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We explain an asymmetric Prover-Delayer game which precisely characterizes proof size
in tree-like Resolution. This game was previously described in a parameterized complexity
context to show lower bounds for parameterized formulas (Beyersdorff et al. (2013) [2])
and for the classical pigeonhole principle (Beyersdorff et al. (2010) [1]). The main point of
this note is to show that the asymmetric game in fact characterizes tree-like Resolution

proof size, i.e. in principle our proof method allows to always achieve the optimal lower

Keywords:

Computational complexity
Proof complexity
Prover-Delayer games
Resolution

bounds. This is in contrast with previous techniques described in the literature. We also
provide a very intuitive information-theoretic interpretation of the game.
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1. Introduction

Resolution is one of the best-known and most-studied
proof systems. It was developed by Blake [3], Davis and
Putnam [6], and Robinson [15] and refutes unsatisfi-
able formulas in CNF by using the single inference rule
%. Due to its simplicity, Resolution is widely used
in applications. In fact, most modern SAT solvers employ
subsystems of Resolution as their underlying mechanism.
One particularly important subsystem is tree-like Resolu-
tion where proofs are in the simple form of a tree, i.e. each
derived clause can be used at most once. When we focus
on unsatisfiable formulas, tree-like Resolution is equiva-
lent to the execution of DLL algorithms and to decision
trees for the search problem (i.e. to find a falsified clause
under a given assignment).

A number of techniques have been developed to under-
stand the complexity of Resolution and its fragments. Most
notably, there is the size-width tradeoff [5], the feasible
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interpolation technique [12] and several game-theoretic
methods [13,14]. All these techniques provide powerful
tools for showing lower bounds to the size (and some-
times width and space) of Resolution refutations. One in-
teresting question is how good these lower bounds are, i.e.
if the techniques can be used to obtain optimal bounds.
One nice result in this direction is the characterization of
tree-like Resolution space by Esteban and Toran [9]. Their
characterization uses the Prover-Delayer game devised by
Pudlak and Impagliazzo [13] which is a simple and elegant
method to obtain bounds on the size of tree-like Resolution
refutations. But exactly for this characterization of Esteban
and Toran, the game of Pudldk and Impagliazzo does not
yield optimal size bounds for tree-like Resolution refuta-
tions.

Our contribution in this note is to explain a refined
version of the Pudlak-Impagliazzo game, the asymmetric
Prover-Delayer game. This game has been used previously
in Parameterized Resolution [2] and for the classical pi-
geonhole principle [1]. Here we present a slightly simpli-
fied version for classical tree-like Resolution and observe
that our asymmetric game precisely characterizes tree-like
Resolution size. This result provides an interesting coun-
terpart to the result of Esteban and Toran [9] in that we
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now have elegant combinatorial characterizations of both
tree-like Resolution space and size.

As mentioned above, the original symmetric game of
[13] was also studied by Esteban and Toran [9], who
prove that the tree-like Resolution clause space complex-
ity of a formula is exactly equal to the largest number of
points achievable by the Delayer in the symmetric game.
The lower bound for proof length follows from the fact
that a formula with clause space complexity s requires
proof length at least 25 (cf. [8]). This connection with
clause space complexity limits the strength of the sym-
metric method, since there are formulas for which the
above lower bound is not tight (e.g. the classical pigeon-
hole principle [11,7,1]). This is so because the clause space
complexity of a formula F is s if and only if any proof tree
for F contains a complete binary tree of height s. The gap
between the size of such a minor and the size of the proof
tree is exactly what the symmetric game fails to analyse.
In contrast, our result here (Corollary 2) states that the
asymmetric game precisely characterizes the proof size. As
a consequence our result shows that for some formulas the
tree-like size is larger than 2tree-like space

The remaining part of this paper is organized as fol-
lows. In Section 2 we describe the asymmetric Prover-
Delayer game. Section 3 collects some facts on the cor-
respondence between tree-like Resolution refutations and
boolean decision trees. Sections 4 and 5 then state the two
directions of our characterization of tree-like Resolution
size by the asymmetric game. We conclude in Section 6
with an example illustrating the advantage of the asym-
metric game over the symmetric version.

2. Asymmetric Prover-Delayer games

The game starts with an unsatisfiable formula F in CNF,
and it is played by two players called Prover (female) and
Delayer (male). The Delayer brags that he knows a satisfy-
ing assignment for F, and the Prover wants to expose his
lie. At each round of the game Prover asks Delayer for the
value of one of the variables, and she continues to query
until a clause of F is falsified. In each round the Delayer
scores some points and indeed the objective of the Delayer
is to maximize his score at the end of the game, before be-
ing eventually exposed by the Prover.

Let F = /\j C; be the CNF they play on. We say that
“Cj(a) =b" when the partial assignment « forces clause
C; to evaluate to b. We say that Cj(«) is undefined other-
wise.

The game is played in rounds, and while the two play-
ers interact they build a partial assignment as byproduct
of their interaction. We denote by «; and s; the partial
assignment and the Delayer score at the end of round i, re-
spectively. At the beginning of the game «p = and so = 0.
At round i:

1. Prover asks for a variable x ¢ dom(«j_1);
2. Delayer assigns two weights pg and p; to the two pos-
sible answers; the weights must satisfy:

po =0, p1 20, po+p1=1 (1)

3. Prover chooses value b, and the status of the game is
updated’:

1
ai=ai- U{(x. D)}, si=si_1 +log o

The game ends at the first round i such that C;(a;) =0 for
some clause C;. The final score of the Delayer is s;.

The game has been already used in the articles [1,2].
Here the game description is simpler, in particular two de-
tails are different. The first one regards the weights pg
and pq. The previous definition of the game separates the
weight function and the Delayer strategy. Since both must
be carefully chosen for proving a lower bound, we can as-
sume that the Delayer himself decides the value of this
function at each step of the game. The second difference is
that in the previous definition the Delayer was allowed to
answer Prover’s query at the cost of not scoring anything
in that round. In the new formulation the Delayer can sim-
ulate this behavior by choosing either (0,1) or (1,0) as
weights.

If Delayer chooses (1,0) or (0, 1) then the Prover can-
not choose the value corresponding to weight 0; that
would give an infinite amount of points to Delayer, and
would be sub-optimal for the Prover since she can al-
ways enforce a finite score. Therefore in the case of integer
weights, Prover’s answer is determined by Delayer, who in
turn does not get any points in that round.

This observation justifies the small changes to the game
definition given in [1,2]. It is now more compact and ele-
gant.

The Prover-Delayer game of Pudlak and Impagliazzo
[13] can be seen as a special case of the game we describe
here, and will be called the symmetric Prover-Delayer
game in this paper. In the symmetric game the Delayer
has only two options: either he decides the value of the
queried variable himself, or asks the Prover to decide.
In the former case he does not get any points, while in
the latter he gets one point, regardless of Prover’s choice.
A moment’s thought is sufficient to realize that limit-
ing the (asymmetric) Delayer to choose the pair (po, p1)
among {(%, %), (0,1), (1,0)} yields exactly the symmetric
game. If Delayer chooses (%, %), then he gets one point
whatever Prover decides. If Delayer chooses one of the ex-
tremely unbalanced pairs we already argued that he forces
Prover’s hand.

3. Tree-like Resolution and decision trees

This section collects some facts on the correspondence
between tree-like Resolution and boolean decision trees.
All this material is known (see e.g. [4]), but we give precise
statements with proofs for completeness.

A decision tree for an unsatisfiable CNF F = A\; C; is a
binary tree where inner nodes are labeled by variables of
F and leaves are labeled by clauses from F. Each path from
the root to a leaf in the tree specifies a partial assignment.

1 We consistently manage the extreme cases by setting s; = oo when-
ever Prover chooses value b such that p, =0.
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In addition, a decision tree for F must satisfy the condition
that each path from the root to a leaf falsifies the clause at
the leaf. Therefore, a decision tree for F solves the follow-
ing search problem: given an assignment « € {0, 1}" find i
such that C; is falsified by «.

It is a well-known fact that a tree-like Resolution refu-
tation of F can be thought of as a decision tree for F. This
follows by induction on the size of the refutation. If the
size is 1 then the refutation is just the empty clause, so
Ci =[O for some i and the search problem can be solved
by the single vertex decision tree labeled by i. If the tree
is bigger, let x be the last variable on which the refutation
resolves. Consider the subtrees To and T; of the refutation,
inferring respectively x and —x. For b € {0, 1} the tree-like
Resolution inference Tj can be restricted to a refutation of
Fly—p- By the inductive hypothesis the latter can be trans-
formed into a decision tree Dj which solves the search
problem for F[,_,. Clearly, the search problem for F is
solved by a decision tree which queries x and if x =b it
applies the decision tree Dp. In this transformation from
tree-like refutations to decision trees

e each inferred clause corresponds to a query node;

e each Resolution inference on x corresponds to a query
for x;

e each occurrence of an initial clause C; corresponds to
a leaf labeled by i;

e each consistent? path from the root to a node in
the decision tree corresponds to a partial assignment
which falsifies the corresponding clause in the refuta-
tion.

The above transformation implies the following lemma.

Lemma 1. Let F be an unsatisfiable CNF with a tree-like Reso-
lution refutation T. Then there is a decision tree with the same
tree structure as T which solves the search problem for F.

Notice that the transformation can be reversed, even
though it is not always possible to preserve the exact tree
structure since decision trees leave more room for sub-
optimal choices with no equivalent representation in Reso-
lution (e.g. unreachable nodes, search problem solved by a
strict subtree, falsified clauses at an internal node). Never-
theless, it is easy to identify a decision tree without such
redundant parts which is embedded in the original one.

Definition 1. An embedding of a rooted tree T’ into a
rooted tree T is an injective mapping f from the vertices
of T’ to the vertices of T, such that if u is parent of v then
f(u) is an ancestor of f(v). We say that T’ is embeddable
into T if such embedding exists.

It is an easy observation that any tree obtained from
another one by removing subtrees and/or collapsing edges
connected by degree two vertices is embeddable into the

2 If a path goes through two nodes which query the same variable it
must take the same direction in both nodes. Otherwise it does not corre-
spond to a legal input of the decision tree.

original tree. A tree-like Resolution refutation is called reg-
ular when in every path from an initial clause to the empty
clause no variable is resolved twice.

Lemma 2. Consider an unsatisfiable formula F in CNF and a
decision tree T for the search problem on F. Then there is a
tree-like regular Resolution refutation of F with tree structure
T’ such that T” is embeddable into T.

Proof. We assume that T has no unreachable nodes, i.e.
never queries the same variable twice. Otherwise we re-
move the redundant queries and the corresponding un-
reachable subtrees. The new decision tree is embeddable
into T, so this assumption is without loss of generality.

To get the refutation we essentially take the tree and
flip it over: we label nodes with clauses in such a way that
the clause labelling any internal node is deducible from the
clauses labelling its children using a Resolution step.

Let p be the unique minimal partial assignment reach-
ing a node u. There is a unique maximal clause D which is
falsified by p. We label the node u with D. The root clause
is the empty one by definition. If u is an internal node
with query variable x, the two child nodes correspond to
assignments p U {x =0} and p U {x = 1}, respectively. Thus
the labelling clauses are D v x and D v —x. If u is a leaf
node outputting index i for clause Cj, then D D Cj. This
is clearly a regular tree-like refutation of the leaf clauses
with the same structure as T.

To obtain a proper refutation substitute each leaf clause
D with an (arbitrary) initial clause C; € D. This substi-
tution must be propagated towards the root: each clause
is substituted by a subclause. Consider the inference
w. The premises are mapped to A’ and B’ respec-
tively. Either both x € A’ and —x € B’ or one of them (say
A’) does not contain variable x. In the former case C is
substituted with the resolvent of A’ and B’, otherwise the
inference tree of C is substituted by the one of A’, reduc-
ing the length of the proof. O

The two constructions explained above lead to the fol-
lowing remarkable correspondence.

Corollary 1. The smallest tree-like Resolution refutation of an
unsatisfiable CNF F has exactly the same size as the shortest
decision tree for the search problem on F.

4. Decision trees as Prover strategies

Given the above correspondence between tree-like Res-
olution and decision trees, we can now start to explain our
characterization of tree-like Resolution size by the asym-
metric Prover-Delayer game. Loosely speaking, we inter-
pret the weights chosen by Delayer as a way to define a
distribution on the branching made in the decision tree.
Under this view the Delayer’s score at each step is just the
entropy of the bit encoding the corresponding choice, ac-
cording to Delayer’s distribution. Since root-to-leaf paths
are in bijection with leaves, this process induces a distri-
bution on the leaves. Hence the entropy collected on the
path is the entropy of the corresponding leaf choice. In



0. Beyersdorff et al. / Information Processing Letters 113 (2013) 666-671 669

this interpretation, the asymmetric Prover-Delayer game
becomes a challenge between a Prover, who wants to end
the game giving up little entropy, and Delayer, who wants
to get a lot of it. This means that the average score of the
Delayer estimates the number of leaves in the tree. In our
framework the decision tree determines Prover’s queries,
and the Delayer defines a distribution on paths.

The connection of this game to size of proofs in tree-
like Resolution is given by the next theorem. A version of
this result for tree-like Parameterized Resolution appeared
already in [2].

Theorem 1. Let F be an unsatisfiable CNF. If F has a tree-like
Resolution refutation of size at most S, then there is a Prover
strategy such that any Delayer gets at most log[%1 points.

Proof. Let F be a contradiction using variables x1, ..., Xp.
Choose any tree-like Resolution refutation of F of size S
and interpret it as a boolean decision tree T for the search
problem on F, according to Lemma 1. All internal vertices
of T have two children, thus S =2L — 1 where L = (%] is
the number of leaves of the tree.

The decision tree T completely specifies the query
strategy for Prover: at the first step she will query the vari-
able labelling the root of T. Whatever decision is made
regarding the value of the queried variable, Prover moves
to the root of the corresponding subtree and queries the
variable which labels it. This process induces a root-to-leaf
walk on T, and such walks are in bijection with the set of
leafs.

To completely specify Prover’s strategy we need to ex-
plain how Prover chooses the value of the variable x asked
at that round. The most natural thing to do is to choose
the value randomly as follows:

_ | 0 with probability po,
“ |1 with probability p1,

where pg and pp are the weights determined by the De-
layer.

In a game played between this randomized Prover and
a specific Delayer D, we denote by qp , the probability of
such a game to end at leaf £. We call wp this distribution
on the leaves. To prove the theorem the following observa-
tion is crucial:

Claim 1. If the game ends at leaf ¢, then Delayer D scores exactly
log q;—l points.

Before proving this claim, we show that it implies the
theorem. The expected score of Delayer D is

1
> ap.¢log— = H(p)
7 dp,¢

which is the Shannon entropy of the distribution wp. The
support of mp has size at most L, which implies that
H(mp) < loglL since the entropy is maximized by the uni-
form distribution. By fixing the random choices of the
Prover, we can force Delayer D to score at most logL
points.

h

Fig. 1. The proof tree structure can be used to give different weights to
the branches. Here Iy and [; are the number of leaves of the left and
right subtree, respectively.

To prove Claim 1 consider a leaf ¢ and the unique path
that reaches it. Without loss of generality we assume that
this path corresponds to the ordered sequence of assign-
ments x; = €1, ..., Xm = €. The probability of reaching the
leaf ¢ is

dp,e=4q192 - -qm

where q; is the probability of setting x; = ¢; conditioned
on the previous choices. The score of the corresponding
game play is

Z log — =log —— =log L
qi l_[l 14 o.e

This concludes the proof of the claim and the theorem. O

The above theorem shows that lower bounds to the
refutation size in tree-like Resolution can be obtained by
choosing an appropriate distribution for the Delayer.

5. Distributions as Delayer strategies

So far we argued that the asymmetric Prover-Delayer
game can be used to prove lower bounds for the size of
tree-like Resolution refutations, but we would like to know
how good this lower bound method is. Here we show that
the method completely characterizes proof size, meaning
that it is always possible (in principle) to define a Delayer
strategy such that the implied lower bound is almost equal
to the proof size. To be more precise this method charac-
terizes the number of leaves in the shortest proof.

Theorem 2. Let F be an unsatisfiable CNF with shortest tree-like
Resolution refutation of size S. Then there is a Delayer strategy
such that the Delayer scores at least log [%1 points in any game
on F against any Prover.

Proof. We denote the number of leaves in the shortest
tree-like refutation of a CNF F by L(F), and we denote by
F|, formula F restricted by the partial assignment «.
Delayer assigns weights according to the following
rules, depending on the partial assignment o computed so
far, and on the variable x ¢ dom(«) queried by the Prover
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(SIS
D=

(a) Symmetric

D=
=

(b) Asymmetric

Fig. 2. The probability associated to each leaf in a symmetric (a) and an asymmetric (b) Prover-Delayer game. In the symmetric game the Prover can end
the game as soon as the Delayer gets one point, while in the asymmetric game the Delayer always gets log(n + 1) points.

po = L(Flg x=0) and
L(Flqx=0) + L(Flq x=1)
L(Flgx=1)
P1

T L(Flax—o) + LFlgrt)

Let n be the number of variables of the formula F. By
induction on n we show that the Delayer wins at least
log L(F) points. For the base case the formula has zero
variables and is unsatisfiable, thus it contains the empty
clause and L(F) = 1. The Delayer always score at least
zero points, since Delayer’s score is always non-negative.
If n > 0 then two cases occur: either the formula already
contains the empty clause, and then the reasoning above
applies; or the Prover queries a variable x and chooses
a value b. The score is logpl—b + X where X is the score
the Delayer wins in subsequent steps. By the induction
hypothesis X > logL(F[,—,), thus the total score is at
least

1
log — +log L(F [y—p)
Db

_ 10 <L(F [x:O) + L(F [x:l)
— 08 L(Fyp)
= log(L(F [4—0) + L(Flx_1)) > log L(F).

) T logL(Fly_y)

A refutation of size S has exactly [%] leaves, so the
theorem is proved. O

A comment on the previous proof is required. We al-
ready argued that the Delayer strategy defines a distribu-
tion on the root-to-leaf walks in the tree induced by the
Prover strategy. The above proof is based on the fact that
is possible to define a distribution which is uniform on the

leaves of the shortest proof, and thus the entropy is exactly
the logarithm of the size of the set of leaves (cf. Fig. 1).

Combining Theorems 1 and 2 we obtain the following
tight characterization.

Corollary 2. For any unsatisfiable CNF F, the maximum score
achievable in an Asymmetric Prover-Delayer game by a Delayer
is exactly log[%} where St (F) is the size of the shortest
tree-like Resolution refutation of F.

6. Advantage of the Asymmetric Prover-Delayer game

In this last section we briefly describe an example of
the new characterization of tree-like Resolution size. Con-
sider the formula

X1V VX)) AXL Ao A—Xp.

In the symmetric game, the Delayer will only earn 1 point
(cf. Fig. 2). This only yields a trivial constant lower bound
on the proof size. In contrast, the optimal Delayer in the
asymmetric game will earn exactly log(n + 1) points when
using the distribution shown in Fig. 2. The formula is min-
imally unsatisfiable and has exactly n + 1 critical assign-
ments, namely to set exactly one of the n variables to 1
or to set all of them to 0. To win the game, Prover has
to identify one of these critical assignments. And from
an information-theoretic perspective, Prover needs exactly
log(n + 1) bits to specify one of these n + 1 critical as-
signments. Consequently, the Delayer should earn exactly
log(n + 1) points. This is easily verified. Let k be the num-
ber of rounds that Prover needs to win the game. Then
Delayer scores exactly
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k—1 .

n+1—-(Gi—-1)

log———— +1 1—(k—-1
;:og o +log(n+1—(k—1))

for the last round

for the first k—1 0’s
n+1
n+1—(k—1)

=log(n+1).

=log +log(n+1—(k—1)

A more interesting example is the famous pigeonhole
principle (PHP). Its complexity in Resolution was first deter-
mined by Haken’s seminal exponential lower bound [10].
However, in tree-like Resolution the complexity of PHP is
indeed 2¢(M1°g" 35 shown independently by Iwama and
Miyazaki [11] and Dantchev and Riis [7]. The paper [1]
provides an elegant proof of this optimal n! lower bound
for PHP via the asymmetric Prover-Delayer game. In con-
trast, the symmetric game only yields a lower bound of
2%2(M because the smallest tree-like Resolution refutations
of PHP only contain full binary trees of height n.
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