
�

�

�

�

�

�

�

�

20

Parameterized Complexity of DPLL Search Procedures

OLAF BEYERSDORFF, University of Leeds and Sapienza University of Rome
NICOLA GALESI, Sapienza University of Rome
MASSIMO LAURIA, KTH Royal Institute of Technology

We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate
how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems.
For this purpose we develop a Prover-Delayer game that models the running time of DPLL procedures and
we establish an information-theoretic method to obtain lower bounds to the running time of parameterized
DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole
principle and to the ordering principle. As our main application we study the DPLL procedure for the prob-
lem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires
n�(k) steps for a nontrivial distribution of graphs close to the critical threshold. For the restricted case
of tree-like Parameterized Resolution, this result answers a question asked by Beyersdorff et al. [2012] of
understanding the Resolution complexity of this family of formulas.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Complexity of proof procedures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Proof complexity, parameterized complexity, resolution, prover-delayer
games

ACM Reference Format:
Beyersdorff, O., Galesi, N., and Lauria M. 2013. Parameterized complexity of DPLL search procedures. ACM
Trans. Comput. Logic 14, 3, Article 20 (August 2013), 21 pages.
DOI:http://dx.doi.org/10.1145/2499937.2499941

1. INTRODUCTION

Resolution was introduced by Blake [1937] and since the work of Robinson [1965] and
Davis, Putnam, Logemann, and Loveland [Davis and Putnam 1960; Davis et al. 1962]
has been highly employed in proof search and automated theorem proving. In the last
years, the study of Resolution has gained great significance in at least two impor-
tant fields of computer science. (1) Proof complexity, where Resolution is one of the
most intensively investigated proof systems [Alekhnovich and Razborov 2008; Beame
and Pitassi 1996; Ben-Sasson and Wigderson 2001; Bonet et al. 2000; Chvátal and
Szemerédi 1988; Haken 1985; Urquhart 1987]. The study of lower bounds for proof

A preliminary version of the results in this article appeared in the proceedings of SAT’11 [Beyersdorff et al.
2011].
This research was supported by the grant “Limits of Theorem Proving” from the John Templeton Foundation
and a DAAD grant.
Authors’ addresses: O. Beyersdorff, School of Computing, University of Leeds; email:
o.beyersdorff@leeds.ac.uk; N. Galesi, Dipartimento di Informatica, Sapienza Università di Roma;
M. Lauria, School of Computer Science and Communication, KTH Royal Institute of Technology.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1529-3785/2013/08-ART20 $15.00
DOI:http://dx.doi.org/10.1145/2499937.2499941

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:2 O. Beyersdorff et al.

length in this system has opened the way to lower bounds in much stronger proof
systems [Beame et al. 1996; Segerlind et al. 2004]. (2) Algorithms for the satisfiabil-
ity problem of CNF formulas, where the DPLL algorithm [Beame et al. 2002; Davis
et al. 1962] was at the core of the most important algorithms employed for the satisfi-
ability problem [Beame et al. 2002], until the discovery of conflict driven clause learn-
ing solvers [Beame et al. 2004]. Running DPLL on unsatisfiable formulas produces
Resolution refutations in the simple form of a tree, thus Resolution proof lengths are
connected with the running time of DPLL procedures.

Parameterized Resolution was recently introduced by Dantchev et al. [2011] in the
context of parameterized proof complexity, an extension of the proof complexity ap-
proach of Cook and Reckhow [1979] to parameterized complexity. Analogously to the
case of Fixed Parameter Tractable (FPT) algorithms for optimization problems, the
study of Parameterized Resolution provides new approaches and insights to proof
search and to proof complexity. Loosely speaking, to refute a parameterized contradic-
tion (F, k) in Parameterized Resolution we have built-in access to new axioms, which
encode some property on assignments. In the most common case the new axioms are
the clauses forbidding assignments of hamming weight greater than k. We underline
that only those axioms appearing in the proof account for the proof length. Hence Pa-
rameterized DPLL refutations can be viewed as traces of executions of a (standard)
DPLL algorithm in which some branches are cut because they falsify one of the new
axioms.

In spite of its recent introduction, research in this direction is already active. Gao
[2009] analyzes the effect of the standard DPLL algorithm on the problem of weighted
satisfiability for random d-CNFs. Beyersdorff et al. [2012], using an idea also devel-
oped by Chen and Flum [2008], proved that there are FPT efficient Parameterized
Resolution proofs for all bounded-width unsatisfiable CNF formulae.

As our first contribution, we look inside the structure of Parameterized DPLL giv-
ing a new information-theoretical characterization of proofs in terms of a two-player
game, the Asymmetric Prover-Delayer (APD) game. The APD-game was also used by
Beyersdorff et al. [2010b] to prove simplified optimal lower bounds for the pigeonhole
principle in tree-like classical Resolution. Compared to Beyersdorff et al. [2010b], we
present here a completely different analysis of APD-games based on an information-
theoretical argument that is new and interesting by itself.

Parameterized Resolution is also a refutational proof system for parameterized con-
tradictions. Hence proving proof length lower bounds for parameterized contradictions
is important in order to understand the strength of such a proof system. Dantchev et al.
[2011] proved significant lower bounds for Parameterized DPLL proofs of the pigeon-
hole principle (PHP) and of the ordering principle (OP). Moreover, recently the work
[Beyersdorff et al. 2012] extended the PHP lower bounds to the case of parameterized
dag-like bounded-depth Frege.1

As our second contribution we provide a unified approach to get lower bounds in
Parameterized DPLL using the APD-game. As a simple application of our characteri-
zation, we give an improvement on the lower bounds given by Dantchev et al. [2011]
for both PHP and OP.

It is a natural question what happens when we equip a proof system with a more
efficient way of encoding the exclusion of assignments with hamming weight ≥ k,
rather than just adding all possible clauses with k + 1 negated variables. Dantchev

1The APD-game appeared also in the technical report Beyersdorff et al. [2010a], together with a lower
bound for dag-like Parameterized Resolution, but all results in Beyersdorff et al. [2010a] are subsumed and
improved by Beyersdorff et al. [2012] and the present article.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:3

et al. [2011] proved that this is a relevant issue. They presented a different and more
efficient encoding, and showed that under this encoding PHP admits efficient FPT Pa-
rameterized Resolution proofs.

Beyersdorff et al. [2012] investigate this question further and notice that for propo-
sitional encodings of prominent combinatorial problems like k-independent set or
k-clique, the separation between the two encodings vanishes. Hence they proposed (see
Question 5 in Beyersdorff et al. [2012]) to study the performance of Parameterized Res-
olution on CNF encodings of such combinatorial problems and in particular to prove
lower bounds. This will capture the real proof-theoretic strength of Parameterized
Resolution, since it is independent of the encodings. The k-clique principle (see also
Beyersdorff et al. [2012] and Beame et al. [2007] for similar principles) simply says
that a given graph contains a clique of size k. When applied on a graph not containing
a k-clique it is a contradiction.

As a third contribution, we prove significant lower bounds for the k-clique principle
in the case of Parameterized DPLL. Our k-clique formula is based on random graphs
distributed according to a simple variation of the Erdős-Rényi model G(n, p). It is well
known [Janson et al. 2000, Chapter 3] that when G is drawn according to G(n, p) and
p � n− 2

k−1 , with high probability G has no k-clique. We introduce a canonical CNF
Clique(G, k) expressing this fact and show that with high probability these formulas
are hard for Parameterized DPLL.

For the canonical graphs with no k-clique, that is, the (k−1)-partite complete graph,
we show that the same principle admits fixed parameterized tractable refutations in
dag-like Resolution, but not in tree-like. As an open problem it remains whether this
is the case also for the random graphs above.

The article is organized as follows. Section 2 contains all preliminary notions and
definitions concerning fixed-parameter tractability, parameterized proof systems, and
Parameterized Resolution. In Section 3 we define the asymmetric Prover-Delayer game
and establish its precise relation to the proof size in tree-like Parameterized Resolu-
tion. In Section 4 we show example applications for the APD-game: we give tree-like
Parameterized Resolution lower bounds for the pigeonhole principle and for an or-
dering principle. Our bounds improve the ones that follows from the model-theoretic
criteria in Dantchev et al. [2011].

In Section 5 we introduce the formula Clique(G, k), which is satisfiable if and only if
there is a k-clique in the graph G and we show that on a certain distribution of random
graphs the following holds with high probability: G has no k-clique and the size of the
shortest refutation of Clique(G, k) is n�(k). From an algorithmic perspective, this result
can be formulated as: any algorithm for k-clique that (i) cleverly selects a vertex and
branches on whether it is in the clique or not, (ii) deletes all its nonneighbors, and
(iii) stops branching when there are no vertices left, must use at least n�(k) steps for
most random graphs with a certain edge probability.

2. PRELIMINARIES

Parameterized complexity is a branch of complexity theory where problems are ana-
lyzed in a finer way than in the classical approach: instead of expressing the complex-
ity of a problem as a function only of the input size there is an extra parameter that
is part of the input, and one investigates the effect of the parameter on the complex-
ity. We say that a problem is fixed-parameter tractable (FPT) with parameter k if it
can be solved in time f (k)nO(1) for some computable function f of arbitrary growth.
In this setting classically intractable problems may have efficient solutions, assum-
ing the parameter is small, even if the total size of the input is large. Parameterized

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:4 O. Beyersdorff et al.

complexity also has a completeness theory: many parameterized problems that ap-
pear not to be fixed-parameter tractable have been classified as being complete under
fixed-parameter tractable reductions for the complexity classes in the so-called weft hi-
erarchy W[1] ⊆ W[2] ⊆ W[3] ⊆ . . . Parameterized complexity is a rich and informative
theory, and we suggest the monographs [Downey and Fellows 1999; Flum and Grohe
2006; Niedermeier 2006] for further reading about FPT and the weft hierarchy.

Consider the problem BOUNDED CNF SAT of deciding whether there is a satisfying
assignment of Hamming weight at most k for a formula in conjunctive normal form.2
Many parameterized combinatorial problems can be naturally encoded in BOUNDED
CNF SAT: finding a vertex cover of size at most k; finding a clique of size at least k; or
finding a dominating set of size at most k. In the theory of parameterized complexity,
the hardness of the BOUNDED CNF SAT problem is reflected by the fact that it is
W[2]-complete [Beyersdorff et al. 2012; Dantchev et al. 2007].

Dantchev et al. [2007] initiated the study of parameterized proof complexity. After
considering the notions of propositional parameterized tautologies and fpt-bounded
proof systems, they laid the foundations for the study of complexity of proofs in
a parameterized setting. The problem BOUNDED CNF SAT leads to parameterized
contradictions.

Definition 2.1 (Dantchev et al. [2007]). A parameterized contradiction is a pair
(F, k) consisting of a propositional formula F in CNF and k ∈ N such that F has no
satisfying assignment of weight ≤ k.

Here we focus on parameterized contradictions (F, k) where F is already unsatisfi-
able. We also study proof complexity for showing that a graph has no clique of size k,
when in fact it does not contain any. The latter is an example in which the parame-
terization is implicit in the formula F itself. It is natural to also consider the case of
parameterized contradictions (F, k) where F is satisfiable by assignments of weight
greater k; this case is ignored here, but some observations in this direction are made
in Beyersdorff et al. [2012].

The notions of a parameterized proof system and of fpt-bounded proof systems were
also developed by Dantchev et al. [2011].

Definition 2.2 (Dantchev et al. [2011]). A parameterized proof system for a param-
eterized language L ⊆ �∗ × N is a function P : �∗ × N → �∗ × N such that rng(P) = L
and P(x, k) can be computed in time O(f (k)|x|O(1)) for some computable function f . The
system P is fpt-bounded if there exist computable functions s and t such for that every
(x, k) ∈ L there is (y, k′) with P(y, k′) = (x, k), |y| ≤ s(k)|x|O(1) and k′ ≤ t(k).

A proof can be padded in order to ensure polynomial runtime, thus the original defi-
nition of parameterized proof systems can be simplified as follows.

Definition 2.3 (alternative to Definition 2.2 suggested in [Beyersdorff et al. 2012]).
A parameterized proof system for a parameterized language L ⊆ �∗ × N is a

polynomial-time computable function P : �∗ → �∗ × N such that rng(P) = L. The
system P is fpt-bounded if there exists a computable function f such that for every
(x, k) ∈ L there exists a proof y of size at most f (k)|x|O(1) with f (y) = (x, k).

2Compare BOUNDED CNF SAT to the canonical WEIGHTED CNF SAT problem, which asks for assignments
of weight exactly k. The latter is also W[2]-complete [Flum and Grohe 2006] and is more common in the
parameterized complexity literature.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:5

The main motivation behind the work of Dantchev et al. [2011] was that of gener-
alizing the classical approach of Cook and Reckhow [1979] to the parameterized case
and working towards a separation of parameterized complexity classes by techniques
developed in proof complexity.3

2.1. Parameterized Resolution and Parameterized DPLL

A literal is a positive or negated propositional variable and a clause is a set of literals,
interpreted as their disjunction. The width of a clause is the number of its literals.
A formula in conjunctive normal form (CNF) is a set of clauses, interpreted as their
conjunction. The Resolution system is a refutation system for the set of all unsatisfiable
CNF. Resolution gets its name from its only rule, the Resolution rule

{x} ∪ C {¬x} ∪ D
C ∪ D

for clauses C, D and a variable x. The aim in Resolution is to demonstrate unsatisfia-
bility of a clause set by deriving the empty clause from them. A Resolution refutation
can be associated with directed acyclic graph where clauses in the refutation corre-
spond to nodes and each inference C D

E gives rise to two edges (C, E) and (D, E). If
this graph associated with the refutation is a tree, then the refutation is called called
tree-like, otherwise it is called dag-like. In a tree-like refutation any noninitial clause
that is needed more than once must be rederived from scratch. The size of a Resolution
proof is the number of its clauses where multiple occurrences of the same clause are
counted separately. Undoubtedly, Resolution is the most studied and best-understood
propositional proof system (cf. Segerlind [2007]).

For the remaining part of this article we will concentrate on Parameterized Resolu-
tion as introduced by Dantchev et al. [2007]. Parameterized Resolution is a refutation
system for the set of parameterized contradictions (cf. Definition 2.1). Given a set of
clauses F in variables x1, . . . , xn, a Parameterized Resolution refutation of (F, k) is a
Resolution refutation of

F ∪ {¬xi1 ∨ · · · ∨ ¬xik+1 | 1 ≤ i1 < · · · < ik+1 ≤ n} .

Thus, in Parameterized Resolution we have built-in access to all parameterized clauses
of the form ¬xi1 ∨ · · · ∨ ¬xik+1 . All these clauses are available in the system, but when
measuring the size of a refutation we only count those that occur in the refutation.

If refutations are tree-like we speak of tree-like Parameterized Resolution. Running
parameterized DPLL procedures on parameterized contradictions produces treelike
Parameterized Resolution refutations, thus tree-like Resolution proof lengths are con-
nected with the running time of DPLL procedures. Exactly as in usual tree-like Reso-
lution, a tree-like Parameterized refutation of (F, k) can equivalently be described as a
boolean decision tree where inner nodes are labeled with variables from F and leaves

3In fact, there are several Cook-type programs that can be associated with showing lower bounds for param-
eterized proof systems. The first paper of Dantchev et al. [2007] targets at FPT vs. W[2]. By giving a more
general version of Definition 2.1 allowing arbitrary formulas F not necessarily in CNF, the journal version
[Dantchev et al. 2011] recasts this as FPT vs. W[SAT]. In Beyersdorff et al. [2012] it is pointed out that a
parameterized language L has an fpt-bounded proof system if and only if L is in para-NP, and hence we are
aiming at a separation of coW[2] and para-NP (implying FPT
= W[2]).

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:6 O. Beyersdorff et al.

are labeled either with clauses from F or with parameterized clauses ¬xi1 ∨· · ·∨¬xik+1 .
Each path in the tree corresponds to a partial assignment where a variable x gets value
0 or 1 according to whether the path branches left or right at the node labeled with
x. The condition on the decision tree is that each path α must lead to a clause that
is falsified by the assignment corresponding to α. Therefore, a boolean decision tree
solves the search problem for (F, k), which, given an assignment α, asks for a clause
falsified by α. It is easy to verify that each tree-like Parameterized Resolution refu-
tation of (F, k) yields a boolean decision tree for (F, k) and vice versa, where the size
of the Resolution proof equals the number of nodes in the decision tree [Ben-Sasson
et al. 2004].

3. ASYMMETRIC PROVER-DELAYER GAMES FOR DPLL REFUTATIONS

The original Prover-Delayer game for tree-like Resolution has been developed by
Pudlák and Impagliazzo [2000]. In the game, Prover queries a variable and Delayer
either gives it a value or leaves the decision to Prover and receives one point. The
number of Delayer’s points at the end of the game bounds from below the height of the
proof tree.

This game has also been studied by Esteban and Torán [2003], where it is proved
that the clause space complexity of a formula in tree-like Resolution is two plus the
largest number of points achievable by the Delayer. Then the lower bound for the
proof length follows from the fact that a formula with clause space complexity s re-
quires proof length at least 2s − 1 [Esteban and Torán 2001]. This connection to clause
space complexity limits the strength of the method, since there are formulas for which
the above lower bound is not tight (e.g., the classical pigeonhole principle). This is so
because the clause space complexity of a formula F is s if and only if any proof tree for
F contains a complete binary tree of height s. The gap between the size of this minor
and the size of the proof tree is exactly what the original game fails to analyze.

The game used here, in contrast, assigns points to the Delayer asymmetrically
(log2 c0 and log2 c1) according to two functions c0 and c1 (s.t. c−1

0 + c−1
1 = 1) that de-

pend on the principle, the variable queried, and the current partial assignment. In
fact, the original Prover-Delayer game of Pudlák and Impagliazzo [2000] is the case
where c0 = c1 = 2.

Loosely speaking, we interpret the inverse of the score functions as a way to define a
distribution on the choices made by the DPLL algorithm. Under this view the Delayer’s
score at each step is just the entropy of the bit encoding the corresponding choice. Since
root-to-leaf paths are in bijection with leaves, this process induces a distribution on
the leaves. Hence the entropy collected on the path is the entropy of the corresponding
leaf choice. In this interpretation, the asymmetric Prover-Delayer game becomes a
challenge between Prover, who wants to end the game giving up little entropy, and
Delayer, who wants to get a lot of it. This means that the average score of the Delayer
is a measure (actually a lower bound) of the number of leaves. In our setup the DPLL
algorithm decides the Prover queries, and the score function defines the distribution
on paths. The role of the Delayer corresponds to a conditioning on this distribution.

We now describe the details of the game; in the following we intend all logarithms
to be in base 2. Let (F, k) be a parameterized contradiction where F is a set of clauses
in n variables x1, . . . , xn. We define a Prover-Delayer game: Prover and Delayer build a
(partial) assignment to x1, . . . , xn. The game is over as soon as the partial assignment
falsifies either a clause from F or a parameterized clause ¬xi1 ∨ · · · ∨ ¬xik+1 where
1 ≤ i1 < · · · < ik+1 ≤ n. The game proceeds in rounds. In each round, Prover suggests
a variable xi, and Delayer either chooses a value 0 or 1 for xi or leaves the choice to the
Prover. In this last case the Prover sets the value and the Delayer gets some points.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:7

The number of points Delayer earns depends on the variable xi, the assignment α
constructed so far in the game, and two functions c0 and c1. More precisely, the number
of points that Delayer will get is

0 if Delayer chooses the value,
log c0(xi, α) if Prover sets xi to 0, and
log c1(xi, α) if Prover sets xi to 1.

Moreover, the functions c0 and c1 are nonnegative and are chosen in such a way that
for each variable x and assignment α

1
c0(x, α)

+ 1
c1(x, α)

= 1 (1)

holds. We remark that (1) is not strictly necessary for all α and x, but it must hold at
least for those assignments α and choices x of the Delayer that can actually occur in
any game with the Delayer strategy. We call this game the (c0, c1)-game on (F, k). The
connection of this game to size of proofs in tree-like Parameterized Resolution is given
by the next theorem.

THEOREM 3.1 [BEYERSDORFF ET AL. 2010B, 2010A]. Let (F, k) be a parameter-
ized contradiction and let c0 and c1 be two functions satisfying (1) for all partial as-
signments α to the variables of F. If (F, k) has a tree-like Parameterized Resolution
refutation of size at most S, then for each (c0, c1)-game played on (F, k) there is a Prover
strategy (possibly dependent on the Delayer) that gives the Delayer at most log S points.

PROOF. Let (F, k) be a parameterized contradiction using variables x1, . . . , xn.
Choose any treelike Parameterized Resolution refutation of (F, k) of size S and in-
terpret it as a boolean decision tree T for F.

The decision tree T completely specifies the query strategy for Prover: at the first
step he will query the variable labeling the root of T. Whatever decision is made re-
garding the value of the queried variable, Prover moves to the root of the corresponding
subtree and queries the variable that labels it. This process induces a root-to-leaf walk
on T, and such walks are in bijection with the set of leafs.

To completely specify Prover’s strategy we need to explain how Prover chooses the
value of the queried variable in case Delayer asks him to. The Prover is deterministic,
but for the sake of this proof he will choose the answers at random: on average the
Delayer score will be low enough to allow an easy derandomization of Prover’s choices.
A game position is completely described by the partial assignment α computed so far,
and by the variable x
∈ dom(α) queried at that moment. If the Prover is asked to
answer the query for x, the answer will be:{

0 with probability 1
c0(x,α)

1 with probability 1
c1(x,α)

.

Thus we are dealing with a randomized Prover strategy. In a game played between
our randomized Prover and a specific Delayer D, we denote by pD,� the probability of
such a game to end at a leaf �. We call πD this distribution on the leaves. To prove the
theorem the following observation is crucial.

If the game ends at leaf �, then Delayer D scores exactly log 1
pD,�

points.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:8 O. Beyersdorff et al.

Before proving this claim, we show that it implies the theorem. The expected score
of a Delayer D is

H(πD) =
∑

�

pD,� log
1

pD,�
,

which is the information-theoretic entropy of πD. Since the support of πD has size at
most S, we obtain H(πD) ≤ log S, because the entropy is maximized by the uniform
distribution. By fixing the random choices of the Prover, we can force Delayer D to
score at most log S points.

To prove the claim consider a leaf � and the unique path that reaches it. W. l. o. g.
we assume that this path corresponds to the ordered sequence of assignments x1 =
ε1, . . . , xm = εm. The probability of reaching the leaf is

pD,� = p1p2 · · · pm,

where pi is the probability of setting xi = εi conditioned on the previous choices. If
Prover chooses the value of the variable xi, the score Delayer D gets at step i is

log cεi(xi, {x1 = ε1, x2 = ε2, . . . , xi−1 = εi−1}),
which is exactly log 1

pi
. If Delayer makes the choice at step i, then pi = 1 and the score

is 0, which is also log 1
pi

. Thus the score of the game play is

m∑
i=1

log
1
pi

= log
1∏m

i=1 pi
= log

1
pD,�

,

and this concludes the proof of the claim and the theorem.

Notice that by setting c0(x, α) = c1(x, α) = 2 for all variables x and partial assign-
ments α, we get the game of Pudlák and Impagliazzo [2000]. Proving lower bounds in
our new game, that is, devising good Delayer strategies, entails first of all to finding
suitable functions c0 and c1. Functions c0 and c1 can be interpreted in terms of infor-
mation content of tree-like Resolution refutations. The points that Delayer scores in
one round should be proportional to the fraction of the current refutation that Prover
can avoid to check by deciding a value for the variable. This is easily understandable
in the case of the original game: the only good strategy for Prover to set a variable is
choosing the value that allows him to proceed the game in the smallest of the two sub-
trees of the current refutation, which is in fact of size smaller than 1/2 of the current
refutation size.

4. TWO APPLICATIONS OF THE LOWER BOUND METHOD

In this section we show that parameterized contradictions based on the pigeonhole
principle and on the ordering principle have lower bounds nk(1−o(1)) and n

√
k(1−o(1)),

respectively.4 The main result of Dantchev et al. [2011] already implies a weaker lower
bound of nk�(1)

for both formulas, and our results improve on that. It is interesting to
remark that an nk/5 dag-like Parameterized Resolution lower bound for the pigeonhole
principle is known from Beyersdorff et al. [2012].

4Although in the parameterized setting size functions have two arguments (n and k), the notation o(1) refers
to a function in n (alone).

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:9

We now focus on the pigeonhole principle PHPn+1
n . Variable xi,j for i ∈ [n + 1] and

j ∈ [n] indicates that pigeon i goes into hole j. PHPn+1
n consists of the clauses∨

j∈[n]

xi,j for all pigeons i ∈ [n + 1]

and ¬xi1,j ∨ ¬xi2,j for all choices of distinct pigeons i1, i2 ∈ [n + 1] and holes j ∈ [n]. We
prove that PHPn+1

n is hard for tree-like Parameterized Resolution.5

THEOREM 4.1. Any tree-like Parameterized Resolution refutation of (PHPn+1
n , k)

has size nk(1−o(1)).

PROOF. Let α be a partial assignment to the variables {xi,j | i ∈ [n + 1] , j ∈ [n]}. Let
zi(α) = |{j ∈ [n] | α(xi,j) = 0}|, that is, zi(α) is the number of holes already excluded by α
for pigeon i (disregarding holes occupied by other pigeons). We define

c0(xi,j, α) = n − zi(α)

n − zi(α) − 1
and c1(xi,j, α) = n − zi(α),

which clearly satisfies (1). We now describe Delayer’s strategy in a (c0, c1)-game played
on (PHPn+1

n , k). If Prover asks for a value of xi,j, then Delayer decides as follows:

set α(xi,j) = 0 if there exists i′ ∈ [n + 1] \{i} such that α(xi′,j) = 1 or
if there exists j ′ ∈ [n] \{j} such that α(xi,j ′) = 1

set α(xi,j) = 1 if there is no j ′ ∈ [n] with α(xi,j ′) = 1 and zi(α) ≥ n − k
let Prover decide otherwise.

Intuitively, Delayer leaves the choice to Prover as long as pigeon i does not already
sit in a hole, there are at least k holes free for pigeon i, and there is no other pigeon
sitting already in hole j. If Delayer uses this strategy, then clauses from PHPn+1

n will
not be violated in the game, that is, a contradiction will always be reached on some
parameterized clause. To verify this claim, let α be a partial assignment constructed
during the game with w(α) ≤ k (we denote the the weight of α by w(α)). Then, for
every pigeon that has not been assigned to a hole yet, there are at least k holes where
it could go, and only w(α) of these are already occupied by other pigeons. Thus α can
be extended to a one-one mapping of exactly k pigeons to holes.

Therefore, at the end of the game exactly k + 1 variables have been set to 1. Let
us denote by p the number of variables set to 1 by Prover and let d be the number
of 1’s assigned by Delayer. As argued before p + d = k + 1. Let us check how many
points Delayer earns in this game. If Delayer assigns 1 to a variable xi,j, then pigeon
i was not assigned to a hole yet and, moreover, there must be n − k holes that are
already excluded for pigeon i by α, that is, for some J ⊆ [n] with |J| = n − k we have
α(xi,j′) = 0 for all j′ ∈ J. Most of these 0’s have been assigned by Prover, as Delayer
has only assigned a 0 to xi,j′ when some other pigeon was already sitting in hole j′, and
there can be at most k such holes. Thus, before Delayer sets α(xi,j) = 1, she has already
earned points for at least n − 2k variables xi,j′ , j′ ∈ J, yielding at least

n−2k−1∑
z=0

log
n − z

n − z − 1
= log

n−2k−1∏
z=0

n − z
n − z − 1

= log
n
2k

= log n − log 2k

5In Theorem 4.1 and all following lower bounds it is implicitly understood that k is a fixed constant and n is
sufficiently large with respect to k. This is the usual view adopted in parameterized complexity.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:10 O. Beyersdorff et al.

points for the Delayer. Note that because Delayer never allows a pigeon to go into more
than one hole, she will earn at least the number of points calculated above for each of
the d variables that she sets to 1.

If, conversely, Prover sets variable xi,j to 1, then Delayer gets log(n − zi(α)) points
for this, but she also receives points for most of the zi(α) variables set to 0 before that.
Thus, in this case Delayer earns on pigeon i at least

log(n − zi(α)) +
zi(α)−k−1∑

z=0

log
n − z

n − z − 1

= log(n − zi(α)) + log
n

n − zi(α) + k

= log n − log
n − zi(α) + k

n − zi(α)

≥ log n − log k

points. In total, Delayer gets at least

d(log n − log 2k) + p(log n − log k) ≥ k(log n − log 2k)

points in the game. By Theorem 3.1, we obtain (n
2k)

k as a lower bound to the size of
each tree-like Parameterized Resolution refutation of (PHPn+1

n , k).

In the above Delayer strategy we never associate a pigeon to more than one hole. For
this reason the lower bound from Theorem 4.1 also holds for the functional pigeonhole
principle where in addition to the clauses from PHPn+1

n we also include ¬xi,j1 ∨ ¬xi,j2
for all pigeons i ∈ [n + 1] and distinct holes j1, j2 ∈ [n]. The Prover can easily force a
Delayer to a partial assignment in which a hole does not receive any pigeon, so the
proof does not work for the bijective pigeonhole principle, where all holes must host
some pigeon.

As a second example we discuss the DPLL performance on the parameterized order-
ing principle OP, also called least element principle. The principle claims that any finite
partially ordered set has a minimal element. There is a direct propositional transla-
tion of OP to a family OPn of unsatisfiable CNFs. Each CNF OPn expresses that there
exists a partially ordered set of size n such that any element has a predecessor. The
ordering principle has the following clauses.

¬xi,j ∨ ¬xj,i for every i, j (Antisymmetry)
¬xi,j ∨ ¬xj,k ∨ xi,k for every i, j, k (Transitivity)∨
j∈[n]\{i}

xj,i for every i (Predecessor)

With respect to parameterization the ordering principles are interesting. Both OP
and the linear ordering principle (LOP), which additionally assumes the order to be
total, do not admit short tree-like Resolution refutations [Bonet and Galesi 2001] and
have general Resolution refutations of polynomial size [Stalmark 1996]. In the param-
eterized setting things are different: LOP has short tree-like refutations [Beyersdorff
et al. 2012] while OP does not and provides a separation between tree-like and dag-like
Parameterized Resolution.

THEOREM 4.2. Any tree-like Parameterized Resolution refutation of (OPn, k) has
size n

√
k(1−o(1)).

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:11

PROOF. Let α be an assignment to the variables of OP. The Delayer will keep the
following information:

— G(α) = (V(α), E(α)) the graph obtained taking as edges the (i, j)’s such that
α(xi,j) = 1;

— G∗(α) the transitive closure of G(α) and GT(α) the transpose graph of G(α).

In particular, for any vertex j in G(α), the Delayer considers the following information

— zj(α) = |{i ∈ [n] | α(xi,j) is not assigned}|,
— Predj(α) = {i ∈ [n] | α(xi,j) = 1}, and
— PPredj(α) the subset of Predj(α) of those edges set to 1 by the Prover.

Loosely speaking the Delayer, taking as few decisions as possible, wants to force:
(1) the game to end on a parameterized clause, and (2) the Prover to decide only one
predecessor for each node. To reach the former, in some cases she will be forced to
decide a predecessor of a node j to avoid that after few more trivial queries the game
ends on a predecessor clause. To get (2) she will be forced to say that some node cannot
be predecessor of some node j. In both cases we will prove that Delayer will keep her
number of decisions bounded.

Let α be the assignment built so far in the game and let xi,j be the variable queried
by Prover. Delayer acts as follows:

(1) if (i, j) ∈ E(α)∗, then she answers 1;
(2) if (i, j) ∈ (E(α)∗)T, then she answers 0;
(3) if |Predj(α)| = 0 and zj(α) ≤ k + 1, then she answers 1;
(4) if |PPredj(α)| ≥ 1, then she answers 0;
(5) otherwise, she leaves the decision to the Prover.

To simplify the argument we assume that in the game, after each decision by the
Prover or after a decision by the Delayer according to Rule 3, the Prover asks all vari-
ables corresponding to edges that are in G∗(α) and (G(α)

∗
)
T but not in G(α). This will

not change our result since on these nodes Delayer does not score any point.
Let Pε(t) be the set of edges set to ε ∈ {0, 1} by the Prover after stage t ends. Let Dε(t)

be the set of edges set to ε ∈ {0, 1} by the Delayer. Finally, let D∗(t) ⊆ D1(t) be the set of
edges set to 1 by the Delayer according to Rule 3 of her strategy. Pε

j (t), Dε
j (t), and D∗

j (t)
are the subsets of the respective sets formed by those edges having end-node j, that is,
edges of the form (i, j) for some i.

Let αt be the assignment built after stage t and let α∗
t be the extensions of αt obtained

by assigning all edges from G∗(αt) to 1 and all edges from (G(αt)
∗
)
T to 0. We define

Nj(t) = { (i, j) | i ∈ [n] , (i, j) ∈ dom(α∗
t) \ P0(t) }.

LEMMA 4.3. At each stage t of the game, it holds that:

(1) |P1(t)| + |D∗(t)| ≥ √|E(αt)|;
(2) if w(αt) ≤ k and |P1

j (t)| + |D∗
j (t)| = 0, then |Nj(t)| ≤ k;

(3) if w(αt) ≤ k, then α∗
t does not falsify any predecessor clause;

(4) for each j ∈ [n], |D∗
j (t)| ≤ 1 and |P1

j (t)| ≤ 1.

PROOF. Condition 1 follows since |P1(t)| + |D1(t)| = |E(αt)|, and |E(αt)| ≤ |E∗(αt)| ≤
(|P1(t)| + |D∗(t)|)2.

Condition 2. |P1
j (t)| + |Dj

∗(t)| = 0 implies that the vertex j has no predecessor. The
only way to set a predecessor to a vertex that already has one is by Rule 1, but a

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:12 O. Beyersdorff et al.

vertex without predecessors cannot get one by transitive closure. Then an edge xi,j is
in dom(α∗

t) \ P0(t) if and only if i is a successor of j in G∗(αt). Hence there must be a
directed tree rooted in j and containing all such successors. As αt has weight at most
k, G(αt)

T contains at most k edges and there are at most k successors of j. Therefore
|Nj(t)| ≤ k.

Condition 3. Consider a predecessor clause Cj that is not satisfied by αt. Then there
are at least k + 1 variables xi,j unset, since otherwise, according to Rule 3 Delayer
should have set one predecessor for j. If |P1

j (t)| ≥ 1 or |D∗
j (t)| ≥ 1, then Cj would be

satisfied. Then by |P1
j (t)| + |D∗

j (t)| = 0 and by Condition 2 at most k additional literals
of Cj are set to 0 by α∗

t . The claim follows since there is at least one unset literal in Cj.
Condition 4. The first time that a predecessor of some node j is decided in the game

is either by a decision of the Prover or by a decision of the Delayer according to Rule 3.
Since Delayer applies Rule 3 only in the case no predecessor has been yet decided, it
follows that |D∗

j (t)| ≤ 1. Moreover, by Rule 4 Delayer prevents the Prover to set more

than one predecessor for each node, hence |P1
j (t)| ≤ 1.

LEMMA 4.4. After the last stage f of the game the following holds:

— a parameterized clause is falsified;
— |P1(f)| + |D∗(f)| ≥ √

k + 1.

PROOF. For the first condition, we notice that Rules 1 and 2 in the Delayer’s strat-
egy guarantee that neither antisymmetry nor transitivity axioms will be ever falsi-
fied during the game. Assuming that αf has weight strictly less then k + 1, then by
Lemma 4.3 (condition 3), no predecessor clause is falsified. Hence w(αf) = k + 1 and a
parameterized clause is falsified.

The second property follows by Lemma 4.3 (condition 1) and by |E(αf)| ≥ w(αf),
which is equal to k + 1 because of the first part of this lemma.

Set c1(xi,j, α) = zj(α) and c0(xi,j, α) = zj(α)

zj(α)−1 . For a given play of the game, let ti,j

be the stage of the game when the variable xi,j is set. Let scj(t) be the number of
points scored by the Delayer up to stage t for answers of the Prover to the variables
x1,j, x2,j, . . . , xn,j. Then the number of points scored by the Delayer at the end of the
game is

∑n
j=1 scj(f).

LEMMA 4.5. The following implications hold

(1) If |P1
j (f)| = 1, then scj(f) ≥ log n − log(k + 1).

(2) If |D∗
j (f)| = 1, then scj(f) ≥ log n − log(2k + 1).

PROOF. For the first claim, let (i, j) ∈ D∗
j (f) and let ti,j be the stage when xi,j was set.

We claim that |P0
j (ti,j)| ≥ n − (2k + 1). W. l. o. g. we can assume that the variables xi′,j

set to 0 by the Prover are the first ones with end-node j to be set to 0, because c0(xi′,j, α)
is strictly decreasing with respect to zj(α). Hence the Delayer gets at least

n∑
l=2k+2

log
l

l − 1
= log n − log(2k + 1)

points on variables x1,j, . . . , xn,j.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:13

It remains to prove the claim that |P0
j (ti,j)| ≥ n − (2k + 1). According to Rule 3 of the

strategy, there are at least n − (k + 1) variables xi′,j set to 0 in αti,j . Hence |P0
j (ti,j)| +

|D0
j (ti,j)| ≥ n − (k + 1). Since at this stage i is the first predecessor of j to be fixed, then

the Delayer has not set variables xi′,j to 0 according to Rule 4, but only by Rule 2.
Moreover, for the same reason, if t′ is the stage preceding ti,j we have that: |D0

j (ti,j)| =
|D0

j (t′)| = |Nj(t′)| ≤ k, where the last inequality holds by Lemma 4.3 (part 2). Then

|P0
j (ti,j)| ≥ n − (2k + 1).
We now show the second claim of the lemma. Let ti,j be the stage in which Prover

sets some xi,j to 1, and let α be the partial assignment corresponding to that stage.
W. l. o. g. we assume that all variables in P0

j (ti,j) are set before any variable in D0
j (ti,j),

because c0 is monotone decreasing in the size of the second argument. Fix p = |P0
j (ti,j)|.

By Lemma 4.3 (part 2) we get |Nj(t′)| ≤ k where t′ is the stage preceding ti,j. Hence we
know that zj(α) ≥ n − k − p. The amount of points got by Delayer on vertex j is at least

n∑
l=n−p+1

log
l

l − 1
+ log(n − k − p) = log n − log

n − p
n − k − p

≥ log n − log(k + 1) .

The Delayer scores
∑n

j=1 scj(f). By Lemma 4.4 there are at least
√

k + 1 vertices
such that either |D∗

j (f)| ≥ 1 or |P1
j (f)| ≥ 1. For each vertex such events are mutu-

ally exclusive by the definition of the rules. Then by Lemma 4.5 Delayer gets at least√
k + 1(log n − log(2k + 1)) points. By Theorem 3.1 we get the lower bound.

5. TREELIKE RESOLUTION COMPLEXITY OF K-CLIQUE

Instead of adding parameterized clauses of the form ¬xi1 ∨ · · · ∨ ¬xik+1 , there are also
more succinct ways to enforce only satisfying assignments of weight ≤ k. One such
method was considered by Dantchev et al. [2011] where for a formula F in n variables
x1, . . . , xn and a parameter k, a new formula M = M(F, k) is computed such that F ∧ M
is satisfiable if and only if F has a satisfying assignment of weight at most k. The
formula M uses new variables si,j, where i ∈ [k] and j ∈ [n], and consists of the clauses

¬xj ∨
k∨

i=1

si, j and ¬si, j ∨ xj for i ∈ [k] and j ∈ [n] (2)

¬si, j ∨ ¬si, j ′ for i ∈ [k] and j
= j ′ ∈ [n] (3)

¬si, j ∨ ¬si′, j for i
= i′ ∈ [k] and j ∈ [n]. (4)

The clauses (2) express the fact that an index i is associated to a variable xj if and only
if this variable is set to true. The fact that the association is an injective function is
expressed by the clauses (3) and (4).

This formula transformation not only leads to shorter formulas; it also allows
smaller parameterized refutations in some cases (e.g., for the pigeonhole principle in
dag-like Resolution [Beyersdorff et al. 2012; Dantchev et al. 2011]).

Beyersdorff et al. [2012] argue that the clique formula is “invariant” with respect
to this transformation, thus its classical proof complexity is equivalent to its parame-
terized proof complexity (in both the formulation with explicit parameterized axioms
and the succinct encoding). Therefore Beyersdorff et al. [2012] posed the question of

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:14 O. Beyersdorff et al.

determining the complexity of the clique formulas in classical Resolution. Theorem 5.2
below provides an answer to this question for the tree-like case.

5.1. Random k-colorable Graphs

Our study focuses on the average-case complexity of proving the absence of a k-
clique in random graphs distributed according to a variation of the Erdős-Rényi model
G(n, p). In this Erdős-Rényi model, random graphs on n vertices are constructed by in-
cluding every edge independently with probability p. It is known that k-cliques appear
at the threshold probability p∗ = n− 2

k−1 . If p < p∗, then with high probability there is
no k-clique; while for p > p∗ with high probability there are many. For p = p∗ there is
a k-clique with constant probability.

The complexity of k-clique has already been studied in restricted computational
models by Rossman [2008, 2010]. He shows that in these models any circuit that
succeeds with good probability on graph distributions close to the critical threshold
requires size �(n

k
4), and even matching upper bounds exist in these models [Amano

2010; Rossman 2010]. Since we want to study negative instances of the clique problem,
we focus on probability distributions with p < p∗. To simplify the proof we will prove a
lower bound for a slightly sparser distribution. We now give the CNF formulation of a
statement claiming that a k-clique exists in a graph.

Definition 5.1. Given a graph G = (V, E) and a parameter k, Clique(G, k) is a for-
mula in conjunctive normal form containing the following clauses∨

v∈V

xi,v for every i ∈ [k] (5)

¬xi,u ∨ ¬xj,v for every i, j ∈ [k], i
= j and every {u, v}
∈ E (6)
¬xi,u ∨ ¬xi,v for every u
= v ∈ V. (7)

The interpretation of variable xi,v is that vertex v is the ith member of the clique.
Clearly the formula Clique(G, k) is satisfiable if and only if the graph G has a clique of
size k.

We now describe a family of hard graph instances for k-clique. We consider a random
graph G on kn vertices. The set of vertices V is divided into k blocks of n vertices each,
named V1, V2, . . . , Vk. Edges may be present only between vertices of different blocks,
and these edges are chosen independently at random. For any constant ε and any pair
of vertices (u, v) with u ∈ Vi, v ∈ Vi′ and i < i′, the edge {u, v} is present with probability

p = n−(1+ε) 2
k−1 .

We call this distribution of graphs Gk,ε . Notice that all graphs in Gk,ε are properly col-
orable with k colors. Later we will focus on a specific range for ε.

In a k-colorable graph G with color classes V1, . . . , Vk a k-clique contains exactly
one vertex per color class. In this case we can simplify formula Clique(G, k) by setting
xi,v = 0 for every i ∈ [k] and v ∈ Vj such that i
= j. Essentially we are forcing the ith
vertex in the clique to be in the ith block. If variable xi,v survives to the restriction
then v ∈ Vi, thus the index i is redundant and can be dropped. The resulting simplified
formula is the following: ∨

v∈Vi

xv for every i ∈ [k] (8)

¬xu ∨ ¬xv for every {u, v}
∈ E(G). (9)

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:15

Variable restrictions only reduce the size of a (tree-like) Resolution refutation.
Therefore, in order to prove lower bounds for Clique(G, k) on graphs distributed ac-
cording to Gk,ε we can focus on the simpler CNF formulas (8)–(9).

A comment regarding the encoding is required. Beame et al. [2007] studied formulas
similar to Clique(G, k) for the dual problem of independent sets in the context of classi-
cal nonparameterized proof complexity. They study the case of k = �(n), so the former
encoding has an interesting lower bound because it contains clauses of a nontrivial pi-
geonhole principle. In the parameterized framework this is not necessarily true, since
k is small and PHPk

k−1 is considered feasible here.
We will now show that for a random graph G distributed according to Gk,ε , it holds

with high probability that the smallest decision tree that proves unsatisfiability of
Clique(G, k) has size n�(k(1−ε)). To show that Clique(G, k) requires refutations of size
n�(k(1−ε)) it suffices to exhibit two score functions c0 and c1 and a Delayer strategy
such that the Delayer is guaranteed to score �(k(1−ε) log n) points in any game played
against any Prover.

THEOREM 5.2. Let ε be a constant such that 0 < ε < 1. For a random graph G
distributed according to Gk,ε , it holds with high probability that the smallest treelike
Parameterized Resolution refutation of Clique(G, k) has size n�(k(1−ε)).

PROOF. Let G be a random graph distributed according to Gk,ε . We prove a lower
bound for the restricted formula (8)–(9): this immediately implies the statement of the
theorem.

For any vertex set S, let �c(S) be the set of vertices that are common neighbors of S
(i. e., vertices that are connected to all vertices in S). Notice that �c(∅) is V(G). We first
show that with high probability the following properties hold:

(1) G has no clique of size k;
(2) For any set S of less than k

4 vertices in distinct blocks, |�c(S) ∩ Vb| ≥ n�(1−ε) for
any block Vb disjoint from S.

For item 1. The expected number of k-cliques in G is nkp(k
2) = n−kε . By Markov

inequality, the probability of the existence of a single k-clique is at most the expected
value.

For item 2. It is sufficient to show the statement for sets of size exactly k
4 −1. Fix any

such set S, and fix any block Vb that does not contain vertices in this set. We denote
by Xi the random variable that is 1 when i ∈ �c(S), and 0 otherwise. Thus the size of
Vb ∩ �c(S) is the sum of n independent variables. Notice that Xi is 1 with probability
p

k
4 −1 ≥ n− 1+ε

2 . Thus the expected value is at least n
1−ε

2 . We define

T = n
1−ε

2

2
.

Since T = n�(1−ε) and T is a constant fraction of the expected value, by the Chernoff
bound (see, for example, [Dubhashi and Panconesi 2009, Theorem 1.1]) we obtain that
Vb ∩ �(S) has size less than T with probability at most e−n�(1−ε)

. By the union bound
on the choices of block Vb and of set S of size k

4 − 1 we get item 2.
Thus we can conclude that with high probability the random graph G fulfills both 1

and 2.
We now define functions c0 and c1, which are legal cost functions for an asymmetric

Prover-Delayer game played on the k-clique formula of the graph G. We also exhibit

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:16 O. Beyersdorff et al.

a Delayer strategy that is guaranteed to score �(k log T) points. This, together with
Theorem 3.1, implies the main statement.

For any partial assignment α we consider the set of vertices “chosen by α,” which is
{u | α(xu) = 1}; any vertex that is the common neighbor of the chosen set is called “good
for α”. Notice that if v is a good vertex for α, then the partial assignment α ∪ {xv = 1}
does not falsify any clause in the formula. Notice also that α may set to 0 some good
vertices. In particular we denote by Rb(α) the vertices of the block Vb that are good for
α, but are nevertheless set to 0 in α:

Rb(α) = { v ∈ Vb | α(xv) = 0 and for all u, α(xu) = 1 implies {u, v} ∈ E(G) }.
When asked for an unassigned variable xv, for some v ∈ Vb, the Delayer applies the

following rules in the given order:

(1) If α contains at least k
4 variables set to 1, the Delayer surrenders;

(2) if α(xu) = 1 for some u with {u, v}
∈ E(G) then Delayer answers 0;

(notice that at this point vertex v must be good for α)

(1) if Rb(α) has size at least T − 1, then the Delayer answers 1;
(2) otherwise the Delayer leaves the answer to the Prover.

During the game the invariant |Rb(α)| < T holds for every b ∈ [k]: the only way such
a set can increase in size is when Prover sets a good vertex in Vb to 0. Thus the size of
Rb(α) can only increase one by one. When it reaches T − 1 and the Delayer is asked for
a variable in that block, she will reply 1, so the size of Rb(α) won’t increase any more.

Another important property of the Delayer strategy is that her decision to answer 1
never falsifies a clause, since all blocks contain at least T good vertices at any moment
during the game: as soon some Rb(α) reaches size T the Delayer sets a vertex for block
b. This is possible because of item 5.1 together with the fact that at most k

4 vertices are
set in α. This proves that no clause in (8) can be falsified during the game.

Neither clauses in (9) can be falsified during the game: the Delayer imposes answer
0 whenever a vertex is not good for α, which means that, if chosen, it would not form a
clique with the ones chosen before. It is also not possible that the game ends by violat-
ing a parameterized clause as these are just weakenings of the clauses (9). Therefore,
the game only ends when the Delayer gives up.

For an assignment α and a vertex v ∈ Vb, let

c0 = T − |Rb(α)|
T − |Rb(α)| − 1

and c1 = T − |Rb(α)|.

Because of the previous observations the values of c0 and c1 are always nonnegative.
Furthermore notice that when |Rb(α)| = T − 1 Delayer never leaves the choice to
Prover, thus c0 is always well defined when the Delayer scores.

Consider a game play and the set of k
4 vertices chosen by the final partial assignment

α. We show that for any chosen vertex, the Delayer scores log T points for queries in
the corresponding block.

Fix the block b of a chosen vertex u. Consider the assignment α that corresponds to
the game step when xu is set to 1. Consider R = Rb(α). We identify partial assignments

α0 ⊂ α1 ⊂ . . . ⊂ α|R|−1 ⊂ α

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:17

corresponding to the moments in the game when Prover sets to 0 one of the variables
indexed by R. For such rounds the Delayer gets at least

|R|−1∑
i=0

log
T − |Rb(αi)|

T − |Rb(αi)| − 1
≥

|R|−1∑
i=0

log
T − i

T − i − 1
= log(T) − log(T − |R|)

points. Here the first inequality follows from the fact that any vertex that is good at
some stage of the game is also good in all previous stages. Thus |Rb(αi)| ≥ i.

Now we must consider two cases: either xu = 1 is set by Prover, or it is set by Delayer.
In the former case Delayer gets log(T − |R|) points for Prover setting xu = 1. Together
with the points for the previous zeros this yields log T points. In the latter case Delayer
gets 0 points as she set xu = 1 by herself, but now |R| = T −1 and she got already log T
points for all the zeros assigned by Prover. In both cases the total score of the Delayer
is log T = 1−ε

2 log n.
Since this score is obtained in at least k

4 blocks, we are done.

5.2. Complete (k − 1)-partite Graphs

Instead of random graphs, we are now looking at one of the canonical graphs without a
k-clique: the (k−1)-partite graph. We will show in this subsection that the k-clique for-
mulas on complete (k−1)-partite graphs has a “short” dag-like Resolution refutations.
In contrast, we will show a lower bound for tree-like Resolution. Let Cn be the com-
plete (k−1)-partite graph in which each partition has size n. The formula Clique(Cn, k)
claims that there is a way to place k indexes on the graph in such a way that no two in-
dexes fall into the same partition. That essentially implies an injective mapping from
k to k − 1, so it is unsatisfiable.

PROPOSITION 5.3. The formulas Clique(Cn, k) have O(2kk2n2) Resolution
refutations.

PROOF. We follow the idea of a monotone Resolution (cf. [Buss and Pitassi 1998])
refutation of PHPk

k−1. A monotone refutation of the pigeonhole principle in variables
pi,j contains disjunctions of positive literals as lines in the proof. The only available
rule is

A ∨ ∨
i∈I0

pi,h B ∨ ∨
i∈I1

pi,h

A ∨ B ∨ ∨
i∈I0∩I1

pi,h
, (10)

where h ∈ [k − 1] is a hole and I0, I1 ⊆ [k] are sets of pigeons. Clearly, the formulas
PHPk

k−1 admit monotone Resolution refutations depending in size only on k.
For 1 ≤ h < k − 1, let Vh be the hth block in the partition of the vertices. We apply

the following substitution in the monotone proof of PHPk
k−1

pi,h ←→
∨

v∈Vh

xi,v.

To simulate an application of the inference rule (10) it is sufficient to show the infer-
ence for empty A and B and for I0 ∩ I1 = ∅, since the simulation in its full generality
then follows by weakening. Given

∨
i∈I0

∨
v∈Vh

xi,v and
∨

i∈I1

∨
v∈Vh

xi,v we know that
for each i0 ∈ I0, i1 ∈ I1, v, w ∈ Vh, the clause ¬xi0,v ∨¬xi1,w is an axiom of Clique(Cn, k).
Thus by using O(|Vh|2 · |I0| · |I1|) of these axioms we easily get the empty clause.

There are monotone PHPk
k−1 refutations of size O(2k). Therefore the whole

Clique(Cn, k) refutation has size at most O(2kk2n2).

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:18 O. Beyersdorff et al.

An easy analysis of the above proof shows that Clique(Cn, k) even allows short reg-
ular Resolution refutations of size f (k)n2 for some function f . Regular Resolution is
defined by the property that on each path from the root to a leaf each variable can be
resolved at most once. Regular Resolution is an interesting subsystem of Resolution
that is known to be more powerful than tree-like Resolution [Bonet and Galesi 2001],
but weaker than full dag-like Resolution [Alekhnovich et al. 2007].

The proof in Theorem 5.3 is based on the simulation of monotone Resolution by
general (dag-like) Resolution [Buss and Pitassi 1998]. In general, this simulation is
not possible for tree-like Resolution. In particular, in the previous proof our simulation
of one monotone inference step is not tree-like. Hence, even if we started with a tree-
like proof of PHPk

k−1, the resulting proof of Clique(Cn, k) would be dag-like. Indeed,
we show a lower bound for the clique formulas on (k − 1)-partite graphs for tree-like
Resolution.

THEOREM 5.4. Any tree-like Resolution refutation of Clique(Cn, k) requires size
n�(k).

PROOF. The set of vertices of the graph Cn is partitioned into the sets V1, . . . , Vk−1
of size n each. We define a Delayer strategy such that at the end of the game the partial
assignment always has k − 1 indexes assigned to specific vertices in different blocks.
Moreover, we will define the score functions in such a way that on each block Delayer
scores exactly log n points. That will conclude the proof.

Delayer keeps k − 1 sets Z1, . . . , Zk−1 with Zj ⊆ Vj that represent the excluded ver-
tices in each block. At the beginning of the game they are all empty. When the Prover
has a partial assignment α and queries xi,v for v ∈ Vj the Delayer answers

(1) 0 if xi,w is true in α for some w
= v;
(2) 0 if xl,w is true in α for some l ∈ [k] \{i} and some w ∈ Vj;
(3) 0 if v ∈ Zj;
(4) 1 if v
∈ Zj and Zj = Vj \ {v};
(5) and lets the Prover decide otherwise.

After each round, Delayer updates the sets Zj as follows. If Delayer sets the variable
herself, then Zj remains unaltered. Otherwise, if Prover decides 0 then Delayer sets
Zj := Zj ∪ {v}. If Prover decides 1, then Zj := Vj \ {v}.

For his choices, Prover scores according to the functions

c0 = |Vj| − |Zj|
|Vj| − |Zj| − 1

and c1 = |Vj| − |Zj|.

Because of the first two rules of the Delayer strategy, the game always ends with
a partial injective assignment of indexes to vertices in different blocks. Thus the only
case in which the Delayer loses is when there is an index i such that α sets xi,v = 0
for all vertices v in Cn. We claim that at the end of the game k − 1 indexes have
been assigned, one in each block. To prove this claim, assume for a contradiction that
no index was assigned into the block Vj. Consider the last moment in the game in
which xi,v = 0 has been assigned for some v ∈ Vj. By assumption, all variables xi,u for
u ∈ Vj \ {v} have been queried before and were already answered by 0. According to the
Delayer strategy, either xi,u = 0 was set by Delayer by rule 3, or xi,u = 0 was decided
by Prover. Hence in both cases u ∈ Zj and therefore Zj = Vj \ {v}. But then Delayer
would assign xi,v to 1 according to item 4 of her strategy, a contradiction.

Thus in the final configuration of the game k − 1 indexes have been assigned. A
counting argument similar (but simpler) to the ones in the previous proofs show that
the Delayer scores exactly log n points for the queries in each of the blocks.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:19

Fix a block i: exactly one variable xi,v is set to one. Let us say that |Zi| = z right
before that decision. Until that moment |Zi| increases one by one every time Delayer
scores some point on Prover deciding for some xi,u to be zero. Delayer scores

z−1∑
t=0

log
|Vi| − t

|Vi| − t − 1
= log |Vi| − log(|Vi| − z).

Delayer chooses to set xi,v = 1 if and only if z = |Vi| − 1, otherwise the Prover chooses
which gives log(|Vi| − z) points to Delayer. In both cases Delayer scores log |Vi| points
on block i. Thus in the end, Delayer gets exactly (k − 1) log n points.

6. CONCLUSION AND OPEN PROBLEMS

In this article we have shown that the asymmetric Prover-Delayer game can be used
to lower bound tree-like Resolution refutations. While the result itself was already
present in a previous paper by the authors [Beyersdorff et al. 2010b], we provide here
a new proof using a compelling information-theoretic argument. In order to show some
example application of this game we strengthen the known lower bounds for tree-like
parameterized Resolution for the pigeonhole principle and the ordering principle. A
more interesting application is the n�(k) lower bound for Clique(G, k) formulas for tree-
like Resolution.

It is natural to ask how hard it is to certify that a graph has no k-clique, compared
to the brute force approach. A Resolution refutation of Clique(G, k) provides a sound
witness of the absence of a k-clique, but how long is the refutation of Clique(G, k) in
dag-like Resolution? A lower bound n�(k) for this formula would imply parameterized
Resolution lower bounds even for the stronger parameterization of CNFs.

Another interesting fact about the k-clique formulas (as we have defined it) arises
from their translation to 3-CNFs. These translated formulas have constant width and
dag-like Resolution refutations of width 	(k) and size nO(k). A matching lower bound
would indicate that clique formulas are the hardest among the ones of width 	(k).

This is particularly interesting in light of results of Atserias et al. [2011], who prove
that clause learning SAT solvers run in time nO(w) if the minimal proof width is w. It is
a natural question whether this is tight. If the clique formulas require proof size n�(k)

this would show that the answer is yes.

ACKNOWLEDGMENTS

We thank the anonymous referees of both the conference and the journal version of this article for their
insightful suggestions that helped to improve it. We thank Pavel Pudlák for the second open problem.

REFERENCES

Alekhnovich, M. and Razborov, A. A. 2008. Resolution is not automatizable unless W[P] is tractable. SIAM
J. Comput. 38, 4, 1347–1363.

Alekhnovich, M., Johannsen, J., Pitassi, T., and Urquhart, A. 2007. An exponential separation between
regular and general resolution. Theory Comput. 3, 1, 81–102.

Amano, K. 2010. Subgraph isomorphism on AC0 circuits. Comput. Complexity 19, 2, 183–210.
Atserias, A., Fichte, J. K., and Thurley, M. 2011. Clause-learning algorithms with many restarts and

bounded-width resolution. J. Artif. Intell. Res. 40, 353–373.
Beame, P. and Pitassi, T. 1996. Simplified and improved resolution lower bounds. In Proceedings of the 37th

IEEE Symposium on the Foundations of Computer Science. 274–282.
Beame, P., Karp, R. M., Pitassi, T., and Saks, M. E. 2002. The efficiency of resolution and Davis–Putnam

procedures. SIAM J. Comput. 31, 4, 1048–1075.
Beame, P., Kautz, H. A., and Sabharwal, A. 2004. Towards understanding and harnessing the potential of

clause learning. J. Artif. Intell. Res. 22, 319–351.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

20:20 O. Beyersdorff et al.

Beame, P., Impagliazzo, R., and Sabharwal, A. 2007. The resolution complexity of independent sets and
vertex covers in random graphs. Comput. Complex. 16, 3, 245–297.

Beame, P. W., Impagliazzo, R., Krajı́ček, J., Pitassi, T., and Pudlák, P. 1996. Lower bounds on Hilbert’s
Nullstellensatz and propositional proofs. Proc. London Math. Soc. 73, 3, 1–26.

Ben-Sasson, E. and Wigderson, A. 2001. Short proofs are narrow - resolution made simple. J. ACM 48, 2,
149–169.

Ben-Sasson, E., Impagliazzo, R., and Wigderson, A. 2004. Near optimal separation of tree-like and general
resolution. Combinatorica 24, 4, 585–603.

Beyersdorff, O., Galesi, N., and Lauria, M. 2010a. Hardness of parameterized resolution. Tech. rep. TR10-
059, Electronic Colloquium on Computational Complexity.

Beyersdorff, O., Galesi, N., and Lauria, M. 2010b. A lower bound for the pigeonhole principle in treelike
resolution by asymmetric prover-delayer games. Inf. Process. Lett. 110, 23, 1074–1077.

Beyersdorff, O., Galesi, N., and Lauria, M. 2011. Parameterized complexity of DPLL search procedures. In
Proceedings 14th International Conference on Theory and Applications of Satisfiability Testing. Lecture
Notes in Computer Science, vol. 6695, Springer, 5–18.

Beyersdorff, O., Galesi, N., Lauria, M., and Razborov, A. 2012. Parameterized bounded-depth Frege is not
optimal. ACM Trans. Comput. Theory 4, 3.

Blake, A. 1937. Canonical expressions in boolean algebra. Ph.D. thesis, University of Chicago.
Bonet, M. L. and Galesi, N. 2001. Optimality of size-width tradeoffs for resolution. Comput. Complexity 10, 4,

261–276.
Bonet, M. L., Esteban, J. L., Galesi, N., and Johannsen, J. 2000. On the relative complexity of resolution

refinements and cutting planes proof systems. SIAM J. Comput. 30, 5, 1462–1484.
Buss, S. R. and Pitassi, T. 1998. Resolution and the weak pigeonhole principle. In Computer Science Logic,

Springer, 149–156.
Chen, Y. and Flum, J. 2008. The parameterized complexity of maximality and minimality problems. Ann.

Pure Appl. Logic 151, 1, 22–61.
Chvátal, V. and Szemerédi, E. 1988. Many hard examples for resolution. J. ACM 35, 4, 759–768.
Cook, S. A. and Reckhow, R. A. 1979. The relative efficiency of propositional proof systems. J. Symb.

Logic 44, 1, 36–50.
Dantchev, S. S., Martin, B., and Szeider, S. 2007. Parameterized proof complexity. In Proceedings of the 48th

IEEE Symposium on the Foundations of Computer Science. 150–160.
Dantchev, S. S., Martin, B., and Szeider, S. 2011. Parameterized proof complexity. Comput. Complexity 20,

51–85.
Davis, M. and Putnam, H. 1960. A computing procedure for quantification theory. J. ACM 7, 210–215.
Davis, M., Logemann, G., and Loveland, D. W. 1962. A machine program for theorem-proving. Commun.

ACM 5, 7, 394–397.
Downey, R. G. and Fellows, M. R. 1999. Parameterized Complexity. Springer.
Dubhashi, D. P. and Panconesi, A. 2009. Concentration of Measure for the Analysis of Randomized Algo-

rithms. Cambridge University Press.
Esteban, J. L. and Torán, J. 2001. Space bounds for resolution. Inform. Comput. 171, 1, 84–97.
Esteban, J. L. and Torán, J. 2003. A combinatorial characterization of treelike resolution space. Inf. Process.

Lett. 87, 6, 295–300.
Flum, J. and Grohe, M. 2006. Parameterized Complexity Theory. Springer.
Gao, Y. 2009. Data reductions, fixed parameter tractability, and random weighted d-CNF satisfiability. Artif.

Intell. 173, 14, 1343–1366.
Haken, A. 1985. The intractability of resolution. Theor. Comput. Sci. 39, 297–308.
Janson, S., Łuczak, T., and Ruciński, A. 2000. Random Graphs. Wiley.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and

Its Applications, Oxford University Press.
Pudlák, P. and Impagliazzo, R. 2000. A lower bound for DLL algorithms for SAT. In Proceedings of the 11th

Symposium on Discrete Algorithms. 128–136.
Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41.
Rossman, B. 2008. On the constant-depth complexity of k-clique. In Proceedings of the 40th ACM Symposium

on Theory of Computing. 721–730.
Rossman, B. 2010. The monotone complexity of k-clique on random graphs. In Proceedings of the 51th IEEE

Symposium on the Foundations of Computer Science. IEEE, 193–201.

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

�

�

�

�

�

�

�

�

Parameterized Complexity of DPLL Search Procedures 20:21

Segerlind, N. 2007. The complexity of propositional proofs. Bull. Symb. Logic 13, 4, 417–481.
Segerlind, N., Buss, S. R., and Impagliazzo, R. 2004. A switching lemma for small restrictions and lower

bounds for k-DNF resolution. SIAM J. Comput. 33, 5, 1171–1200.
Stalmark, G. 1996. Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33, 277–280.
Urquhart, A. 1987. Hard examples for resolution. J. ACM 34, 1, 209–219.

Received November 2011; revised August 2012; accepted October 2012

ACM Transactions on Computational Logic, Vol. 14, No. 3, Article 20, Publication date: August 2013.

