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Abstract
The last 20 years have seen dramatic improve-
ments in the performance of algorithms for Boolean
satisfiability—so-called SAT solvers—and today
conflict-driven clause learning (CDCL) solvers are
routinely used in a wide range of application ar-
eas. One serious short-coming of CDCL, how-
ever, is that the underlying method of reasoning
is quite weak. A tantalizing solution is to instead
use stronger pseudo-Boolean (PB) reasoning, but
so far the promise of exponential gains in perfor-
mance has failed to materialize—the increased the-
oretical strength seems hard to harness algorithmi-
cally, and in many applications CDCL-based meth-
ods are still superior. We propose a modified ap-
proach to pseudo-Boolean solving based on divi-
sion instead of the saturation rule used in [Chai
and Kuehlmann ’05] and other PB solvers. In ad-
dition to resulting in a stronger conflict analysis,
this also improves performance by keeping integer
coefficient sizes down, and yields a very competi-
tive solver as shown by the results in the Pseudo-
Boolean Competitions 2015 and 2016.

1 Introduction
The Boolean satisfiability problem (SAT) is one of the most
fascinating problems in computer science. Though decep-
tively easy to state—given a formula in propositional logic,
is it possible to assign variables true and false so that it eval-
uates to true?—it has been the focus of extensive research
ever since the dawn of computer science (and even before—
cf. Gödel’s famous letter to von Neumann in 1956).

SAT was proven NP-complete in [Cook, 1971; Levin,
1973], laying the foundation for computational complexity
theory, and a widely accepted hypothesis is that the problem
requires exponential time in the worst case [Impagliazzo and
Paturi, 2001]. Yet the last couple of decades have seen the de-
velopment of SAT solvers based on the conflict-driven clause
learning (CDCL) paradigm introduced in [Marques-Silva and
Sakallah, 1999],1 with further improvements in [Moskewicz

1A similar idea in the context of constraint satisfaction problems
was independently developed in [Bayardo Jr. and Schrag, 1997].

et al., 2001] and later papers, that are very efficient in prac-
tice. Today CDCL solvers are routinely used to solve large-
scale real-world problems in, e.g., hardware and software ver-
ification, AI planning, automated theorem proving, and many
other areas (see [Biere et al., 2009] for more details).

A drawback with CDCL is that from a mathematical point
of view the method of reasoning is quite weak—it is based
on the resolution proof system, for which exponential lower
bounds are known even for simple combinatorial princi-
ples [Haken, 1985; Urquhart, 1987]. Another issue is that
problems have to be encoded in conjunctive normal form
(CNF) as a collection of disjunctive clauses, which loses the
semantics of higher-level constraints and further hurts the rea-
soning power. This can be addressed by using preprocessing
techniques for, e.g., Gaussian elimination and cardinality rea-
soning, but these techniques work only in limited cases and
are again quite sensitive to the exact encoding of the problem.

An attractive option is to instead use (linear) pseudo-
Boolean (PB) constraints i.e., integral linear inequalities over
Boolean variables, which gives a succinct way of encoding
problems in many different fields. PB constraints are more
expressive than CNF, but are close enough that CNF-based
techniques can be harnessed to attack pseudo-Boolean prob-
lems. The connection to integer linear programming (ILP)
and, in particular 0-1 programming, makes it natural to also
borrow insights from these areas.

Some pseudo-Boolean solvers are still based on resolution,
in that they translate the input to CNF. This can be done
eagerly, so that all linear inequalities are converted to CNF
after which a CDCL solver is called (as in MiniSat+ [Eén
and Sörensson, 2006], Open-WBO [Martins et al., 2014;
Joshi et al., 2015], and NaPS [Sakai and Nabeshima, 2015]),
or lazily in a modified CDCL solver that keeps the PB for-
mat of the input but derives new information only in the
form of clauses (as in one of the methods in the Sat4j li-
brary [Le Berre and Parrain, 2010]). Another approach is
to go beyond resolution and build solvers using the cutting
planes method [Cook et al., 1987]. It should be noted that
extending the conflict-driven framework to pseudo-Boolean
constraints is non-trivial, but methods to do so were de-
signed in the solvers PRS [Dixon and Ginsberg, 2002] and
Galena [Chai and Kuehlmann, 2005], and were further de-
veloped in Pueblo [Sheini and Sakallah, 2006] and Sat4j [Le
Berre and Parrain, 2010] (related, but slightly different, ideas
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were also explored in bsolo [Manquinho and Marques-Silva,
2006]). Needless to say, this is far from a complete overview
of pseudo-Boolean solving—see, e.g., the excellent survey
in [Biere et al., 2009, Chapter 22] for more information.

From a theoretical standpoint, using cutting planes seems
clearly preferable, since this method is never worse than res-
olution but can be exponentially stronger. In practice this is
not so, however—often CDCL-based solvers outperform PB
solvers based on cutting planes! One possible explanation
for this state of affairs lies in the tension between the two
desiderata that the method of reasoning utilized should (1) be
as powerful as possible but also (2) allow for efficient search.

Regarding the second consideration, storing and manipu-
lating linear constraints is much more costly than dealing with
simple disjunctive clauses, and can slow down the solver pro-
hibitively [Sheini and Sakallah, 2006]. Integer coefficients
can also grow very large during search, requiring the usage of
multi-precision arithmetic which decreases performance still
further. In addition to these implementation concerns, a richer
set of derivation rules makes the search space much larger and
more challenging to explore.

Perhaps partly to address this issue, solvers based on [Chai
and Kuehlmann, 2005] do not use the full power of cutting
planes. In particular, instead of the division rule they employ
the simpler to implement saturation rule. This again makes
solvers quite sensitive to details in the input format, however,
and causes them to degenerate to resolution in certain cases
where cutting planes is very efficient [Hooker, 1992; Vinyals
et al., 2018].

Our Contribution In this work, we further develop the the-
oretical foundations of conflict-driven pseudo-Boolean solv-
ing in [Chai and Kuehlmann, 2005] to incorporate the divi-
sion rule2 in [Cook et al., 1987] as well as some other useful
extensions, and report results from implementing these ideas
in the solver RoundingSat.

The new method has several advantages. For problems
where PB reasoning does not seem to afford much of an ad-
vantage compared to CDCL, the search speed measured in
terms of number of conflicts per second is orders of mag-
nitude faster than in other cutting-planes-based PB solvers,
approaching the vicinity of standard CDCL. Thanks to the
aggressive use of division, integer coefficients normally re-
main within the range of 32 bits (for inputs with coefficients
of bounded size), which makes it possible to employ fixed-
precision arithmetic. From a theoretical point of view, us-
ing division means that the solver has the potential to be
exponentially stronger for problems where 0-1-integer rea-
soning rather than just CDCL or linear programming is cru-
cial [Vinyals et al., 2018]. It seems fair to say that this is
also borne out in practice, as shown by the Pseudo-Boolean
Competitions in 2015 and 2016,3 as well as by further im-
provements obtained since then as reported in this paper.

2As we discuss later in this paper, we have learned that related
ideas can also be found in the general integer linear programming
solver CutSat [Jovanovic and de Moura, 2013].

3An earlier version of RoundingSat participated under the name
cdcl-cuttingplanes in these events.

Algorithm 1: CDCL main loop.
1 ρ← empty trail ; D ← F
2 until solved do
3 (ρ, Cconfl)← propagate(ρ,D)
4 if Cconfl 6= NONE then
5 if decision level of ρ = 0 then
6 output UNSAT and terminate
7 Clearnt ← analyzeConflict(Cconfl, ρ)
8 Revert ρ to backtrack level of Clearnt

9 D ← D ∪ {Clearnt}
10 else
11 if ρ is a total assignment then
12 output SAT and terminate
13 if time to restart then
14 Backtrack ρ to level 0
15 if time for clause database reduction then
16 Erase (roughly) half of learned clauses in D
17 `← a literal unassigned by ρ
18 ρ← append(ρ, `/d)

Organization of This Paper In Section 2, we review the
basics of conflict-driven pseudo-Boolean solving, after which
our contributions are presented in Section 3. Section 4 con-
tains the results from our empirical evaluations. We conclude
in Section 5 with some directions for further research. Some
supplemental material (including experimental data) can be
found at www.csc.kth.se/˜jakobn/RoundingSat.

2 Conflict-Driven Pseudo-Boolean Search
In this section we review how conflict-driven solving can be
extended from CNF to pseudo-Boolean constraints, in order
to present the framework on which our contribution is based.

Throughout this paper we identify 1 with true and 0 with
false . A literal ` is either a Boolean variable x or its nega-
tion x. We say that the sign of x is positive and that of x is
negative. By a pseudo-Boolean (PB) constraint we mean a
linear inequality over the domain {0, 1} with integer coeffi-
cients and integral constant term. In the context of pseudo-
Boolean solving it is natural to represent the constraints in
normalized form

∑
i ci`i ≥ w, where `i are literals over pair-

wise distinct variables, ci are positive integers, and w is a
positive integer called the degree of falsity (or just degree).
In what follows, by “constraint” we mean a pseudo-Boolean
constraint in normalized form unless otherwise stated. We
think of a partial truth value assignment ρ as the set of literals
set to true by ρ. Thus, ρ(`) = 1 if ` ∈ ρ, ρ(`) = 0 if ` ∈ ρ,
and if the variable is unassigned we write ρ(`) = ∗.

We first recap how conflict-driven clause learning (CDCL)
works for CNF inputs. Note that the clauses C in a CNF for-
mula F are just PB constraints with all coefficients and degree
of falsity equal to 1. The main loop of the CDCL algorithm is
presented in Algorithm 1. The solver maintains a partial as-
signment ρ to the variables, which it is trying to extend to a to-
tal assignment satisfying the formula. We identify this ρ with
an ordered set, referred to as the trail, containing the literals
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Algorithm 2: propagate(ρ,D)
1 while there exists a clause C ∈ D and an unassigned

literal ` ∈ C implied by C under ρ do
2 ρ← append(ρ, `/C)

3 if there exists a clause C ∈ D falsified by ρ then
4 return (ρ, C)

5 return (ρ, NONE)

Algorithm 3: analyzeConflict(Cconfl, ρ)
1 while Cconfl is not asserting do
2 `← literal assigned last on the trail ρ
3 if ` occurs in Cconfl then
4 Creason ← reason(`, ρ)
5 Cconfl ← Res(Cconfl, Creason)

6 ρ← removeLast(ρ)

7 return Cconfl

annotated with additional information why the assignments
were made as follows. We write `/C to denote that the lit-
eral ` on the trail was propagated by the constraint C to avoid
immediately falsifying the formula (as explained below), and
also use the notation C = reason(`, ρ) to show that C was
the reason for this propagation of ` when the trail was ρ. We
write `/d when the assignment to ` was a freely made deci-
sion by the solver, in which case reason(`, ρ) = NONE. The
decision level of ` in ρ, denoted level(`, ρ), is the number of
decisions up to (and possibly including) `.

There are two subroutines, unit propagation (Algorithm 2)
and conflict analysis (Algorithm 3), which we review next.
In unit propagation, the solver repeatedly finds an unassigned
literal which is implied by some clause and adds this literal to
the trail. A literal ` in a clause C is implied, or propagated,
by C under ρ if all other literals in C are falsified by ρ, mean-
ing that ` has to be satisfied to avoid immediate contradiction.
Unit propagation can terminate in two ways: either there are
no further implications, or a clause is falsified. The unit prop-
agation method returns the extended trail, plus potentially the
falsified clause, which is called the conflict clause. The solver
then calls conflict analysis if there was a falsified clause and
makes a new decision otherwise.

The purpose of conflict analysis is to learn a new clause
that explains why the current partial assignment failed, and
then add this clause so that the solver can avoid exploring
infeasible parts of the search space multiple times. Conflict
analysis is typically done using the first unique implication
point (1UIP) learning scheme. The solver starts with the con-
flict clause and the last reason clause in chronological order
propagating a literal in the conflict clause to false, and re-
solves these two clauses using the resolution rule: given two
clauses C ∨ x and D ∨ x containing a unique variable x with
opposite signs, derive the resolvent Res(C ∨ x,D ∨ x) =
C ∨D. Then this resolvent is in turn resolved with the reason
clause propagating the last literal in the resolvent to false, et
cetera. The key invariant in this algorithm is that at the end

of each iteration of the loop, the new intermediate conflict
clause Cconfl is falsified by what remains of the trail ρ when
the last literal is removed. 1UIP conflict analysis terminates
the first time Cconfl contains a single literal `′ at the last deci-
sion level. This clause is then declared to be the learnt clause
and is added to the clause database containing the formula F
as well as previously learnt clauses. Next the assertion level
is calculated, which is the second highest decision level repre-
sented in the learnt clause. The trail will then be backtracked
to this level, meaning that all assignments at higher levels are
removed. It is not hard to see that at this point Cconfl will
propagate `′ to true, i.e., flipping the assignment at the time
of conflict. Clauses having the property that they cause prop-
agation after backtracking are called asserting.

What we have presented above is a schematic, and some-
what simplified, description of CDCL search, with an em-
phasis on the conflict analysis that we want to extend to a
pseudo-Boolean setting. We do not dwell on other important
aspects, such as restart policy or and clause database erasure,
since they are not the main focus of this work.

Let us now discuss how to generalize conflict-driven search
from clauses to PB constraints. The main loop in Algorithm 1
remains the same. To generalize unit propagation, we need
the notion of slack of a constraint C .

=
∑
i ci`i ≥ w, which

is a measure of how close a partial assignment ρ is to falsify-
ing C. It is defined as the difference between the maximum
value the sum

∑
i ci`i may attain given the assignments al-

ready made in ρ and the degree of falsity w, i.e.,

slack(C, ρ) =
∑
i:ρ(`i) 6=0 ci − w . (1)

The constraint C is falsified by ρ if the slack is negative,
and C implies or propagates a literal `i under ρ if ρ(`i) = ∗
and slack(C, ρ) < ci, meaning that unless `i is set to true the
constraint C will be falsified. Note that this generalizes the
notion of propagating disjunctive clauses, which have slack 0
and coefficient 1 for the propagated literal. Unit propagation
as in Algorithm 2 can now be done by calculating the slack
of the constraints. One important problem is that when C is a
general constraint and not a disjunctive clause it seems harder
to detect efficiently whether C is propagating, but we will not
discuss this further in this paper.

To generalize 1UIP conflict analysis, we would like to “re-
solve” a falsified constraint with a sequence of reason con-
straints in such a way that the final constraint is asserting.
The natural extension of the resolution rule to general PB con-
straints is called generalized resolution [Hooker, 1992; Dixon
et al., 2004] and is defined as follows. Given constraints
C

.
= a` +

∑
i ci`i ≥ w and C ′ .= b`+

∑
i c

′
i`

′
i ≥ w′ con-

taining some literal ` with opposite signs, let g = gcd(a, b).
Then the (generalized) resolvent Res(C,C ′, `) is

b

g

∑
ici`i +

a

g

∑
ic

′
i`

′
i ≥

bw + aw′ − ab
g

(2)

(where we implicitly assume that this constraint, as well as
the result of any other operation performed below, is again
reduced to normalized form). Note that in contrast to reso-
lution applied on clauses we have to give a third argument
specifying which literal should be cancelled, since there may
be several literals with opposite signs. As an example, for the
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Algorithm 4: Reduction by weakening and saturation.
1 while slack(Res(Cconfl, Creason, `), ρ) ≥ 0 do
2 `′ ← a literal in Creason not falsified by ρ, `′ 6= `
3 Creason ← saturate(weaken(Creason, `

′))

4 return Creason

constraints C .
= 2x1 +2x2 +2x3 ≥ 3 and C ′ .= x1 +x3 ≥ 1

the resolvent over x1 is Res(C,C ′, x1)
.
= 2x2 + 4x3 ≥ 3.

However, when we try to perform conflict analysis as in
Algorithm 3 we run into trouble. Recall that the key invariant
during CDCL conflict analysis is that the currently derived
constraint is falsified by what remains of the trail, meaning
that at all times the derived constraint “explains” the conflict.
This property no longer holds when we use generalized reso-
lution, as shown in the next example.

Example 2.1 (Failed conflict analysis using generalized
resolution). Consider a PB instance consisting of just C .

=
2x1 + 3x2 +x3 ≥ 3 and C ′ .

= 4x2 + 4x3 + 2x4 +x5 ≥ 4.
Suppose the solver makes decisions x4, after which noth-
ing propagates, and then x3. At this point C propagates x2,
which in turn falsifies C ′, triggering conflict analysis. Us-
ing resolution, the solver would derive Res(C,C ′, x2)

.
=

8x1 + 16x3 + 6x4 + 3x5 ≥ 12. But this constraint is not
falsified by the assignment

{
x4, x3

}
remaining on the trail.

In view of this example, generalized resolution on its own
is not sufficient for conflict analysis. [Chai and Kuehlmann,
2005] solve this problem by designing a reduction algorithm
that computes a constraint that is implied by the original rea-
son constraint and for which generalized resolution maintains
the key invariant when the reason is replaced by this new con-
straint. This algorithm uses two additional operations called
weakening and saturation, which we describe next.

The weakening operation removes a literal from a con-
straint and subtracts its coefficient from the degree. For ex-
ample, weakening the constraint C .

= x1 + 2x2 + 3x3 ≥ 4
on x1 yields weaken(C, x1)

.
= 2x2 +3x3 ≥ 3. This is sound,

because weakening on a literal ` is equivalent to adding
the constraint ` ≥ 0 multiplied by the appropriate coeffi-
cient. Saturation applied to a constraint C ′ .

=
∑
i ci`i ≥ w

returns saturate(C ′)
.
=
∑
i min(ci, w) · `i ≥ w, i.e., it

brings the magnitude of all coefficients down to the degree
of falsity. As a concrete example, saturating the constraint
x1 + 2x2 + 3x3 ≥ 2 gives x1 + 2x2 + 2x3 ≥ 2. This is
sound because all literals take non-negative integral values,
and if

∑
i ci`i ≥ w is satisfied by setting some literal `i = 1

for which ci > w, then clearly the contribution from w · `i is
also sufficient to satisfy the constraint.

The reduction method in [Chai and Kuehlmann, 2005] is
presented as Algorithm 4 and works by repeating the follow-
ing steps. First, it tests whether the generalized resolvent
of the reason constraint and the conflict constraint satisfies
the key invariant. If this is the case, then the reason can be
used as is and the algorithm terminates. Otherwise, it finds
a non-falsified literal in the reason constraint different from
the propagating literal, weakens the constraint on this literal,
applies saturation, and continues with the next iteration.

Let us illustrate by a simple example how a single step in
the conflict analysis of [Chai and Kuehlmann, 2005] works.
Example 2.2 (Illustration of Chai–Kuehlmann reduction).
Suppose we have a pseudo-Boolean instance consisting of the
two constraints C .

= 2x1 + 2x2 + 2x3 + 2x4 + x5 ≥ 6 and
C ′ .= 2x1 + 2x2 + 2x3 + 2x4 ≥ 3. Clearly, C and C ′ are just
obfuscated encodings of the mutually contradictory cardinal-
ity constraints x1+x2+x3+x4 ≥ 3 and x1+x2+x3+x4 ≥ 2,
respectively. However, as we shall see reduction by saturation
does not allow us to derive contradiction immediately.

Suppose the trail is ρ =
(
x1/d, x2/C, x3/C, x4/C

)
. The

constraint C ′ is falsified and C is the reason (Cconfl and
Creason in Algorithm 4, respectively), and the variable to re-
solve over is the one that is last on the trail, i.e., x4. We have
Res(C ′, C, x4)

.
= x5 ≥ 1, which has non-negative slack 0, so

the reason constraint must be reduced. The algorithm chooses
a non-falsified literal different from x4, say x2, and weakens
C to obtain 2x1 + 2x3 + 2x4 + x5 ≥ 4. Applying saturation
has no effect. The resolvent Res(C ′, 2x1 +2x3 +2x4 +x5 ≥
4, x4)

.
= 2x2 + x5 ≥ 1 has slack 0, triggering further reduc-

tion. Say the next variable chosen is x3. Weakening gives
2x1 + 2x4 + x5 ≥ 2. Saturation again changes nothing, and
Res(C ′, 2x1+2x4+x5 ≥ 2, x4)

.
= 2x2+2x3+x5 ≥ 1 again

has slack 0. Finally, weakening on x5 yields 2x1 + 2x4 ≥ 1,
after which saturation returns x1 + x4 ≥ 1. Now the resol-
vent Res(C ′, x1 +x4 ≥ 1, x4)

.
= 2x2 +2x3 ≥ 1 has negative

slack −1, so we are done.
Because the slack of the resolvent is too expensive to com-

pute manually after each weakening and saturation step of the
reason constraint, an upper bound on the slack is used in prac-
tice. This upper bound is based on the subadditivity property
of slack, which we state without proof.
Fact 2.3 (Slack is subadditive). For any pseudo-Boolean
constraints C and C ′ and any partial assignment ρ it holds
that slack(C + C ′, ρ) ≤ slack(C, ρ) + slack(C ′, ρ).

In particular, this means that if for C .
= a`+

∑
i ci`i ≥ w

and C ′ .= b`+
∑
i c

′
i`

′
i ≥ w′ we let D = Res(C,C ′, `′) and

g = gcd(a, b), then we have

slack(D, ρ) ≤
(
b · slack(C, ρ) + a · slack(C ′, ρ)

)
/g . (3)

The advantage of using this estimate is that we do not need
to compute the resolvent in each iteration, but instead it is
sufficient to know the slacks of the conflict constraint (which
remains constant) and the reduced reason constraint.

3 PB Conflict Analysis Using Division
We now proceed to describe our new method for conflict
analysis, which we call rounding. The idea is to reduce
the reason constraint into suitable form using division in-
stead of saturation, where the result of dividing the constraint
C

.
=
∑
i ci`i ≥ w by a positive integer d is

divide(C, d)
.
=
∑
idci/de`i ≥ dw/de (4)

(which is a sound derivation since all numbers involved are
non-negative integers). It is worth noting that this division
rule (rather than saturation) is what was used to define the
cutting planes method in [Cook et al., 1987].
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Algorithm 5: roundToOne(C, `, ρ)
1 c← coefficient(C, `)
2 foreach literal `j in C with coefficient cj do
3 if ρ(`j) 6= 0 and cj is not divisible by c then
4 C ← weaken(C, `j)

5 return divide(C, c)

As presented in Algorithm 5, our reduction method
roundToOne(C, `, ρ) takes a constraint C, a literal ` and a
partial assignment ρ and outputs a constraint C ′ rounded on `
that is a consequence ofC, has coefficient 1 for `, and satisfies
an additional property (to be discussed further) that makes it
a suitable reason reduction algorithm.

To reduce the reason roundToOne is called with
Creason = reason(`, ρ) together with ρ and `. The algorithm
weakens away all literals not falsified by ρ and with coeffi-
cients not divisible by the coefficient c of ` in Creason, and
then divides by c. In this case, the additional property of the
output constraint is that it still implies `. Equivalently, the
slack is 0, and this implies that the resolvent in conflict anal-
ysis is guaranteed to be falsified, so that our desired invariant
in conflict analysis holds. The reason for this is that slack
is subadditive (see Fact 2.3) and we are resolving a reduced
reason constraint with slack 0 and the previous intermediate
conflict constraint, which has negative slack. Hence, the new
intermediate conflict constraint also has negative slack as re-
quired. Let us formalize and prove these claims.
Proposition 3.1. For any trail ρ and any PB constraint
C

.
=
∑
i ci`i ≥ w containing the literal `i it holds that

slack(roundToOne(C, `i, ρ), ρ) = bslack(C, ρ)/cic.

Proof. It is straightforward to verify directly from Eq. (1) that
weakening on non-falsified literals does not change the slack.
After the weakening loop, the remaining non-falsified literals
are all divisible by the coefficient ci of the literal `i. There-
fore, if we would not take the ceiling of the degree of Creason

but do exact division, then the (possibly rational) slack would
be exactly 1/ci times the original slack. Because we round up
the degree after division, the slack is bslack(C, ρ)/cic.

Corollary 3.2. If C .
=
∑
i ci`i ≥ w is a non-falsified con-

straint that propagates `i under ρ, i.e., 0 ≤ slack(C, ρ) < ci,
then slack(roundToOne(C, `i, ρ), ρ) = 0. If instead
slack(C, ρ) < 0, then slack(roundToOne(C, `i, ρ), ρ) < 0,
i.e., ifC is falsified under ρ, then so is roundToOne(C, `i, ρ).
Example 3.3 (Illustration of roundToOne). To see how
our new reduction method works, consider the same PB in-
stance and trail as in Example 2.2. Recall that the trail
is ρ =

(
x1/d, x2/C, x3/C, x4/C

)
and that the reason is

C
.
= 2x1 + 2x2 + 2x3 + 2x4 +x5 ≥ 6 to be resolved over x4

(the conflict constraint is irrelevant for this example). Our
method first sets the divisor to be the coefficient of x4, which
equals 2 (line 1 in Algorithm 5). Then it loops over all literals
in the constraint, and weakens away those that are not falsified
by ρ and have coefficient not divisible by 2 (lines 2–4). Liter-
als x2, . . . , x5 are not falsified, and of these x5 has coefficient
not divisible by 2, so x5 gets weakened away. When the loop

Algorithm 6: RoundingSat conflict analysis
1 while Cconfl contains no or multiple falsified literals on

the last level do
2 if decision level = 0 then
3 output UNSAT and terminate
4 `← literal assigned last on the trail ρ
5 if ` occurs in Cconfl then
6 Cconfl ← roundToOne(Cconfl, `, ρ)
7 Creason ← roundToOne(reason(`, ρ), `, ρ)

8 Cconfl ← Res(Cconfl, Creason, `)
9 if overflow occurs in Cconfl then

10 Round Cconfl to cardinality constraint

11 Undo ` on ρ
12 `← the literal in Cconfl last falsified by ρ
13 return roundToOne(Cconfl, `, ρ)

ends, the constraint C equals 2x1 + 2x2 + 2x3 + 2x4 ≥ 5.
Finally, division by 2 (line 5) yields x1 + x2 + x3 + x4 ≥ 3.
Thus, we see that we get a stronger constraint than in reduc-
tion by saturation, which gives x1 + x4 ≥ 1.

Remark 3.4 (Variations on roundToOne). Let us discuss
some possible variants of the reduction algorithm. Consider
the constraintC .

= 2x1 +3x2 +3x3 +3x4 ≥ 8, to be rounded
over x1, together with the assignment ρ =

{
x1, x2, x3, x4

}
,

for which roundToOne returns x1 + 2x4 ≥ 1. If instead of
doing all literal weakenings in one go we would let the algo-
rithm weaken on one literal at a time and terminate as soon
as the slack after division is 0, then we could have obtained
the stronger constraint x1 + 2x2 + 2x4 ≥ 3. However, it can
be shown that regardless of the order in which weakenings
are carried out, this iterative approach will always weaken al-
most as many literals as roundToOne. More precisely, the
difference is at most c− 1 literals, where c is the divisor.

Another possibility would be to weaken partially on liter-
als, e.g., deriving 2x1 + 2x2 + 2x3 + 3x4 ≥ 6 from C, after
which division yields x1 +x2 +x3 + 2x4 ≥ 3. However, our
empirical evaluations of this showed much worse results.

Besides rounding the reason, we employ roundToOne also
in other places. First, we round the intermediate conflict con-
straintCconfl before resolving it. By Corollary 3.2, this leaves
Cconfl falsified, so the key invariant in conflict analysis still
holds. The other point at which we call roundToOne is as a
postprocessing step. Once we are done with conflict analysis,
we find the literal ` that was falsified last by ρ in the derived
constraint, round on `, and declare the result to be the learnt
constraint. The full conflict analysis is given in Algorithm 6.

There are some corner cases in PB conflict analysis that
make it more complicated than CDCL. First, a resolution op-
eration may cancel all falsified literals on the current decision
level, in which case the analysis may continue to an earlier de-
cision level. This is the reason for the condition “no or multi-
ple falsified literals on the last level” on line 1 in Algorithm 6.
It may even happen that conflict analysis is able to proceed to
the topmost decision level, which means the instance is un-
satisfiable. In this case, the solver terminates (lines 2–3). An-
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other difference is that learnt constraints may be falsified at
their assertion level, in which case repeated conflict analysis
is performed before calling unit propagation.

Remark 3.5 (Skipping resolution steps). Another in-
teresting contrast to CDCL conflict analysis is that if
slack(Cconfl, ρ) is very negative, then it might be possible
to ignore the resolution step with Creason and just remove the
propagated literal ` from the trail ρ, still maintaining the in-
variant slack(Cconfl, ρ \ {`}) < 0. Intuitively, it might seem
that this should lead to a more compact analysis involving
only the reasons truly needed for the conflict, and hence po-
tentially produce a better learnt constraint. When we eval-
uated this empirically the results did not improve, however,
and so we ended up not using this idea, but it might still be an
interesting observation worthy of further exploration.

Comparison to CutSat The idea to use division during con-
flict analysis appears also in the general integer linear pro-
gramming (ILP) solver CutSat [Jovanovic and de Moura,
2013], so let us try to compare and contrast this solver to
RoundingSat. ILP constraints are not normalized but instead
have the form C

.
=
∑
i cixi ≥ w, where ci can be negative.

In CutSat, the trail consists of bound refinements x ≤ c or
x ≥ c. (In the PB case, the trail contains at the very start the
bounds xi ≥ 0 and xi ≤ 1 for all variables xi, and further re-
finements xi ≥ 1 or xi ≤ 0 correspond to assignments.) Each
refinement has a reason constraint or is a decision. Decisions
always fix variable values, so if the currently best bound is
x ≥ L (x ≤ U ), then the decision is x ≤ L (x ≥ U ).

CutSat conflict analysis also works by resolving a conflict
constraint with a sequence of reduced reason constraints. The
reduction method outputs tightly propagating (or tight) con-
straints, which are on the form bx+

∑
cixi ≥ w, where x is

the refinement variable and b ∈ {−1, 1}. The reduced reason
implies the same bound refinement on x as the original one
with respect to the trail. (In the PB setting this means that the
slack is 0.) CutSat reduction starts with the reason, derives
a constraint C ′ with all coefficients divisible by the coeffi-
cient c of the propagated literal, and returns divide(C ′, c).
This is similar to how RoundingSat works: it also starts with
the reason, performs weakening, and then divides.

To discuss CutSat reduction in more detail, assume for sim-
plicity that the reason constraint is a lower bound refinement
C

.
= cx +

∑
cixi ≥ w with all coefficients positive (for

negative coefficients the role of upper and lower bounds are
just reversed). CutSat iterates through the variables of C in
reverse chronological order with respect to the trail. If a vari-
able xi has a coefficient ci > 0 not divisible by c, then CutSat
adds a constraint associated with this variable to C in order
to make the coefficient divisible. To do so CutSat looks up
why xi is bounded from above (which must be the case, since
otherwise the reason constraint would not be propagating).

If the latest upper bound refinement for xi is due to a reason
propagating, then this reason is made tight by calling the rea-
son reduction algorithm recursively. Suppose this call returns
the new constraint Ci

.
= −xi +

∑
j c

′
jxj ≥ w′ (with coef-

ficient −1 for xi since we have an upper bound constraint).
Then generalized resolution is performed on C and Ci with

respect to xi. This eliminates one coefficient not divisible by
c, but may introduce new variables with non-divisible coeffi-
cients. All such variables are dealt with in the same way in
reverse chronological order with respect to the trail.

Suppose instead that the latest upper bound refinement
for xi is a decision xi ≤ Ui. Because decisions always fix
variable values, this means that a matching lower bound re-
finement forcing xi ≥ Ui must exist earlier on the trail. Then
this matching constraint is made tight and added to C with
the smallest multiplier making the coefficient of xi divisible.

For PB instances this works as follows. Assume again that
the reason is a lower bound refinement cx +

∑
cixi ≥ w

with all coefficients positive, and let ci > 0 be not divisi-
ble by c > 0. We get a case analysis depending on whether
xi ≤ 0 appears on the trail or not. If not, then we resolve with
the inequality xi ≤ 1 (corresponding to weakening in Round-
ingSat). If xi ≤ 0 is on the trail, then we resolve by the tight
reduced constraint obtained from the reason that xi ≤ 0 if
this reason exists. Otherwise, xi ≤ 0 is a decision and we
add the tight constraint xi ≥ 0 with the smallest multiple so
that the coefficient becomes divisible by c. This is equivalent
to rounding up the coefficient during a division step.

When comparing the two methods, we would argue that
RoundingSat seems clearly simpler to understand and imple-
ment (though this is also thanks to the fact that we need not
worry about general ILP constraints but can focus on PB con-
straints). Our method is also more efficient in the worst case,
since no recursive calls are made and the conflict analysis
does not have to go as far back on the trail. While we be-
lieve that these aspects also make RoundingSat significantly
more efficient not only in the worst case but also in practice,
we should add the caveat that we have not performed a thor-
ough empirical evaluation of how CutSat and RoundingSat
compare on, e.g., PB competition benchmarks.

4 Experimental Analysis
In this section we report results from an experimental com-
parison of RoundingSat to Sat4j and Open-WBO. Recall that
Open-WBO is a resolution-based solver that does an eager
conversion to clauses and then runs a state-of-the-art CDCL
solver. From the Sat4j solver library we test two versions:
a resolution-based solver Sat4j Res, doing lazy conversion
to clauses, and a cutting planes-based solver Sat4j Res+CP,
which, however, also runs the resolution-based solver in par-
allel since the cutting planes-based solver on its own is not
considered competitive enough. In our experiments we gave
all solvers the same wall-clock time, which means that Sat4j
Res+CP got twice as much CPU time as the other solvers.

We evaluated the solvers on benchmarks submitted to
the Pseudo-Boolean Competitions over the past two decades
in the DEC-SMALLINT-LIN category (decision problems,
small integers, linear constraints) since RoundingSat is
currently designed to solve decision problems and rep-
resents constraints using 32-bit integers. Our choice of
Sat4j and Open-WBO was dictated by the results in the
DEC-SMALLINT-LIN category from the Pseudo-Boolean
Competition 2016, where these two solvers together with our
solver were the top-three performers. We used the latest avail-
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RoundingSat Sat4j Res+CP Sat4j Res Open-WBO Total
PB05 aloul 36 + 21 36 + 21 36 + 3 36 + 6 57
PB06 manquiho 14 + 0 14 + 0 14 + 0 3 + 0 14
PB06 ppp-problems 4 + 0 4 + 0 4 + 0 3 + 0 6
PB06 uclid 1 + 47 1 + 47 1 + 47 1 + 49 50
PB06 liu 16 + 0 16 + 0 16 + 0 17 + 0 20
PB06 namasivayam 72 + 128 72 + 128 72 + 128 72 + 128 200
PB06 prestwich 10 + 0 11 + 0 9 + 0 14 + 0 18
PB06 roussel 0 + 22 0 + 22 0 + 4 0 + 4 40
PB10 oliveras 34 + 32 34 + 32 34 + 33 34 + 33 80
PB11 heinz 2 + 0 2 + 0 2 + 0 2 + 0 4
PB11 lopes 42 + 26 37 + 25 37 + 25 33 + 28 193
PB12 sroussel 31 + 0 21 + 0 23 + 0 29 + 1 122
PB16 elffers 0 + 287 0 + 229 0 + 142 0 + 213 293
PB16 nossum 68 + 0 39 + 0 39 + 0 55 + 0 180
PB16 quimper 43 + 214 43 + 213 43 + 213 46 + 241 304
Sum 373 + 777 330 + 717 330 + 595 345 + 703 1581

Table 1: Results on benchmarks from past PB competitions (number of solved satisfiable instances + solved unsatisfiable instances).

RoundingSat Sat4j Res+CP Sat4j Res Open-WBO Total
Vertex cover, rectangular grids 82 68 26 82 82
Subset cardinality, fixed bandwidth 28 28 4 13 28
Subset cardinality, random matrices 28 28 6 6 28
Perfect matching, random graphs 33 9 10 11 33
Even colouring, odd-dimension grids 25 17 20 25 25
Even colouring, random graphs 22 5 6 6 22

Table 2: Detailed results for some families in the benchmark set PB16 elffers (number of solved instances; all are unsatisfiable).

able versions of all solvers as of December 1, 2017.
We ran our experiments on a cluster with a set-up of

6 AMD Opteron 6238 (2.6 GHz) cores and 16 GB of mem-
ory. We used 1800 seconds as the wall clock timeout, the
same time limit as in the Pseudo-Boolean Competition 2016,
and had a memory limit of 14 GB for all runs.

The results are presented in Table 1 (summary for all
benchmarks) and Table 2 (detailed results per family in the
large benchmark set PB16 elffers). On satisfiable benchmarks
we see that RoundingSat is typically doing equally well as
the other solvers, and the differences between solvers are rel-
atively small. The unsatisfiable benchmarks differentiate be-
tween the solvers much more. We can divide the benchmark
sets into two categories: those where pseudo-Boolean reason-
ing is crucial and those where resolution-based solvers are
equally good. The benchmarks for which PB reasoning mat-
ters are PB05 aloul, PB06 roussel, and PB16 elffers. In the
case where PB reasoning does not matter, we see no large dif-
ferences between the solvers, except that on the PB16 quim-
per set Open-WBO solves 12% more unsatisfiable instances
than the best of the other solvers. The cases where pseudo-
Boolean reasoning matters are relatively rare. PB05 aloul and
PB06 roussel are mainly pigeonhole principles encoded with
cardinality constraints, which are easy to solve for solvers that
can just add up linear inequalities but are exponentially hard

for resolution when encoded into CNF, and so it is not sur-
prising that RoundingSat and Sat4j Res+CP do much better
than the two resolution-based solvers here.

The benchmark set PB16 elffers consists of various crafted
instances. Subset cardinality formulas encode that we can-
not have a majority of true and false variables simultane-
ously if the total number of variables is odd. For reso-
lution these formulas are exponentially hard when gener-
ated from random matrices and easy in theory but chal-
lenging in practice when based on fixed bandwidth matri-
ces, but are always easy for cardinality reasoning. This ex-
plains the difference in performance between RoundingSat
and Open-WBO. Vertex cover formulas claim the existence
of a too small vertex cover for a rectangular, toroidal grid
graph. These instances have fractional solutions, however,
meaning that proper pseudo-Boolean reasoning is needed (as
opposed to for pigeonhole principle and subset cardinality
formulas, where linear programming is enough). Perhaps
somewhat surprisingly, Open-WBO performs very well al-
though pseudo-Boolean reasoning should be crucial. The rea-
son seems to be that since the input is presented in a help-
ful order, the CNF encoding of the cardinality constraint for
the vertex cover size provides extension variables that al-
low Open-WBO to perform the required counting argument
in resolution. RoundingSat also solves these instances ef-
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RoundingSat Sat4j CP Sat4j Res Open-WBO
PB05 aloul* – 79 2996 4538
PB06 manquiho – 294 – 4
PB06 ppp-problems 3128 24 4409 4770
PB06 uclid 2050 144 1211 948
PB06 liu 747 35 442 1951
PB06 namasivayam 14702 22 16239 13251
PB06 prestwich 1263 56 2830 6228
PB06 roussel 2076 237 1740 4762
PB10 oliveras 3069 34 1144 844
PB11 heinz 2191 85 2698 2882
PB11 lopes 3433 92 2452 1928
PB12 sroussel 1024 6 1581 1546
PB16 nossum 2832 14 3287 2223
PB16 quimper 4380 101 4206 9542
PB16 elffers

Vertex cover, rectangular grids 6607 177 5412 –
Subset cardinality, fixed bandwidth* – 19 3462 9970
Subset cardinality, random matrices* – 11 3623 9273
Perfect matching, random graphs* 5806 98 2299 11073
Even colouring, odd-dimension grids 21293 502 12835 24492
Even colouring, random graphs* 10268 152 3391 10111

Table 3: Average number of conflicts per second by family. A dash denotes that all instances were solved within 1 second. An asterisk
denotes that RoundingSat needs a much lower number of conflicts to refute the formula than resolution-based solvers.

ficiently using native PB reasoning in terms of the original
variables. Sat4j Res+CP solves most of the instances, though
not the full set, whereas the approach in Sat4j Res with lazy
clause generation plus resolution works very poorly. The
last two benchmark sets, perfect matching and even colour-
ing formulas, are both special cases of problems on the for-
mat

∑
i∈Ij xi = wj , j ∈ [m], where every variable xi oc-

curs in an even number of equations but
∑m
j=1 wj is odd.

These formulas again require pseudo-Boolean reasoning, ex-
cept when the underlying graph is simple enough to admit
an efficient resolution-based approach (as for the instances
generated from odd-dimension grids). These instances based
on even-odd counting can be efficiently refuted in the cutting
planes proof system provided that division is used, and in-
deed RoundingSat performs well. On random graphs these
formulas seem likely to be exponentially hard for resolution,
and so it is not surprising that Open-WBO is so bad. For Sat4j
we believe that the poor performance is due to precisely the
fact that this solver uses saturation rather than division.

Overall, we see that RoundingSat is almost always equally
good as the best of the other solvers (with the possible ex-
ceptions of PB06 prestwich and PB16 quimper), and for sev-
eral benchmark families it is markedly better. The differences
are particularly stark for many of the crafted unsatisfiable in-
stances in PB16 elffers, which have been designed to be very
easy for pseudo-Boolean reasoning but where RoundingSat
often is the only solver able to prove unsatisfiability quickly.

Besides number of solved instances, we have also studied
search speed measured as the number of conflicts per sec-

ond4 (see Table 3, where we discard instances solved in less
than 1 second). A couple of remarks are in order here. First,
the number of conflicts per second depends on how many
constraints the solver keeps in the database: more aggres-
sive deletion gives a higher speed. We do not know how the
solvers compare in this aspect. Second, RoundingSat solves
certain formulas in just a few seconds while the resolution-
based solvers time out. The conflict speed decreases over
time as the constraint database size increases, so the com-
parison is then not entirely fair. The cases where we know
that this happens are marked with an asterisk in the table.

For all benchmark families RoundingSat reaches a con-
flict speed that is one or several orders of magnitude higher
than Sat4j CuttingPlanes, the other solver doing PB reason-
ing. Comparing RoundingSat to the CDCL-based solvers, for
benchmarks where pseudo-Boolean reasoning does not help
we see that RoundingSat is usually at most 3 times slower.

5 Concluding Remarks
In this paper we present a new approach to pseudo-Boolean
solving, building on the conflict-driven search in [Chai and
Kuehlmann, 2005] but using division instead of saturation.
We report results from implementing these ideas in the
solver RoundingSat and evaluating against other state-of-the-
art pseudo-Boolean solvers. Our conclusions are that the

4One issue here is that Open-WBO does not output this statis-
tic, so for these particular measurements we had to hack the solver
slightly. The values obtained are not perfect, but should be within a
1% error for all benchmarks except those in PB06 manquiho.
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proof search is indeed stronger when pseudo-Boolean rea-
soning is essential, and that the aggressive use of division
also helps to keep coefficient sizes down, speeding up the
arithmetic operations. Although RoundingSat cannot com-
pete with state-of-the-art solvers in terms of raw search speed,
it is approaching CDCL-based methods measured in terms of
number of conflicts per second. Our solver performs very
well over all on the benchmarks tested. It remains competi-
tive with resolution-based solvers when pseudo-Boolean rea-
soning does not really seem to pay off, and it can outperform
CDCL on instances where more sophisticated reasoning is
crucial. It also seems superior to the pseudo-Boolean solving
approach with saturation instead of division.

An obvious direction for future research is to improve our
solver further. As other pseudo-Boolean solvers, Round-
ingSat is sensitive to the input format in that it performs quite
poorly on CNF formulas. A way to address this would be to
implement rules that can rewrite CNF to more efficient linear
constraints when possible. In particular, an important chal-
lenge is to do cardinality detection for sets of clauses encod-
ing cardinality constraints. Cardinality detection was consid-
ered already in [Dixon and Ginsberg, 2002] (in the form of
constraint strengthening) and was proposed again as a pre-
processing step in [Biere et al., 2014]. It works well for cer-
tain crafted instances, but is too costly to implement in gen-
eral when there is no guarantee that cardinality constraints
will be found. Instead, we would like to implement lazy car-
dinality detection during proof search, where the price is paid
only when there are strong indications that this will pay off.
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