1 18 2

intermediate self 13 4 11 129 < 1 12 5 < 1 12 2

requires path sensitivity [22] 20 647 16 26894 < 1 17 10 < 1 18 3

single pass removal self 13 < 1 3 7 < 1 6 11 < 1 8 1

unchanged over itteration self 20 29 9 932 1 15 14 < 1 20 2

unreachable code nested self 10 < 1 2 1 < 1 9 1 < 1 4 1

whole loop removable self 20 15 8 469 < 1 17 5 < 1 17 2

each example, the third the number of LLVM-IR statements in the program. For
each slice candidate generation-strategy from Sect. 4 (BF, SSE, and CGS), the
table lists the number of statements in the smallest slice found by SemSlice,
the (wall) time needed by the tool, and the number of calls to the relational veri-
fier. The experiments were conducted on a machine with an Intel Core I5-6600K
CPU and 16 GB RAM. The exponential BF approach works satisfactorily fast
on functions with up to 20 statements, and while it requires more time than the
other approaches it computes more precise slices. For examples with less than
10 statements the brute-force approach takes less than one second. The other
two approaches achieved slices of similar precision (to each other) and required
less than one second for most examples. The evaluation shows that the frame-
work can handle programs that require a large number of calls to the relational
verifier, e.g. the program requires paths sensitivity with the BF strategy called
the relational verifier almost 27000 times and took about 10 minutes to find the
slice. The BF strategy serves as a worst-case scenario when using the slicing
framework to automatically slice programs. Other strategies need fewer calls.
For this example the other strategies were still able to remove some instructions
with fewer less calls to the relational verifier and therefore they could scale to
larger programs. Thus, the scalability of our slicing approach can be increased
by using candidate generation strategies that do not call relational verifier often.
Another way to ensure that our approach to slicing scales to large programs is to
apply it to individual program functions (as opposed to applying it to the entire
program). Our current prototypical implementation supports only a subset of
the LLVM IR instruction set, which is the main reason we did not evaluate it
on large, real-life programs.

Our slicing approach works on an intermediate representation language. This
is beneficial for the implementation of the approach, as it does not need to
handle all features of a modern high level programming language. However, one
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of the uses for program slicing is to help the user debug and comprehend a
program written in a high level language. It is possible to perform relational
verification of such programs, the early version of LLRêve was in fact working
on a simple while language in [14], LLVM-IR was later chosen [24] to increase
the practicability of LLRêve. We believe the current framework can be adapted
for slicing high level languages by either (1) attempting to translate back the
IR slice to the high level language, or (2) by defining the slicing candidate in
the high level language and then translating both the original program and the
slice candidate into the IR and then using the extended relational verifier. For
the first option we expect that only an over-approximation of the IR slice can
be obtained by translating it back into the high level language, similar to what
was done in [20]. As for the second solution, the CFGs of the original program
and slice candidate in the IR may be so different that our approach would no
longer be able to automatically find matching synchronization points. A solution
to this would be to automatically annotate the original program and its slice
candidate in the high level language, thus marking the synchronization points
and using these marks in the IR translation. A further solution for supporting
a high-level language would be to extend the work in [14] with the ideas of
this paper. Thus, Definition 4 of a valid slice would need to be adapted for
high-level programming languages and the weakest liberal precondition calculus
from [14] would need to be extended such that it supports slicing in the case in
which the criterion location is in the middle of the program. By working on the
high-level programming language we would lose the advantages of working on
an intermediate representation, i.e. relative language independence and existing
support for various code optimizations, but our approach to slicing would become
more suitable for program debugging and comprehension.

The IR language that we used to present our approach is not inter-procedural.
While we could consider all programs as having been inlined beforehand, recur-
sive procedures would not be supported. The relational verifier supports dealing
with function calls using mutual function summaries [24] which abstract two
matching function calls using coupling predicates. In general it is difficult to
find matching function calls, but for checking the validity of slice candidates this
can be done automatically, similar to finding matching synchronization points.
Thus, our approach can be extended to support recursive functions; however the
function calls themselves may not be removed, otherwise the mutual function
summaries cannot be used.

In the semantics that we provided in Sect. 2 we assume that an error (e.g. a
division by zero) causes the system to transition to the end state. An interesting
question in the context of program slicing is whether instructions which may
cause errors can be removed from the program. While some approaches (e.g.
[33,34]) keep the error prone instructions in the slice, others (e.g. [29]) allow
the removal of such statements but at the cost of a weaker soundness property
(i.e., what constitutes a valid slice) which is nonetheless still useful in certain
application scenarios such as software verification. With our slicing approach, we
keep error prone instructions in the slice. However, because we take the semantics
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of the program instructions into account, we can remove error prone instructions
which will never cause an error, e.g. a division where the divisor will never be
zero.

The completeness of our approach, i.e. whether a valid slice according to Def-
inition 4 is deemed as such, is limited in practice by two factors. First, the rela-
tional verifier is required to automatically infer the coupling predicates needed
to verify the validity of a slice candidate. The relational verifier works well when
the needed coupling predicates are limited to linear arithmetics [26]. The second
factor limiting completeness is the requirement that the original program and
the slice candidate must run in lockstep. This is needed to ensure the mutual ter-
mination and that the criterion location is executed the same number of times.
Thus, whereas we can remove instructions from inside a loop, we are not able to
remove the loop itself (in our case the conditional jump instruction), even if it
is empty – i.e. it loops over skip instructions.

6 Related Work

Static slicing is an active area of research and many approaches have been devel-
oped. We present those that are most similar to our work.

Assertion based slicing [4] also takes the semantics of the program into
consideration. Program methods must be specified with a contract, which
also represents the slicing criterion, i.e. statements are removed such that the
reduced program still fulfills the contract. Unlike in our approach, loop invari-
ants are required and only groups of instructions that are at consecutive pro-
gram locations can be removed. This approach improves and combines older
approaches [10,11], an implementation also exists [12]. The approach in [30] also
uses a method’s contract as the slicing criterion. However, the program parts
that are deemed irrelevant are not removed, but replaced with an abstraction.
Thus, the slice candidate over-approximates the behavior of the original pro-
gram. If the contract is proved for the slice candidate, then it is also valid for
the original program.

Path sensitive backward slicing [22] is another slicing approach that takes
the program’s semantics into consideration. The main idea is to symbolically
execute the program and check the satisfiability of the path condition of every
execution path. Only the satisfiable paths are used for computing the slice. The
approach handles loops by using abstract interpretation to generate loop invari-
ants, which can lead to an over-approximated description of the loop behavior.
Thus, while the approach offers an increased precision when compared to syntac-
tic approaches, it is not able slice the program in Fig. 1a. An implementation of
this approach is available in the tool Tracer [23]. The idea of discarding depen-
dencies that can only occur on infeasible program paths has also been explored
in other works e.g. [9,36]. For these approaches, a compromise between the pre-
cision and scalability had to be found.

Abstract program slicing [17] is an approach which makes use of the program’s
semantics, however a different slicing criterion is used. Instead of preserving
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those instructions that affect the exact values of the criterion variables at the
criterion location, this approach preserves the statements that affect a property
of the criterion variable. The properties pursued in this approach are whether
the variables belong to a given abstract domain, e.g. the positive integers. Using
abstract interpretation, for some operations the abstract domain of the output is
known – provided the abstract domains of the inputs are also known. Thus some
dependencies modeled in the PDG can be removed. This approach can generate
slices which are not valid according to Definition 4.

The Frama-C framework [25] for software analysis provides components that
support abstract interpretation and program slicing (based on program depen-
dence graphs). Abstract interpretation can be used to improve the precision of
the slicing component by identifying some infeasible branches. Abstract inter-
pretation can automatically handle loops, but it does this by over-approximating
their effects.

In [33] a different notion of semantic dependence between program statements
is defined. In that work it is assumed that each node in the CFG of a program
has an assigned function that represents the computation performed by that
node. Thus, a statement s is semantically dependent on a statement s′ if the
interpretation of the function computed by s′ affects the execution behavior
of s. Consider a program that contains the instruction assign x (x + 0)
followed by the criterion location and x as a criterion variable. According to
the definition from [33] the assignment would be in the slice, because if the
interpretation of the symbol + changes (e.g. to multiplication) then so would
the value of x at the criterion location. In our approach, on the other hand, we
consider the semantics of the program instructions to be fix, and can remove the
statement from the slice, as it leaves the value of x unchanged.

Other, syntactic, slicing approaches have been surveyed in [41] and in [37],
and a survey of dynamic slicing techniques can be found in [28].

7 Conclusion and Future Work

We extended a relational verification approach such that it can check whether a
slice candidate is indeed a valid slice. Based on this, we built a framework for pre-
cise and automatic static slicing which consists of a candidate generation engine
and the extended relational verifier. We presented three strategies to compute
slice candidates, of which counterexample guided slicing is more sophisticated.
It uses the counterexample provided by the relational verifier to refine the slice
candidate with a dynamic slicer.

We plan to improve the precision of the slices by performing an additional
analysis on empty loops to check whether they terminate. If this is the case,
they can be safely removed. Furthermore, we plan to improve the performance
of the relational verifier by using PDGs to simplify the programs that need to
be checked for equivalence, using the fact that two programs with isomorphic
PDGs are equivalent, as shown in [21]. We will also investigate how the results
(e.g. coupling invariants) of the relational verifier can be reused when checking
another slice candidate, constructed from the same original program.
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regression verification. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, ASE 2014, pp. 349–360. ACM (2014).
https://doi.org/10.1145/2642937.2642987

15. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987).
https://doi.org/10.1145/24039.24041

https://llvm.org/docs/LangRef.html
https://doi.org/10.1145/93542.93576
https://doi.org/10.1145/93542.93576
https://doi.org/10.1016/j.tcs.2009.10.025
https://doi.org/10.1016/j.tcs.2009.10.025
https://doi.org/10.1007/s00165-011-0196-1
https://doi.org/10.1007/s00165-011-0196-1
https://doi.org/10.1007/978-3-319-66845-1_20
https://doi.org/10.5281/zenodo.3334571
https://doi.org/10.5281/zenodo.3334553
https://doi.org/10.1016/S0065-2458(03)62003-6
https://doi.org/10.1016/S0065-2458(03)62003-6
https://doi.org/10.1016/S0950-5849(98)00086-X
https://doi.org/10.1016/S0950-5849(98)00086-X
https://doi.org/10.1145/372202.372784
https://doi.org/10.1145/372202.372784
https://doi.org/10.1007/3-540-60973-3_107
https://doi.org/10.1145/1868281.1868284
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/24039.24041


Using Relational Verification for Program Slicing 371

16. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1995, pp. 379–392. ACM, New York (1995). https://doi.org/10.
1145/199448.199534

17. Halder, R., Cortesi, A.: Abstract program slicing on dependence condition graphs.
Sci. Comput. Program. 78(9), 1240–1263 (2013). https://doi.org/10.1016/j.scico.
2012.05.007

18. Hall, R.J.: Automatic extraction of executable program subsets by simultaneous
dynamic program slicing. Autom. Softw. Eng. 2(1), 33–53 (1995). https://doi.org/
10.1007/BF00873408

19. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399–422 (2009). https://doi.org/10.1007/s10207-009-0086-1

20. Herda, M., Tyszberowicz, S., Beckert, B.: Using dependence graphs to assist veri-
fication and testing of information-flow properties. In: Dubois, C., Wolff, B. (eds.)
TAP 2018. LNCS, vol. 10889, pp. 83–102. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-92994-1 5

21. Horwitz, S., Prins, J., Reps, T.: On the adequacy of program dependence graphs
for representing programs. In: Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1988, pp. 146–157.
ACM, New York (1988). https://doi.org/10.1145/73560.73573

22. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Path-sensitive backward slicing.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 231–247. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 17

23. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a symbolic execution
tool for verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 758–766. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31424-7 61

24. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR - combining static verification and dynamic analysis. J. Autom. Reason. 60(3),
337–363 (2017). https://doi.org/10.1007/s10817-017-9433-5

25. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7
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