
MASTER’S THESIS 2022

Proof complexity with the help
of sunflowers
Jonatan Nilsson

ISSN 1650-2884
LU-CS-EX: 2022-04

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-04

Proof complexity with the help of
sunflowers

Beviskomplexitet med hjälp av solrosor

Jonatan Nilsson

Proof complexity with the help of
sunflowers

Jonatan Nilsson
nilsson.jonatan98@gmail.com

February 24, 2022

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Jakob Nordström, jakob.nordstrom@cs.lth.se

Examiner: Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

mailto:nilsson.jonatan98@gmail.com
mailto:jakob.nordstrom@cs.lth.se
mailto:jonas.skeppstedt@cs.lth.se

Abstract

Finding whether a boolean formula can be satisfied or not is a very fundamental
problem. A related problem is to, for an unsatisfiable formula, find a proof that
no solutions exist. In proof-complexity we study how large these proofs must
be for di�erent formulas. In this thesis we will look at two di�erent types of
proofs, resolution and cutting planes, with regards to their length and space. We
will present a proof that for certain formulas there is a trade-o� between length
and space, i.e. all short proofs must use a lot of space and all space-e�cient proofs
must be long.

The aim of this thesis is to explore di�erent possibilities to improve the
trade-o� result by using an area of combinatorics called sunflowers. We did
not however manage to improve the trade-o� compared to what was previously
known.

Keywords: Proof complexity, sunflower, communication complexity, cutting planes,
Dymond-Tompa

2

Contents

1 Introduction 5

2 Background 7
2.1 Basics and notation . 7
2.2 Proof systems . 8

2.2.1 Resolution . 8
2.2.2 Cutting planes . 8

2.3 Communication complexity . 9
2.3.1 Deterministic communication . 9
2.3.2 Real communication . 10

2.4 Decision Trees . 10
2.5 Dymond-Tompa games . 10
2.6 Sunflowers . 11

3 Proof trade-o�s 13
3.1 Overview of proof . 13
3.2 Hard formula . 14

3.2.1 Pebbling contradiction . 14
3.2.2 Lifted formulas . 14

3.3 Proofs to communication . 15
3.3.1 Defining Search(F) . 15
3.3.2 Constructing the protocol . 15
3.3.3 Search(Li f t� (F)) and Li f t� (Search(F)) 17

3.4 Communication to Decision Trees . 17
3.4.1 Overview . 17
3.4.2 Notation and definitions . 18
3.4.3 Deterministic communication . 19
3.4.4 Real communication . 26

3.5 Decision tree to Dymond-Tompa game . 26
3.6 Lower bounds on Dymond-Tompa game . 27

3

CONTENTS

3.7 Putting it all together . 28

4 Potential improvements 29

5 Alternative proof of lifting lemma 31
5.1 Introduction . 31
5.2 Rectangle partition . 32
5.3 Simulation . 35
5.4 Generalisations . 37

5.4.1 Real communication . 37
5.4.2 Round-e�ciency . 37
5.4.3 Min-Entropy vs Graphs . 39

6 Summary and Conclusion 41

References 43

4

Chapter 1

Introduction

The problem of finding whether a boolean formula can be satisfied (SAT) is fundamental
in computer science. As SAT is NP-complete no e�cient algorithm is known. A related
question is if, for an unsatisfiable formula, there exists small proofs showing that the formula
is unsatisfiable. These proofs are called refutations. The field of proof-complexity is the field
in which one studies these type of proofs.

Why is it interesting to study proof complexity? From a theory perspective, studying
proof-complexity might help in understanding problems like P vs NP and NP vs coNP since
NP consists of the problems whose solutions can be proven to be solutions in polynomial time
and coNP consists of the problems whose non-solutions can be refuted in polynomial time.

Another reason to study proof complexity is to increase our understanding of the algo-
rithms that underlie SAT-solvers. Even though SAT is a hard problem in theory it is often
quite tractable in practice and SAT-solvers can often solve large instances fast. Algorithms
that solve the SAT problem can be seen as searching for a proof whether the formula has
a solution or is unsatisfiable. So if we can prove a lower bound for the length of refuta-
tions of a certain type (e.g. resolution, cutting planes) that would imply a lower bound for
the running time of algorithms searching for this type of refutation. If we for example can
prove that all resolution-refutations of a formula are very long then that would imply that
the Davis-Putnam algorithm (which uses resolution [DP60]) has a large running time.

There is a rich literature in proof complexity on hardness results for di�erent proof sys-
tems, showing that di�erent families of formulas require long proofs or proofs of high space
complexity. There have also been a number of papers establishing length-space trade-o�s,
meaning that there are formulas that have short proofs and also space-e�cient proofs, but
where every short proof has to use a lot of space and every space-e�cient proof has to be very
long. However, for cutting planes such trade-o� results have had fairly weak parameters.

In the paper "How Limited Interaction Hinders Real Communication" [DRNV16], here
denoted "Limited Interaction", such a length-space trade-o� for cutting planes is proven. The
proof goes via something called communication complexity and one important part of the
proof is a "lifting" lemma that gives a connection between communication complexity and

5

1. Introduction

certain decision trees. This lifting lemma is the most di�cult part of the proof in "Limited In-
teraction" and is also a bottleneck in getting stronger results. Recently a paper called "Lifting
with Sunflowers" [LMM+20] came out which proves a di�erent, but similar, lifting lemma
with better parameters than the lemma in "Limited Interaction". The ideas in the paper
"Lifting with Sunflowers" could possibly be used to improve the parameters in the "Limited
Interaction"-paper and give stronger trade-o� results for cutting planes. The problem is that
the lemma in "Lifting with Sunflowers" is not general enough to work in the settings needed
for the "Limited Interaction". In this thesis we will look at techniques used in "Lifting with
Sunflowers" and see if it is possible to extend them to work in the setting needed for "Lim-
ited Interaction". This would give stronger trade-o� results for cutting planes than what is
currently known.

In Chapter 2 we go through the necessary background. Section 2.6 in this chapter con-
tains the background needed to understand the "Lifting with Sunflowers" article, but it is
not necessary to have read this section in order to follow Chapters 3 and 4. In Chapter 3
we present a proof of a length-space trade-o� for cutting planes. This will be based on the
proof in "Limited Interaction" and the overall structure will be the same, but details can of
course be di�erent. Potential ways of improving the length-space trade-o� are discussed in
Chapter 4 and in Chapter 5 we prove an alternative lifting lemma using the same techniques
as "Lifting with Sunflowers". Section 5.4 is about the attempts to generalise this alternative
lifting lemma. Lastly we will end the thesis with some final words in Chapter 6.

6

Chapter 2

Background

2.1 Basics and notation
The formulas we study will be in conjunctive normal form (CNF), i.e., a big and of clauses
where each clause is an or of literals and a literal is a variable or a negated variable. A simple
example of a CNF-formula would be

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

As can be seen in the example we denote or with ∨, and with ∧ and negation of x with x.
In the following list let m and n be natural numbers and let A and B be sets.

• We define [n] to be the set {1, 2, . . . , n}.

• A×B is the Cartesian product, i.e., all pairs (a, b) with a ∈ A and b ∈ B. In set builder
notation this is written as A × B = {(a, b) : a ∈ A, b ∈ B}.

• An is the set of all sequences of length n with elements from A.

• If x ∈ [m]n is a sequence and i ∈ [n] is a number we let xi denote the ith element in
the sequence. Sometimes we will also use x[i] to denote the ith element.

• If x ∈ [m]n is a sequence and I ⊆ [n] is a subset of coordinates we let xI (and x[I]) be
the sequence of length |I | with the elements from x at the coordinates specified by I .

• If A = [m]n is a set of sequences we let AI be the set {xI : x ∈ A}.

• We will use log to denote the logarithm in base 2 and ln to denote the natural loga-
rithm.

• The symbol ∀ means for all and the symbol ∃ means exists.

• We will use the standard big O notations O, o, Ω, ω and Θ.

7

2. Background

2.2 Proof systems
We start by a general description of proof systems and then look more closely at two concrete
proof systems: resolution and cutting planes.

A proof will start with the constraints of the given CNF formula (these will be called the
axioms). The proof will repeatedly derive new constraints from the axioms and previously
derived constraints until a contradiction has been reached. In this project we will be inter-
ested in the length and the (formula) space complexity of a proof. To define length and space
we can think of the proof having a “memory area” with constraints. Then the proof consists
of a sequence of the following 3 operations:

1. “Axiom download”. Write one of the axioms to the memory space.

2. “Inference”. Derive a new constraint from the ones in memory.

3. “Erasure”. Delete one constraint from memory.

The length of the proof is the number of steps and the space of the proof is the maximum
number of constraints in memory at any given time. There exists a trade-o� between the
length of the proof and the space of the proof. If we only want small length then the proof
should not do any “Erasures” but if we want small space then we might want to do many
“Erasures” (maybe erase a constraint and rederive it later).

2.2.1 Resolution
One of the most basic proof systems is resolution. In resolution the constraints are just clauses
and we only have a single inference rule:

a ∨ B a ∨C
B ∨C

Here a is a variable and B and C are the rest of the clauses. The notation should be understood
as if it is known that a∨ B is true and that a∨C is true then we can derive that B∨C must
be true.

Resolution is a sound proof system, meaning that if all premises are true then resolution
will never derive any contradiction. Since the single inference rule is sound the proof system
will also be sound.

Resolution is also a refutation complete proof system. This means that for any unsatisfiable
formula there exists a resolution proof that derives a contradiction. See [Gal06] for a proof.

2.2.2 Cutting planes
The other proof system we will be looking at is cutting planes. In cutting planes each con-
straint is represented by a linear inequality

∑
j a j x j ≥ c where a j and c are integers and x j

are 0 or 1.

8

2.3 Communication complexity

How can then a clause be represented as a linear inequality? Negated variables are substi-
tuted with x j = 1− x j and OR is substituted with addition. If we for example have a formula
with four variables and it has the clause x1 ∨ x3 ∨ x4 this clause would be transformed to

x1 + (1 − x3) + (1 − x4) ≥ 1 ⇐⇒ 1x1 + 0x2 + (−1)x3 + (−1)x4 ≥ −1

Cutting planes has three inference rules: addition, multiplication and division.

1. Addition ∑
j a j x j ≥ c

∑
j b j x j ≥ d∑

j(a j + b j)x j ≥ (c + d)

2. Multiplication ∑
j a j x j ≥ d∑

j ca j x j ≥ cd

3. Division ∑
j ca j x j ≥ d∑

j a j x j ≥ dd/ce
For multiplication and division c must be a positive integer. Since all three inference

rules are sound it is easy to see that cutting planes is sound.
Cutting planes is stronger than resolution in the sense that the proofs are generally shorter.

A resolution proof can thus never be shorter than the shortest cutting planes proof for a spe-
cific formula [CCT87]. Since resolution is refutation complete this shows that cutting planes
also is refutation complete.

2.3 Communication complexity
In a communication problem we have two players Alice and Bob that would like to solve a
search problem by communicating with each other. More formally a communication problem
is a relation S ⊆ X ×Y ×O. Alice is given some value x ∈ X and Bob is given y ∈ Y and they
want to find a solution o ∈ O such that (x, y, o) ∈ S. We assume that the search problem is
total, i.e. ∀x ∈ X, y ∈ Y : ∃o ∈ O : (x, y, o) ∈ S.

We will consider two variants of communication.

2.3.1 Deterministic communication
A (deterministic) communication protocol is a rooted binary tree in which every leaf is la-
beled by some o ∈ O and each internal node specifies if Alice or Bob speaks. The two output
edges correspond to if a 1 or a 0 is spoken. The cost of the communication protocol is the
total number of bits sent, which is the same as the height of the communication protocol
tree.

One round of communication consists of Alice sending Bob some number of bits and
then Bob replying with some number of bits. Alice and Bob want to minimize both the cost
and the number of rounds.

There is a simple protocol which only uses a single round: Alice sends over all her input
and Bob computes the solution and replies with o ∈ O. Note that only bits are communi-
cated, so Alice will have to encode her input x in some way.

9

2. Background

2.3.2 Real communication
The other communication model is real communication. In real communication Alice and
Bob communicate by comparing real numbers. The cost of a real communication protocol is
the number of comparisons made by Alice and Bob. We also have the concept of rounds. In
one round Alice and Bob can choose many numbers and compare them simultaneously, i.e.
Alice chooses a1, ..ak and Bob chooses b1, ..bk and they get the result a1 ≤ b1, ..., ak ≤ bk .

One easy observation is that real communication can simulate deterministic communi-
cation. If for example Alice wants to send bits 10010 in the deterministic protocol Alice can
choose the real numbers 1, 0, 0, 1, 0 while Bob chooses 1/2 in all positions.

2.4 Decision Trees
Let’s say we have a search problem S ⊆ {0, 1}n×O where we are given a bit-string, z, of length
n and we want to find a solution o ∈ O such that (z, o) ∈ S. A decision tree is a rooted tree in
which each internal node is labeled by some zi and has two outgoing edges corresponding to
0 and 1. If the input is z1, z2, ...zn the decision tree starts in the root and if the root is labeled
with zi the decision tree query the value of zi (looks at zi). If the value is 1 we move along
the output edge corresponding to 1 and otherwise the 0 edge. The decision tree continues to
query values and move down the tree until we reach a leaf node. Each leaf node is labeled by
some o ∈ O.

We say that a decision tree solves a search problem if it for any input z ∈ {0, 1}n moves
down to a leaf node which is labeled by a solution o ∈ O to the input z. The cost of a decision
tree is the depth of the tree. We define the decision tree complexity of a problem to be the
cost of the smallest decision tree that solves the problem.

Intuitively the decision tree complexity is the number of bits in the input we need to look
at to solve the problem. So the decision tree complexity can never be more than n.

2.5 Dymond-Tompa games
A Dymond-Tompa game is played on a directed acyclic graph, G. If a node has no incoming
edges we call it a source and if it has no outgoing edges we call it a sink and we say that node a
is a direct predecessor of node b if there is an edge from a to b. For simplicity we will assume
that G has exactly one sink node, this does not really matter but makes it a bit cleaner.

There are two players in this game, the pebbler and the challenger. The pebbler will
pebble nodes and the challenger will "challenge" pebbled nodes. The game is played in rounds
where a round consists of the following steps

1. The pebbler places pebbles on a non-empty subset of the nodes that hasn’t been peb-
bled yet.

2. The challenger either challenges one of the newly pebbled nodes or decides to challenge
the currently challenged node again.

The game ends when, at the end of a round, all the direct predecessors of the challenged
node are pebbled. At all times there is only one challenged node and the game starts with the

10

2.6 Sunflowers

x0 x1

x2 x3

x4 x5

x6

x0 x1

x2 x3

x4 x5

x6

x0 x1

x2 x3

x4 x5

x6

Figure 2.1: Example of a Dymond-Tompa game. Pebbled nodes have
gray background and the challenged node have a red border. The
leftmost picture is the starting position with the sink challenged and
in the rightmost picture the game has ended since all direct prede-
cessor to x2 are pebbled.

sink being pebbled and challenged. The pebbler wants the game to end as quickly as possible
and the challenger wants to play for as long as possible. We say a strategy for the pebbler is
an r round strategy with cost c if the pebbler can guarantee that the game will end after at
most r rounds by placing in total at most c pebbles no matter what the challenger does.

Let’s consider the example in Figure 2.1. In the start of the game the sink is pebbled and
challenged, the pebbler’s first move is to place pebbles on node x4 and x0. The challenger
then has the option to stay on x6 or to move to x4 or x0, let’s say the challenger decides to
move to x4. If the challenger instead had moved to x0 the game would have ended. In the
next round the pebbler chooses to pebble x2, now the challenger’s only options are to stay
at x4 or move to x2, either way the game will end this round. This game had a cost of four
since there were four nodes that were pebbled and two rounds. This example was just for
illustration, both the pebbler and the challenger could have done better moves.

2.6 Sunflowers
Before we define what a sunflower is we will look at something called min-entropy. Let us
define the min-entropy of a random variable x ∈ A as

min
x′∈A

log(1/ Pr[x = x′])

Now we will extend the notion of min-entropy to something called blockwise min-entropy. If
A is a subset of Bn, for some set B, we can consider random variable x ∈ A and then look at
the projection xI . The blockwise min-entropy is the normalised min-entropy of the random
variable x projected to some set I ⊂ [n]. In other words we define the blockwise min-entropy

11

2. Background

of x ∈ A to be
min

I⊆[n],x′I∈AI

1
|I |

log
(
1/ Pr[xI = x′I]

)
In this thesis we will only consider uniform probability for x ∈ A and usually not specify
the random variable but instead just say the blockwise min-entropy of A. Note that I is not
allowed to be the empty set.

We say that F is a set system if all elements of F are subsets of some universeU. If m, n
are natural numbers then elements of the set [mn] might be viewed as a pair (i, j) with i ∈ [n]
and j ∈ [m]. Let’s call a set γ ⊆ [mn] block-respecting if each number (i, j) in γ has a unique i.
If F is a set system with universe [mn] we say that F is block-respecting if every γ ∈ F is
block-respecting.

A sunflower is a set system such that the intersection between all sets (the core) is the same
as the intersection between any pair of sets. In other words F is a sunflower if and only if⋂

γ∈F

γ = γi ∩ γ j

holds for all i 6= j . A petal of a sunflower is a set that can be written as γi \ (γi ∩ γ j) for some
γi, γ j ∈ F . The famous sunflower lemma by Erdős and Rado in 1960 [ER60] says roughly
that a large set system must contain a large sunflower.

Lemma 2.1 (Sunflower Lemma). Let s and k be natural numbers and F be a set system of size at
least s!(k − 1)s over universeU such that any γ ∈ F satisfy |γ| ≤ s then F contains a sunflower
with k petals.

We will actually not use sunflowers as defined above, but instead use a slightly di�erent
version. If F is a set system overU and 0 ≤ κ ≤ 1 we say that F is κ-satisfying if

Pr[∀γ ∈ F : γ 6⊆ U] < κ

holds. The probability is taken over the uniformly random variable U ⊆ U.
We will now state a version of the sunflower lemma using blockwise min-entropy together

with this κ-satisfying sunflower definition. The lemma comes from a recent result by Alweiss
et al. [ALWZ20], but the formulation of the lemma is taken from "Lifting with Sunflowers"
[LMM+20].

Lemma 2.2 (Blockwise Robust Sunflower Lemma). There exists an absolute constant K such that
the following holds: let s,m, n ∈ N and 0 ≤ κ ≤ 1. Let F be a block-respecting set system with
universe [mn] such that

1. |γ| ≤ s for all γ ∈ F

2. F has blockwise min-entropy at least log(K log(s/κ)).

Then F is κ-satisfying.

12

Chapter 3

Proof trade-o�s

In this chapter we will prove the following theorem

Theorem 3.1 (Main theorem). There exist a family of CNF-formulas, with O(N) clauses, such that
no cutting planes-refutation with space O(N1/11) and length O(N log N) exists.

3.1 Overview of proof
We start with an overview of the proof of 3.1. The overall structure will be the same as in the
"How Limited Interaction Hinders Real Communication"-article [DRNV16]. The proof will
be given in multiple steps.

1. Assume there is a refutation for the CNF-formula Li f t� (PebG) with small space and
length.

2. Use the refutation to create a communication protocol for Search(Li f t� (PebG)) that
has low cost and is round-e�cient.

3. Use the communication protocol to create a round-e�cient parallel decision tree for
Search(PebG) with low cost.

4. Use the parallel decision tree to create a round-e�cient strategy for the pebbler in the
Dymond-Tompa game on G with low cost.

5. Finally, we will prove that such a strategy cannot exist and conclude that no short and
round-e�cient refutation for Li f t� (PebG) exists.

Since we are interested in the complexity of cutting planes we will consider a whole family
of CNF-formulas and a whole family of graphs rather than just a single CNF-formula and a
single graph.

13

3. Proof trade-offs

In Section 3.2 we will define CNF-formulas PebG and Li f t� (PebG). The following sec-
tions each give one step of the proof and in Section 3.7 we complete the proof by putting all
parts together.

3.2 Hard formula
In this section we will define the CNF-formula Li f t� (PebG) which will be used as an example
of an unsatisfiable CNF-formula for which no cutting planes-refutation with small space and
length exists.

3.2.1 Pebbling contradiction
We start by defining the pebbling contradiction PebG for a directed acyclic graph (DAG), G.
Given a DAG G we create a variable xv for each node v in G. For each source node, v, we add
the clause (source axiom) xv, for each non-source node, v, with direct predecessors u1, . . . , uk
we add the clause (pebbling axiom) xu1 ∨ . . . ∨ xuk ∨ xv. Finally for each sink node, v, we add
the clause (sink axiom) xv. We note that the formula PebG will be unsatisfiable. Informal
argument: All sources must be true and the pebbling axiom will progressively make all other
nodes be true but the sink must be false according to the sink axiom.

See Figure 3.1 for an example of a pebbling contradiction.

x0 x1

x2 x3

x4 x5

x6

x0
x1
x0 ∨ x2
x0 ∨ x1 ∨ x3
x2 ∨ x4
x2 ∨ x3 ∨ x5
x4 ∨ x5 ∨ x6
x6 Sink axiom

Pebbling axiom

Source axiom

Figure 3.1: Example of a pebbling contradiction.

3.2.2 Lifted formulas
Next we will describe a way to "lift" a CNF-formula.

Definition 3.1 (Lifted formula). Given a CNF formula, F, over n variables zi and a positive
integer� . We will define the lifted formula of lift-length� , Li f t� (F). For each variable zi in F
we create � selector variables xi, j and � main variables yi, j . We then add clauses to Li f t� (F):

14

3.3 Proofs to communication

• For each i ∈ [n] we require that at least one xi, j is true.

xi,1 ∨ xi,2 ∨ ... ∨ xi,�

• For every clause zi1 ∨ zi2 ∨ ...∨ zis ∨ zis+1 ∨ ...∨ zit in F and every tuple (j1, ..., jt) ∈ [�]t

we create a main clause

(xi1, j1 → yi1, j1) ∨ · · · ∨ (xit , jt → yit , jt)

The notation x → y means that x implies y which is exactly x ∨ y. If F has m clauses and
width k then Li f t� (F) is an unsatisfiable CNF formula over 2�n variables with m� k+n clauses
and width max(� , 2k).

3.3 Proofs to communication
In this section we prove the following two lemmas.

Lemma 3.1. If an unsatisfiable sat formula, F, has a resolution refutation of size L and space S then
there exists a deterministic communication protocol for the problem Search(F) of cost O(S log(L))
that uses O(log(L)) rounds.

And a variant for cutting planes proofs.

Lemma 3.2. If an unsatisfiable sat formula, F, has a cutting planes refutation of size L and space S
then there exists a real communication protocol for the problem Search(F) of cost O(S log(L)) that
uses O(log(L)) rounds.

3.3.1 Defining Search(F)
We start with defining the falsified clause search problem.

Definition 3.2 (Falsified clause search problem). Given an unsatisfiable formula, F, and an
assignment α to the variables in F find a clause in F that is falsified by α. We denote this
problem Search(F).

Search(F) is a search problem but it is not a communication problem. To turn Search(F)
into a communication protocol we give the value of some variables to Alice and the value for
the rest of the variables to Bob. Note that we do not specify how we partition the variables
between Alice and Bob, the proof will work for any partition. Now the goal for Alice and
Bob is to communicate to find a falsified clause. Next we will show how one can, from a given
refutation, construct a protocol for the communication problem with the right parameters.

3.3.2 Constructing the protocol
Given a resolution proof we can think of it as being presented on a blackboard. In the begin-
ning there is no falsified constraint on the board (since there are no constraints at all). The
proof ends when a contradiction has been derived. In at least one step the proof has gone

15

3. Proof trade-offs

from having no falsified constraints on the blackboard to having one. Since the proof system
is sound this step must have been an "Axiom download" step.

The goal for Alice and Bob will be to find this "bad" step in which the proof downloads
the falsified constraint. They will do this in a binary search fashion. By starting in the mid-
dle and evaluating the configuration to see if there is any falsified constraint. If the middle
configuration has a falsified constraint then it must be that the falsified constraint has al-
ready been downloaded so we continue with the first half of the proof. See Algorithm 1 for
pseudocode.

Algorithm 1 Constructing communication protocol by binary search over proof.
low = 1, high = L
while low + 1 < high do

mid = b(low + high)/2c
Evaluate configuration mid in the proof.
if configuration has falsified constraint then

high = mid
else

low = mid
end if

end while
return Constraint downloaded between low and high.

Let’s take a closer look at the evaluation of a configuration. How can Alice and Bob figure
out if a configuration contains a falsified constraint? So far our construction works the same
way for both resolution and cutting planes, but here it will be slightly di�erent.

For resolution each constraint is a clause of the form x1 ∨ . . . ∨ xk ∨ yl ∨ . . . ∨ ym where
Alice knows the value of all xi and Bob knows the value of each y j . Alice can send over the
value of x1 ∨ . . . ∨ xk for each clause in the configuration. Bob can now see if there is any
falsified clauses and answers with 1 if there is and 0 otherwise. To evaluate a configuration
Alice needs to send 1 bit of information per clause and Bob only needs to answer with 1 bit.
Since there is at most S clauses in the configuration the cost will be at most S + 1 and only a
single round.

For cutting planes each constraint will be of the form
∑

i aixi +
∑

j b jy j ≤ c. Here ai , b j
and c are just the coe�cient of the inequality and xi are the variables known by Alice and y j
are the variables known by Bob. If Alice and Bob would use deterministic communication it
could possibly take a lot of communication to figure out if any inequality is falsified. Instead,
Alice and Bob can use real communication where they choose one real number each. If Alice
chooses the real number

∑
i aixi and Bob chooses the number c −

∑
j b jy j they will know if

the constraint is falsified. There will be one comparison for each inequality and since there
is at most S inequalities the cost will be S. It will only take one round since we can do all
comparisons in parallel.

Due to the binary search we will evaluate roughly log(L) configurations for both resolu-
tion and cutting planes hence the cost will be O(S log(L)) and O(log(L)) number of rounds.

16

3.4 Communication to Decision Trees

3.3.3 Search(Li f t� (F)) and Li f t� (Search(F))
In this section we have defined and used the communication problem Search(F) but in the
next section we will use the communication problem Li f t� (Search(F)). Here we will define
Li f t� (Search(F)) and talk about its relation to Search(Li f t� (F)).

To recap: F is an unsatisfiable CNF-formula over n variables and Li f t� (F) is an unsat-
isfiable CNF-formula over 2�n variables. Search(F) and Search(Li f t� (F)) are the falsified
clause search problem for the CNF formulas F and Li f t� (F), respectively. To turn Search(F)
into a communication problem we gave the values of some variables to Alice and the rest to
Bob. When we turn Search(Li f t� (F)) into a communication problem we will do the choice
of giving Alice all the values of the selector variables and Bob all the values of the main vari-
ables. So Alice and Bob want to find a clause from the CNF-formula Li f t� (F) and Alice
is given the values of the �n selector variables and Bob is given the values of the �n main
variables.

In the communication problem Li f t� (Search(F)) the goal for Alice and Bob is to find
a falsified clause from the CNF-formula F (instead of Li f t� (F)). For each variable zi in F
Alice is given a number xi between 1 and � , and Bob is given a bit string yi of length � . The
value of zi is then the xith bit in Bob’s bit string yi .

If there exists a protocol for the communication problem Search(Li f t� (F)) then there
also exists a protocol for the communication problem Li f t� (Search(F)) with the same pa-
rameters. This is true since Li f t� (Search(F)) is actually equivalent to the special case of
Search(Li f t� (F)) when exactly one selector variable xi, j is true for each variable zi .

3.4 Communication to Decision Trees
In this section we prove

Lemma 3.3. Let F be an unsatisfiable CNF-formula over n variables and let � = n3+ε for some
ε > 0. If there exists a (deterministic/real) communication protocol for Li f t� (Search(F)) that uses
r rounds with cost c log(�) then there exists a r-round parallel decision tree with cost O(c).

This is a long and complicated proof so we will first do an overview of it before we dive
in.

3.4.1 Overview
Recall how the communication protocol works: Alice will be given a sequence of length n
of integers modulo � and Bob will be given a sequence containing n bit strings of length � .
We will call Alice’s input x ∈ [�]n and Bob’s input y ∈ ({0, 1}�)n. For Bob’s input we might
look at it like n bit strings of length � or one big bit string of length �n and we will shift
perspective to whatever is most convenient at a given moment. As we know Alice and Bob
communicates to find a falsified clause of F . We denote the variables of F as z1, z2, . . . , zn
and we let z be just the bit string of z1z2 . . . zn concatenated. The xith bit in the bit string yi
will be denoted by yi[xi].

We want to show that there exists a decision tree for the falsified clause search problem,
Search(F), given that there exists a communication protocol for Li f t� (Search(F)). We will

17

3. Proof trade-offs

construct a decision tree that is capable of "simulating" the communication protocol. In other
words we will start in the root of the communication protocol tree and progressively move
down the protocol tree and finally let the decision tree answer the same clause as the protocol
tree at the leaf. To know which child to move to in the protocol tree we will have the decision
tree query the values of z. As we move down the protocol tree we call a possible input to the
communication problem, (x, y) ∈ [�]n × {0, 1}n� compatible if it satisfies

1. If Alice is given x and Bob is given y they will move down the protocol tree in the same
way as we have done so far.

2. (x, y) is consistent with the values queried so far by the decision tree. In other words
if yi[xi] = zi for all coordinates i ∈ [n] that has been queried.

The goal will be to show that, when we reach a leaf of the protocol tree, there exists a com-
patible input with yi[xi] = zi for all i ∈ [n]. If we manage to do this the correctness of the
protocol tree will imply that the decision tree is correct.

To show that there exists such an input we will maintain a rectangle R = A × B of
compatible inputs where A ⊆ [�]n is a set of possible inputs for Alice and B ⊆ {0, 1}n� is a
set of possible inputs for Bob.

3.4.2 Notation and definitions
The set of coordinates we have not queried will be called I ⊆ [n]. Let us call the current
node in the protocol tree v and let Rv ⊆ [�]n × {0, 1}n� be all inputs that reach v. We let Av
denote Alice’s inputs and Bv denote Bob’s inputs such that Rv = Av × Bv. If v is a node in
the communication protocol tree we say that vl is the left child and vr is the right child. The
amount of bits sent by Alice and Bob in the simulation will be denoted as costA and costB,
respectively. Since the communication protocol has cost c log� it is clear that costA+costB ≤
c log� . In the beginning we will have I = [n], A = [�]n, B = {0, 1}n� , costA = 0, costB = 0,
and v = root.

It will be helpful for us to view the set AI as a graph. We define Graphi(AI) to be a
bipartite graph in which the left nodes correspond to the value of xi ∈ [�] and the right nodes
correspond to the value of xI\{i} ∈ [�]|I |−1. So Graphi(AI) has� left nodes and� |I |−1 right nodes.
There will be an edge in Graphi(AI) between a left node and a right node if and only if there
exists an x ∈ AI such that xi corresponds to the left node and xI\{i} corresponds to the right
node. Similarly, we define Graphi(BI) to be a bipartite graph with left nodes corresponding
to value of yi ∈ {0, 1}� and right nodes corresponding to value of yI\{i} ∈ {0, 1}� (|I |−1).

Now it is possible to define two useful measures using this graph perspective. AvgDegi(AI)
is the average degree of the right nodes (of Graphi(AI)) that have non-zero degree. It should
be clear from the definition that the number of edges in Graphi(AI) are |AI | and the num-
ber of right nodes with non-zero degree are |AI\{i}| so the following holds: AvgDegi(AI) =
|AI |/|AI\{i}|. Apart from AvgDeg we also define MinDegi(AI) to be the minimum degree of the
right nodes of Graphi(AI) that have non-zero degree. We say that AI is thick if MinDegi(AI) ≥
� µ (µ will be defined shortly) holds for all i ∈ I .

To measure how large A is it will sometimes be convenient to use density loss which is
defined as D∞(AI) = |I | log� − log |AI |. Similarly, we define density loss for B as D∞(BI) =
� |I | − log |BI |. Note that density loss is always non-negative and that A and B are non-empty
if and only if D∞(AI) < ∞ and D∞(BI) < ∞, respectively.

18

3.4 Communication to Decision Trees

When we construct our decision tree we will need a way to denote those input to Bob that
can, in a certain sense, be completed to any value of z. This is made formal in our definition
of Complete.

Definition 3.3 (Complete(B, I ,U, i)). Let B be a set of possible inputs for Bob, I ⊆ [n],
U ⊆ [�] and i ∈ I . Now Complete(B, I ,U, i) are those yI\{i} ∈ BI\{i} such that for both b = 0
and b = 1 there exists a y ∈ B such that for all u ∈ U we have yi[u] = b.

Lastly we will define a number of parameters that will be used throughout the proof of
lemma 3.3. As stated in the lemma we have� = n3+ε . Let us define γ = 1/(3+ε) so that� γ = n.
We will define µ = 2/3, this is the µ that is used in definition of thickness. Furthermore we
define 0 < λ < 1 and δ = 2/3 such that the following holds:

1. µ + γ < λ

2. δ + µ − 1 > γ

3. δ + γ < 1

3.4.3 Deterministic communication
We will first prove Lemma 3.3 for deterministic communication. Let’s state one important
claim that will be used when we construct our decision tree. The proof of the Projection
Claim will be explained further down.

Claim 3.1 (Projection Claim). If AI thick and D∞(BI) ≤ 2n log� . Then there exists a U ⊆ [�]
such that

1. {xI\{i} : x ∈ A, xi ∈ U} is thick.

2. D∞({xI\{i} : x ∈ A, xi ∈ U}) ≤ D∞(AI) − log� + log AvgDegi(AI)

3. D∞(Complete(B, I ,U, i)) ≤ D∞(BI) + 1

In Algorithm 2 we formalize how to move down the protocol tree and when the decision
tree should query.

In line 6 we use the Projection Claim we defined above and in line 7 we update A, B and
I in such a way that the new value of AI becomes {xI\{i} : x ∈ A, xi ∈ Ui} and the new value of
BI becomes Complete(B, I ,U, i). This means that Projection Claim says that after line 7 AI
is thick and we have some bounds on the density loss for both AI and BI . Note that A×B will
be subset of Rv since A and B are never increased and every time we change v we intersect A
and B with Av and Bv, respectively.

In order to prove correctness of Algorithm 2 we will maintain four invariants during the
simulation.

1. AI is thick

2. yi[xi] = zi for all x ∈ A, y ∈ B, i ∈ [n] \ I

3. D∞(AI) ≤ 2costA − (1 − λ)(n − |I |) log�

19

3. Proof trade-offs

Algorithm 2 Parallel decision tree simulates a deterministic communication protocol.
1: v = root,R = A × B = [�]n × {0, 1}n� , I = [n]
2: while v is not a leaf do
3: Iold = I
4: while Alice speaks at v do
5: while ∃i ∈ I such that AvgDegi(AI) < � λ do
6: Use Projection Claim to get U
7: A = {x ∈ A : xi ∈ U}, B = {y ∈ B : yI\{i} ∈ Complete(B, I ,U, i)}, I = I \ {i}
8: end while
9: v = vl if |(A ∩ Avl)I | > |(A ∩ Avr)I | else vr

10: A = A ∩ Av
11: Make AI thick
12: end while
13: Query zi for i ∈ Iold \ I
14: for i ∈ Iold \ I do
15: B = {y ∈ B : yi[xi] = zi ∀x ∈ A}
16: end for
17: while Bob speaks at v do
18: v = vl if |(B ∩ Bvl)I | > |(B ∩ Bvr)I | else vr
19: B = B ∩ Bv
20: end while
21: end while
22: return Same clause as the communication protocol.

20

3.4 Communication to Decision Trees

4. D∞(BI) ≤ costB + n − |I |

Let us go directly to the proof of the invariants. It is easy to check that all four invariants
hold in the beginning of the simulation: MinDegi(AI) = � for all i so 1 holds, 2 holds since
I = [n], left and right-hand side are all zero in both invariant 3 and 4.

For invariant 1 we note that A and I are only updated in line 7 and lines 10-11. For line
7 the Projection Claim directly gives us that AI is thick. Note that we are allowed to use the
Projection Claim in line 6 since AI is thick by invariant 1 and invariant 4 gives D∞(BI) ≤
costB + n − |I | ≤ 2n log� . After line 10 AI might not be thick anymore, but in line 11 we
make AI thick. We delay the exact description of how we make AI thick a little.

Every time we remove a coordinate, i, from I we will later in line 15 restrict B in such
a way that invariant 2 holds. Note that invariant 2 does not necessarily hold when we are
between line 7 and line 15 in our execution, but we actually only need it to hold when we
have finished the simulation.

Invariant 3 requires a bit more work. We need to deal with line 7 and lines 10-11. Let
Anew

I be value of AI after we have executed line 7 and Aold
I be AI before we execute line 7 and

similarly for I . Then by the Projection Claim and the fact that AvgDegi(Aold
I) ≤ � λ we have

D∞(Anew
I) ≤ D∞(Aold

I) − log� + log AvgDegi(Aold
I)

≤ D∞(Aold
I) − (1 − λ) log�

Now we can use that invariant 3 holds for Aold
I to get

D∞(Anew
I) ≤ (2costA − (1 − λ)(n − |Iold |) log�) − (1 − λ) log�
= 2costA − (1 − λ)(n − |Inew|) log�

For line 10-11 we note that costA is increased by one at line 9. Since we go to the largest child
D∞(AI) is increased by at most 1 in line 10. In line 11 when we make AI thick the D∞(AI)
will, as we shall see, only increase by at most 1. So invariant 3 holds.

Before we go on to invariant 4 we will describe how we make AI thick and argue that
it only increases D∞(AI) by 1. If AI is non-thick we have, for some i, MinDegi(AI) < � µ so
there is some right node of Graphi(AI) that has degree less than� µ. Let us repeatedly remove
all x for which xI\{i} corresponds to a right node of Graphi(AI) with small degree. Clearly
this will make AI thick. D∞(AI) increased by 1 is the same as saying that we remove less than
half of AI so we need to argue that we do not remove too many x ∈ A. For now let us just
claim that this is true and prove it later.

Claim 3.2. Let AI be such that AvgDegi(AI) ≥ � λ/2 for all i ∈ I . If we remove x such that xI\{i}
corresponds to a right node of Graphi(AI) with degree less than � µ then we will remove less than half
of all xI ∈ AI .

Line 10 reduces the size of AI by at most half. This means that the AvgDegi(AI) is also
reduced by at most half so we are allowed to use the claim.

For invariant 4 we note that B and I is updated at line 7, line 15 and line 19. In line 7
the Projection Claim directly gives us that D∞(BI) is increased by at most 1 and since |I | is
reduced by 1 the invariant will still hold. For line 15 we note that |BI | is not changed at all.
Of course, it might be the case that B is changed in line 15 but the definition of Complete
ensures that BI is unchanged. For line 19 it is enough to see that D∞(BI) will be increased by
at most 1, since we go to the largest child, and costB is increased by 1.

21

3. Proof trade-offs

Now that we have proved that all invariants hold we will argue that the simulation is
correct given that the invariants are correct. Further down we will prove the Projection
Claim and Claim 3.2 which will be the only things left, but first a small argument that the
decision tree is round-e�cient and has a small cost.

Clearly the decision tree will use the same number of rounds as the communication pro-
tocol since it only does queries in between Alice speaking and Bob speaking in the simulation.
The cost of the decision tree is the number of queries the decision tree does which is n−|I |. By
invariant 3 we know that 2costA−(1−λ)(n−|I |) log� ≥ D∞(AI) ≥ 0 and since costA ≤ c log�
we conclude that n − |I | ≤ 2c/(1 − λ) = O(c).

Claim 3.3. The decision tree will answer with a falsified clause of F no matter what the value of z is.

Proof. We will show that there exists some x ∈ A, y ∈ B such that yi[xi] = zi holds for all i. If
this is true then it must be the case that the clause answered by the communication protocol,
C, is falsified since (x, y) ∈ (A× B) ⊆ Rv and the correctness of the communication protocol
means that any (x, y) ∈ Rv falsifies C.

For any queried coordinate i ∈ [n] \ I invariant 2 directly gives us yi[xi] = zi for all
x ∈ A, y ∈ B. For the non-queried coordinates I we will consider the following:

I ′ = I , A′ = A, B′ = B
while i ∈ I ′ do

Use Projection Claim to get U .
A′ = {x ∈ A′ : xi ∈ U}, B′ = {y ∈ B′ : yI ′\{i} ∈ Complete(B′, I ′,U, i)}, I ′ = I ′ \ {i}

end while
First we check the conditions for the Projection Claim: A′I ′ will be thick in the beginning by
invariant 1 and the projection lemma makes sure it stays thick after we have updated. D∞(B′I ′)
will in the beginning satisfy D∞(B′I ′) ≤ cost′B+n−|I ′| and according to the Projection Claim
D∞(B′I ′) is increased by at most 1 in each step so after we are done (which is at most n steps)
we have D∞(B′I ′) ≤ cost′B + n − |I ′| + n ≤ c log� + 2n ≤ 2n log� .

We know that D∞(B′I ′) ≤ 2n log� so B′ must be non-empty. For A′ we know from
invariant 3 that D∞(A′I ′) < ∞ in the beginning and the Projection Claim states that the
density loss decreases so in the end D∞(A′I ′) < ∞ and therefore A′ is non-empty. When I ′
is empty we know that any y[n]\I ∈ B′[n]\I can be completed to any value on I , in particular
there is some y ∈ B′ such that yi[xi] = zi for all i ∈ I , x ∈ A′.

Since A′ ⊆ A and B′ ⊆ B we know that there is some x ∈ A and some y ∈ B such that
yi[xi] = zi holds for all i.

Now all we have left to prove Lemma 3.3 are Claim 3.1 and Claim 3.2. We begin by proving
Claim 3.2.

Proof of Claim 3.2. We know that

|AI |

|AI\{i}|
= AvgDegi(AI) ≥ � λ/2

so the number of right nodes of Graphi(AI) with non-zero degree is at most |AI\{i}| ≤ 2�−λ|AI |.
Since we only remove x that are related to nodes with degree less than � µ we get an upper
bound on the number of x we remove per coordinate: 2�−λ+µ|AI |. When we consider all

22

3.4 Communication to Decision Trees

coordinates and the facts n = � γ and µ+ γ < λ we see that we remove at most 2� µ+γ−λ|AI | <
|AI |/2.

To prove Claim 3.1 we need to prove all three statements. We will consider a random
U ⊂ [�] of size� δ and look at each statement separately and show that the random U satisfy
that statement with probability 1 − o(1). Since a random U ⊂ [�] of size � δ satisfy each
statement with probability 1− o(1) there must exist a U ⊂ [�] of size� δ that satisfy all three
statements. Probability 1 − o(1) means that as n → ∞ the probability approaches to 1. We
will use the following two claims to simplify the proof of Claim 3.1.

Claim 3.4 ([RM97]). If AI is thick and U ⊂ [�] is a random subset of size � δ then AI\{i} = {xI\{i} :
x ∈ A, xi ∈ U} with probability at least 1 − o(1).

Claim 3.5 ([DRNV16]). If D∞(BI) ≤ 2n log� and U ⊂ [�] is a random subset of size � δ then
D∞(Complete(B, I ,U, i)) ≤ D∞(BI) + 1 with probability at least 1 − o(1).

Claim 3.5 gives us statement 3 in Claim 3.1 directly. Statement 1 says that {xI\{i} : x ∈
A, xi ∈ U} should be thick. Since AI is thick AI\{i} must also be thick so statement 1 is true
with probability 1 − o(1) by Claim 3.4. Statement 2 says that D∞({xI\{i} : x ∈ A, xi ∈ U}) ≤
D∞(AI) − log� + log AvgDegi(AI). We will again use Claim 3.4 and a fact from [GPW18]
namely

D∞(AI\{i}) = D∞(AI) − log� + log AvgDegi(AI)

To see why the equation above is true just use AvgDegi(AI) = |AI |/|AI\{i}| and the definition
of D∞.

The proof of Claim 3.1 is done, but we still need to prove the two claims that helped us.
We begin with the proof of Claim 3.4 since it is shorter.

Proof of Claim 3.4. If we think about how U is related with our graph-perspective we see that
U is a subset of the left nodes of Graphi(AI). If AI\{i} 6= {xI\{i} : x ∈ A, xi ∈ U} then there
is some right node of Graphi(AI) that is not connected to any node in U . Since AI is thick
each right node has at least � µ neighbours. The probability that a random subset U ⊂ [�] of
size � δ would "miss" all � µ neighbours is at most

(1 − � µ/�)� δ

Using the well known fact (e is Euler’s constant)

e−1 = lim
h→∞

(1 − 1/h)h =⇒
h>0

e−1 ≥ (1 − 1/h)h

with h = � 1−µ we get
(1 − � µ/�)� δ ≤ exp(−� δ+µ−1)

Now considering that there are at most � n−1 = exp((� γ − 1) ln�) right nodes the probability
that a random set U ⊂ [�] would "miss" all neighbours to any right vertex is at most

exp(−� δ+µ−1) · exp((� γ − 1) ln�) = exp(−� δ+µ−1 + (� γ − 1) ln�) = o(1)

In the last step we used the fact that δ + µ − 1 > γ.

To prove Claim 3.5 we will again use a helper claim

23

3. Proof trade-offs

Claim 3.6. Let b ∈ {0, 1} and let W ⊆ {0, 1}� be of size larger than 2�−3n log� . If U ⊂ [�] is a
random subset of size � δ then W contains a yi such that yi[u] = b for all u ∈ U with probability at
least 1 − o(1).

Proof of Claim 3.5. Here we will work with the graph Graphi(BI). Remember that the left
nodes correspond to values of yi ∈ {0, 1}� and right nodes correspond to values of yI\{i} ∈

{0, 1}� (|I |−1). Let B̂ be the set of all yI\{i} ∈ {0, 1}� (|I |−1) corresponding to right nodes that have
more than 2�−2n log� /4 neighbours. Consider a single ŷ ∈ B̂ and use Claim 3.6 with W be the
set of neighbours for both b = 0 and b = 1 it should be clear that ŷ ∈ Complete(B, I ,U, i)
with probability 1 − o(1). Since almost all elements of B̂ is in Complete(B, I ,U, i) the fol-
lowing holds with probability 1 − o(1):

|Complete(B, I ,U, i)| ≥
2
3
|B̂|

Now it is enough to show that the size of B̂ is large. Since all nodes in B̂ has degree ≤ 2� and
the rest has degree ≤ 2�−2n log� /4 the following inequality holds:

|BI | ≤ 2� |B̂| +
2�−2n log�

4
(2� (|I |−1) − |B̂|)

Using our assumption D∞(BI) ≤ 2n log� ⇐⇒ |BI | ≥ 2� |I |−2n log� we get

|BI | ≤ 2� |B̂| + |BI |/4

Putting things together we get that

|Complete(B, I ,U, i)| ≥
1
2

2−� |BI | ⇐⇒ D∞(Complete(B, I ,U, i)) ≤ D∞(BI) + 1

holds with probability 1 − o(1).

Next we will use a theorem from Kruskal [Kru63], but before we state the theorem we
need to introduce some definitions.

Let us call a set, A ⊆ {0, 1}� , of bit strings k-regular if all bit strings in A have exactly k
bits set to 1. 1 If A is k-regular then define the shadow set, ∂(A), to be set of all bit strings
which can be obtained by taking a bit string in A and flipping a 1 to a 0. Note that ∂(A) is
(k − 1)-regular.

We will use the usual binomial coe�cient
(
n
k

)
= n!

k!(n−k)! with the addition that if k > n or

k < 0 then
(
n
k

)
= 0.

Theorem 3.2 (Kruskal-Katona Theorem). If A ⊆ {0, 1}� is k-regular, and if

|A| =
(
ak

k

)
+

(
ak−1

k − 1

)
+ . . . +

(
as

s

)
then

|∂(A)| ≥
(

ak

k − 1

)
+

(
ak−1

k − 2

)
+ . . . +

(
as

s − 1

)
1Note that this A has nothing to do with A corresponding to Alice’s input

24

3.4 Communication to Decision Trees

Define the iterated shadow set as ∂k(A) = ∂k−1(A) with ∂0(A) = A and define the union
as ∂≤k(A) = ∪k

j=0∂
j(A). If we repeatedly use Kruskal-Katona we get this simple corollary.

Corollary 3.2.1. If A ⊆ {0, 1}� is k-regular, and if

|A| =
(
ak

k

)
+

(
ak−1

k − 1

)
+ . . . +

(
as

s

)
then

|∂≤k(A)| ≥
k∑

j=0

(
ak

k − j

)
+

(
ak−1

k − 1 − j

)
+ . . . +

(
as

s − j

)

Before we get in to the proof of Claim 3.6, we state an elementary claim from [DRNV16].

Claim 3.7 ([DRNV16]). Following holds

�−u∑
j=0

t∑
i=0

(
� − 1 − i

� − u − i − j

)
≥ 2� − 2�−t+1 + 2u log�

The proof of Claim 3.7 is a quite lengthy calculation using mostly elementary properties
of binomial coe�cients and as it does not really provide much intuition it will be skipped.

Proof of Claim 3.6. For simplicity we will prove it for b = 0 and by symmetry it will hold for
b = 1 as well. LetU be the family of all U ⊂ [�], |U | = � δ, such that Claim 3.6 does not hold.
Let q be the probability that Claim 3.6 does not hold, q = Pr[∀w ∈ W : ∃u ∈ U : w[u] = 1].
The following holds

|U| = q
(
�
� δ

)
= q

�
� δ

(
� − 1
� δ − 1

)
≥

q �
�δ∑

i=0

(
� − 1 − i
� δ − 1

)
=

q �
�δ∑

i=0

(
� − 1 − i
� − � δ − i

)
We can look at a U ⊂ [�] as a bit string of length � with a 0 in the ith position if and

only if i ∈ U . Now defineU′ ⊂ {0, 1}� to beU but with each U as a bit string. Note that
U′ is (� − � δ)-regular. By Corollary 3.2.1 with A = U′ we get that

|∂≤k(U′)| ≥
�−� δ∑
j=0

q �
�δ∑

i=0

(
� − 1 − i

� − � δ − i − j

)
Note that ∂≤k(U′) contains no element of W . To see why this is true suppose opposite:

then there is some element w ∈ W ∩ ∂≤k(U′). w must be in the shadow of at least one bit
string corresponding to U ∈ U meaning that w has 0 in all positions i ∈ U but that would
mean that our Claim 3.6 would hold which it does not by definition ofU.

Since ∂≤k(U′) contains no element of W the following clearly holds:

|W | ≤ 2� − |∂≤k(U′)| ≤ 2� −

�−� δ∑
j=0

q �
�δ∑

i=0

(
� − 1 − i

� − � δ − i − j

)

25

3. Proof trade-offs

Now we use Claim 3.7 with u = � δ and t = q �
� δ to get

|W | ≤ 2� − (2� − 2�−q �
�δ
+1
+ 2� δ log�) ≤ 2�−q �

�δ
+1

Since we know that |W | > 2�−3n log� we have

� − 3n log� < � − q
�
� δ
+ 1 ⇐⇒ q < 3n� δ−1 log� + � δ−1

The fact that n = � γ and γ + δ < 1 gives q = o(1).

3.4.4 Real communication
Due to lack of time this part is skipped. Lemma 3.3 is proven for real communication in the
article "How limited interaction hinders real communication", [DRNV16].

3.5 Decision tree to Dymond-Tompa game
In this section we will be given a decision tree and build a strategy for the pebbler in a
Dymond-Tompa game. More precisely, we will show the following lemma:

Lemma 3.4. If there exists a parallel decision tree for the falsified clause search problem Search(PebG)
using r rounds and cost c then there exists a r-round strategy for the pebbler in the Dymond-Tompa
game on the graph G with cost c + 1.

The decision tree will be a parallel decision tree for the falsified clause search problem of a
pebbling contradiction, Search(PebG). Actually we will prove that there exists a strategy for
the game on the graph G̃. The graph G̃ is created by taking the graph G = (V, E) and adding
an extra sink connected with the old sink. In other words G̃ = (V ∪ {t′}, E ∪ {(t, t′)}) where t
is the sink in G and t′ is the new sink we add to G̃. Clearly the cost for the pebbler-strategy
in the Dymond-Tompa game on G is not more than that on G̃ so it is su�cient to prove it
for G̃. If there is a path from node a to node b such that no nodes between are pebbled we
say that b is reachable from node a.

Let’s pretend that we are the pebbler and describe how the decision tree help us create a
strategy. We will start in the root of the decision tree and then move down the decision tree
depending on the challenger’s move. If the decision tree has queried the value of xi and we
have moved down in the decision tree corresponding to the value xi = 0 then we say that the
node with xi is false and similarly with xi = 1 we call the node xi true. We define the added
sink t′ to be a false node.

During the whole time the we keep the following conditions true:

1. The currently challenged node is false.

2. There is a path, which we denote Φ, from the currently challenged node to the sink t′
that only consists of false and unqueried nodes.

3. If a node is false it lies on the path Φ.

26

3.6 Lower bounds on Dymond-Tompa game

4. A node that can reach the currently challenged node has a pebble if and only if it has
been queried by the decision tree. (With exception for the added sink t′)

When it is our turn we look at the decision tree and place pebbles on the nodes that the
decision tree wants to query and that can reach the currently challenged node. The challenger
then challenge one of the new nodes with pebbles or stays at the currently challenged node.
Now we should go down in the decision tree, so we need to decide which of the queried nodes
that are true and which are false. The node that the challenger chooses should be false. For
all other nodes queried we say that they are false if they are on the path Φ between the node
just chosen by the challenger and the sink t′.

All of our invariants are true as we go down the decision tree. The challenged node will
clearly be false. For second condition if the challenged node is v and the challenger chooses
node u we extend Φ to be between u and the sink t′ since u can reach v the second condition
will still hold. The third condition is true since we only make a node false if it is on the
path Φ. For the fourth condition we note that the set of nodes that can reach the currently
challenged node is only ever decreasing, and if such a node is queried then it will be pebbled
as well.

We continue down the decision tree until we get to a leaf. Now we show that the Dymond-
Tompa game also has ended. Since the decision tree is at a leaf it points to a clause that is
falsified. Let’s consider the three types of clauses in PebG, source axiom, pebbling axiom and
sink axiom.

Case (source axiom) (pebbling axiom) In both of these cases there is a node that is false with
all direct predecessors true, let’s call the false node v. Condition 3 says that v must be
on the path Φ and since all direct predecessors are true condition 2 gives that v must
be the challenged node. All direct predecessors can reach v so condition 4 gives that
all direct predecessors have pebbles. Therefore the Dymond-Tompa game has ended.

Case (sink axiom) In this case the sink of G which we called t will be true. Since t is the only
node of G̃ that is connected to the sink t′ it must lie on all paths Φ of length greater
than 1. By condition 2 and the fact that t is true we conclude that the only possible way
this could happen is if t′ is the challenged node. If t′ is challenged the Dymond-Tompa
game has ended since the only direct predecessor t is pebbled.

3.6 Lower bounds on Dymond-Tompa game
In this section we state a lemma that gives us graphs with lower bounds on the pebbler-
strategy for the Dymond-Tompa game on the graphs.

Lemma 3.5. For any m, d ∈ N+ such that m is a power of 2, there exists an explicitly constructible
DAG G(m, d) of depth d with O(dm) nodes and indegree at most 2 such that for any r ≤ d the cost
of an r-round Dymond-Tompa game is at least min{ r2d/r

8 , m
8 }

Due to lack of time the proof of this lemma is skipped. The proof is given in the article
"How limited interaction hinders real communication", [DRNV16].

27

3. Proof trade-offs

3.7 Putting it all together
Now we will wrap up the chapter by putting all pieces together and prove the main theorem,
3.1. For convenience we state and prove a lemma that takes us from cutting planes-refutations
to Dymond-Tompa games.

Lemma 3.6 (Main lemma). Let G be DAG with n nodes and let � = n3+ε for some ε > 0. If there
exists a cutting planes-refutation for the CNF-formula Li f t� (PebG) with space S and length L then
there exists a O(log L)-round strategy for the pebbler in the Dymond-Tompa game on G with cost
O(S log(L)/ log(�)).

Proof. By Lemma 3.2 there must exist a real communication protocol for the problem
Search(Li f t� (PebG)) that uses O(log L) rounds and costs O(S log(L)). This implies, as ar-
gued in Subsection 3.3.3, that there exists a communication protocol for Li f t� (Search(PebG))
as well. By Lemma 3.3 there must exist a parallel decision tree for Search(PebG) using
O(log L) rounds and with cost O(S log(L)/ log(�)). By Lemma 3.4 there must exist a strategy
for the pebbler in the Dymond-Tompa game on G with cost O(S log(L)/ log(�)) using at most
O(log L)-rounds.

Now we are ready for the main theorem which we restate here in a stronger form. The
proof is not super long but a bit messy.

Theorem 3.3 (Stronger Main Theorem). For any constants K > 0 there exists a family of CNF-
formulas {FN }

∞
N=1 with O(N) number of clauses such that for any ε > 0 any cutting planes-refutation

that uses space less than N1/10−ε must have length at least 2logK N .

Proof. By setting d = logK+1 m and r = O(logK m) in Theorem 3.5 we know that there exists
a graph G with n = O(m logK+1 m) nodes such that any O(logK m)-round strategy costs at
least min{ logK (m)2log m

8 , m
8 } = Ω(m). Since G has indegree 2 we know that PebG will have width

3 and therefore we know that Li f t� (PebG) will have O(� 3n) = O(n10+3ε) clauses.
For a given N we pick m to be a power of 2 such that N is at most a constant factor o�

from (m logK+1 m)10+3ε . Since N = Θ(n10+3ε) it is clear that Li f t� (PebG) has O(N) number
of clauses.

Assume that there is a cutting planes-refutation for Li f t� (PebG) with space N1/10−ε and
length 2logK N . By Lemma 3.6 there is a O(logK N)-rounds strategy for the pebbler in the
Dymond-Tompa game on G with cost O(N1/10−ε logK(N)/ log(�)). Note that logK N = O(logK n)
and that

O(N1/10−ε logK(N)/ log(�)) < O(n1−ε) = O((m logK+1 m)1−ε) = o(m)

which is a contradiction since the cost of the Dymond-Tompa game was Ω(m). The first
inequality comes from the fact that N1/10−ε ≈ (n10+3ε)1/10−ε < n1−9ε .

28

Chapter 4

Potential improvements

In this chapter we will discuss how Lemma 3.3 could be improved and what implications this
would have on the length-space trade-o�.

It turns out that if we could make � smaller we would actually get stronger parameters
in the length-space trade-o�, we also note that the only time we used that � ≥ n3+ε is in the
proof of Lemma 3.3.

In the paper "Lifting with Sunflowers" [LMM+20] they prove a lifting lemma with � =
n1+ε so suppose we could improve our Lemma 3.3 to work with � = n1+ε and go through the
proof of the Stronger Main Theorem 3.3 to see how it would a�ect the results. We create a
graph G with n = O(m logK+1 m) nodes such that any O(logK m)-round strategy costs Ω(m).
Li f t� (PebG) has only O(n4+3ε) clauses now. Let N = Θ(n4+3ε) and assume that there is a
cutting planes-refutation for Li f t� (PebG) with space N1/4−ε and length 2logK N . This would
imply that there exists a O(logK N)-rounds strategy with cost

N1/4−ε logK(N)/ log� ≤ N1/4−ε logK(N) < N1/4−ε /2 < m

which is a contradiction, thus no such cutting planes-refutation can exist.
All this means that we could strengthen the main result to something along the line: For

any ε > 0 there exists a family of CNF-formulas such that any cutting planes-refutation of
space less than N1/4−ε requires length at least 2log100 N .

How much could we improve the result by lowering� ? If we manage to prove Lemma 3.3
with� being constant or poly-logarithmic in n we would get, by the same reasoning as above,
that any cutting planes-refutation of space less than N1−ε requires super-polynomial length.

For completeness we will also state known upper bounds for cutting planes. It turns out
that any unsatisfiable CNF-formula can be refuted by cutting planes in constant (formula)
space [GPT15]. So it would not be possible to prove an unconditional lower bound for space
needed by cutting planes. In the "Limited Interaction"-article it is shown that cutting planes
refutations of length O(N) and space O(N2/5) exist for the formulas, Li f t� (PebG), used in
this thesis. It might look like this last upper bound would limit how much we could improve

29

4. Potential improvements

� , since a constant� implies a very strong lower bound. However, this is not the case because
the upper bound depends on how large � is.

30

Chapter 5

Alternative proof of lifting lemma

In this chapter we will prove a lemma that is very similar to Lemma 3.3. This lemma is the
same except with the di�erences that we do not consider rounds nor real communication
and that the parameter � is set to n1+ε instead of n3+ε .

Lemma 5.1. Let F be an unsatisfiable CNF-formula over n variables and let� = n1+ε for some ε > 0.
If there exists a deterministic communication protocol for Li f t� (Search(F)) with cost c log(�) then
there exists a decision tree with cost O(c).

The proof will essentially be the same as the one given in "Lifting with Sunflowers"
[LMM+20].

5.1 Introduction
A lot of the setup will be the same as in Section 3.4. In fact the whole overview part, 3.4.1,
will hold true for this chapter as well. A lot of notations will also be the same: v is a node in
the communication protocol tree, A ⊆ [�]n denote possible inputs for Alice, B ⊆ {0, 1}n� are
possible inputs for Bob, I ⊆ [n] will be the non-queried coordinates, density loss D∞ is the
same and Rv ⊆ [�]n × {0, 1}n� are all inputs that reach node v.

One di�erence is that in this chapter we will define λ < 1 to be some value such that
(1 + ε)λ > 1. This means that � λ > n.

If y ∈ B, I ⊆ [n] and α ∈ [�]|I | then y[I , α] means the bit string of length |I | where the
ith bit is the αith bit of yk , where k ∈ I is the ith smallest element of I . If x ∈ [�]k and
y ∈ ({0, 1}�)k we will sometimes use the notation y[x] to denote the bit string of length k
where the ith bit is yi[xi]. The syntax a[b] is quite overloaded and depends on the types of a
and b, but hopefully it will not cause any confusion.

In the proof of Lemma 5.1 we will not use the graph-perspective, Graphi(AI), but instead
use blockwise min-entropy as we defined in Section 2.6. We can see that in the beginning the
blockwise min-entropy of A is log� and every time we move down in the protocol tree we

31

5. Alternative proof of lifting lemma

decrease the blockwise min-entropy of A by at most one since we are moving to the largest
child.

Before we go into the proof we will prove Full Range Lemma which is a powerful lemma
that will be very useful for us later. In the proof of Full Range Lemma we will use a general
statement about CNF-formulas:

Claim 5.1. Let C = C1 ∧ C2 ∧ . . . ∧ Ck be a CNF-formula over the variables x1, x2, . . . , xn. Let
Cmon be the C but where we have changed every literal of the form xi to the literal xi . Then Cmon will
have at least as many satisfiable assignments as C.

For the quite easy proof of Claim 5.1 see claim 2.4 in "Lifting with Sunflower" [LMM+20].

Lemma 5.2 (Full Range Lemma). Let� ≥ n1+ε and let I ⊆ [n]. Let AI × BI ⊆ [�]|I | × ({0, 1}�)|I |
be such that AI has blockwise min-entropy at least λ log� − O(1) and |BI | > 2� |I |−n log� . Then there
exists an x∗ ∈ AI such that for every β ∈ {0, 1}|I |, there exists a y ∈ BI such that y[x∗] = β holds.

Proof. Assume for contradiction that for each x ∈ AI there is a βx ∈ {0, 1}|I | such that y[x] 6=
βx holds for all y ∈ BI . Now we will consider a CNF-formula over variables y1, y2, . . . , y� |I |
where we add one clause Cx for each x ∈ AI such that clause Cx is false exactly when y[x] = βx .
According to Claim 5.1 the number of solutions to the CNF is maximized when βx = 1|I | holds
for all x. Therefore, the following holds

|BI | = |{y ∈ BI : ∀x ∈ AI , y[x] 6= βx}| ≤ |{y ∈ {0, 1}|I |� : ∀x ∈ A, y[x] 6= 1|I |}|

For each x ∈ AI we define Sx ⊆ [|I |�] to be all numbers (i, j) where i ∈ [|I |] and j ∈ [�]
satisfy xi = j . Define SAI = {Sx : x ∈ AI} and note that each Sx has size |I | and that SAI

is block-respecting. The blockwise min-entropy of SAI is λ log� − O(1) which, by the fact
(1 + ε)λ > 1, is larger than log(K log(|I |/(2−2n log�))) for any constant K . Therefore we are
allowed to use the Blockwise Robust Sunflower Lemma, 2.2, with F = SAI , s = |I |, κ =
2−2n log� to get that

Pr[∀Sx ∈ SAI : Sx 6⊆ Sy] < 2−2n log�

where Sy is uniformly random over [|I |�]. Another way to look at the inequality above is

Pr[∀x ∈ AI : y[x] 6= 1|I |] < 2−2n log�

where y ∈ {0, 1}|I |� is the indicator vector for Sy. By considering all y ∈ {0, 1}|I |� and the
above probability we get

|BI | ≤ |{y ∈ {0, 1}|I |� : ∀x ∈ A, y[x] 6= 1|I |}| < 2� |I |−2n log�

This is clearly a contradiction since BI > 2� |I |−n log� .

5.2 Rectangle partition
In this section we will define a way to partition the possible input sets A and B, and then
we will state and prove a number of facts about the partition. In Algorithm 3 we define the
partition formally. The statement A is fixed on [n] \ I just means that the size of A[n]\I is one.

Note that A j does not mean a set of sequences of length j but instead j is just an index.
Here comes some claims about the rectangle partition that will be used later.

32

5.2 Rectangle partition

Algorithm 3 Rectangle Partition
1: Input: A ⊆ [�]n, B ⊆ {0, 1}n� , I ⊆ [n].
2: Assert: A is fixed on [n] \ I .
3: F = {}, A≥ j = A, j = 1
4: while |A≥ j | ≥ |A|/2 do
5: Let I j ⊆ I be maximal subset such that A≥ j has less than λ log� -blockwise min-

entropy on I j . In case no such set exists let I j be the empty set.
6: Let α j ∈ [�]|I j | be such that Pr[x ∈ A≥ j , x[I j] = α j] ≥ 2−λ|I j | log� .
7: Define A j = {x ∈ A≥ j , x[I j] = α j}

8: A≥ j = A≥ j \ A j ,F = F ∪ {(I j , α j)}, j = j + 1
9: end while

10: for (I j , α j) ∈ F do
11: for β ∈ {0, 1}� |I j | do
12: B j,β = {y ∈ B, y[I j , α j] = β}
13: end for
14: end for
15: Return F , {A j} j , {B j,β} j,β

Claim 5.2. For all x ∈ A j , y ∈ B j,β, i ∈ I j we have yi[xi] = βi

Proof. Follows from the definitions of A j and B j,β .

Claim 5.3. For all j the blockwise min-entropy of A j
I\I j

is at least λ log� .

Proof. Suppose, for contradiction, that there exist an I∗ ⊆ I \ I j and α∗ ∈ [�]|I∗ | satisfying
Prx∼A j [xI∗ = α

∗] ≥ 2−λ|I∗ | log� . Then the following

Pr
x∼A≥ j

[xI∗ = α
∗ ∧ xI j = α j] ≥ 2−λ|I j | log� · Pr

x∼A j
[xI∗ = α

∗]

≥ 2−λ|I j∪I∗ | log�

shows a contradiction since I j was maximal.

Claim 5.4. For all (I j , α j) ∈ F it holds that D∞(A j
I\I j

) ≤ D∞(AI) − (1 − λ)|I j | log� + 1.

Proof. From the definition of α j and A j we get that the size of A j is at least |A≥ j | · 2−λ|I j | log�

and the size of A≥ j is, by the stop condition, at least half of A. Note that |A j
I\I j
| = |A j

I | = |A
j |

since A j is fixed on [n] \ (I \ I j), and similarly we have |A≥ j
I | = |A

≥ j |. Putting all these facts
together gives:

D∞(A j
I\IJ

) = |I \ I j | log� − log |A j |

≤ |I \ I j | log� − log(|A≥ j | · 2−λ|I j | log�)
≤ |I | log� − |I j | log� − log(|A|/2) + λ|I j | log�
= D∞(AI) − (1 − λ)|I j | log� + 1

33

5. Alternative proof of lifting lemma

Our last claim will be that the size of Bob’s possible input sets are large. We will show
that there is some j such that B j,β are large for all β ∈ {0, 1}|I j |. In the simulation it will be
this j (or rather I j) specifying which variables the decision tree should query.

In the proof of Claim 5.5 we will use the notation ∪ j A j to mean the union of all A j . The
size of ∪ j A j

I is at least half the size of AI since we stop when the size of A≥ j is less than half
of A. In other words the blockwise min-entropy of ∪ j A j

I has dropped by at most 1 compared
to AI .

Claim 5.5. Let I ⊆ [n], A × B ⊆ [�]n × ({0, 1}�)n be such that the following holds

1. AI has blockwise min-entropy at least λ log� − O(1)

2. |BI | ≥ 2� |I |−n log�+1

Let F , {A j} j , {B j,β} j,β be the result of our rectangle partition on A × B. There exists a j such that
for all β ∈ {0, 1}|I | the following holds

|B j,β
I\I j
| ≥ |BI |/2� |I j |+2|I j | log�

Proof. We will show that there exists a j such that for all β ∈ {0, 1}|I j | we have

|B j,β
I | = |{y ∈ BI : y[I j , α j] = β}| ≥ |BI |/22|I j | log�

If this is true the size of B j,β
I\I j

will be large enough since we can at most lose a factor 2|I j |�

compared to B j,β
I .

Assume for contradiction that no such j exists. Then there is a β j ∈ {0, 1}|I j | for each
j such that |{y ∈ BI : y[I j , α j] = β j}| < |BI |/22|I j | log� . Now we will divide BI into two
parts, depending on if there exists a j such that y[I j , α j] = β j . Let B=I be the set for which
there is such a j and let the rest be B 6=I . The trick is now that we can show |B=I | < |BI |/2 and
|B 6=I | < |BI |/2 which clearly is a contradiction.
|B 6=I | < |BI |/2 since otherwise we can use the Full Range Lemma, 5.2, on B 6=I and ∪ j A j

I to
get some x∗ ∈ A j

I such that every β there is some y ∈ B 6=I with y[x∗] = β. Now pick any β
such that β[I j] = β j and we get y[I j , α j] = β j which is a contradiction by definition of B 6=I .

To show |B=I | < |BI |/2 we will defineF (k) to be the set {(I j , α j) ∈ F : |I j | = k}. First note
that if |I j | = 0 then |B j,β

I | = |BI | and we would be done, therefore we assume that |F (0)| = 0.
Clearly there are at most

(
|I |
k

)
di�erent sets I j of size k and each I j can have at most� k di�erent

assignments α j . Since |I | ≤ n < � λ we have

F (k) ≤ � k
(
� λ

k

)
< � k� λk

2

which holds for all k ≥ 2. For k = 1 we simply have F (1) ≤ � 1+λ. Since each y ∈ B=I
satisfy y[I j , α j] = β j for some j and for each j at most |BI |/22|I j | log� number of y ∈ BI satisfy
y[I j , α j] = β j we get

|B=I | ≤
∑

j

|BI |/22|I j | log�

34

5.3 Simulation

If we instead of summing over j sum over the size of I j we get

|B=I | ≤
|I |∑

k=1

F (k)
|BI |

22k log�

< � λ−1|BI | +

∞∑
k=2

� k� λk

2
|BI |

22k log�

= � λ−1|BI | +
|BI |

2

∞∑
k=2

� (λ−1)k

< |BI |/2

In the last step we used the formula for geometric series.

5.3 Simulation
Algorithm 4 formalizes how we move down in the communication protocol tree as we create
our decision tree. Afterwards we will prove that the decision tree created in this way is both
correct and e�cient. We also need to prove that the preconditions for Claim 5.5 holds true
and that the assertion in the rectangle partition holds true (A fixed on [n] \ I).

Algorithm 4 Decision tree simulates deterministic communication protocol
1: v = root,R = A × B = [�]n × {0, 1}n� , I = [n], t = 0
2: while v is not a leaf do
3: Set v to vl if |(R ∩ Rvl)I | > |RI |/2 otherwise set v to vr .
4: Do rectangle partition on (A ∩ Av) × (B ∩ Bv) and denote the result by
{A j} j , {B j,β} j,β, {(I j , α j)} j .

5: Use Claim 5.5 to get index j .
6: Query zi for each i ∈ I j and denote the result β.
7: A = A j , B = B j,β, I = I \ I j , t = t + 1
8: end while
9: return Same clause as the communication protocol.

We will start by noting that A is fixed on [n] \ I holds during the whole simulation since
A j is, by definition, fixed on I j . Next we prove the e�ciency of the decision tree.

Claim 5.6. The decision tree will be e�cient. In other words n − |I | = O(c).

Proof. We will show that

0 ≤ D∞(AI) ≤ 2t − (1 − λ)(n − |I |) log�

holds for all t. This is enough since it, together with the fact t ≤ c log� , gives n − |I | ≤
2c/(1 − λ). Note that it holds in the beginning when t = 0. Assuming it holds for t we can

35

5. Alternative proof of lifting lemma

show that it holds for t + 1

D∞(A j
I\I j

) ≤ D∞((A ∩ Av)I) − (1 − λ)|I j | log� + 1 (by Claim 5.4)

≤ 1 + D∞(AI) − (1 − λ)|I j | log� + 1
≤ 1 + 2t − (1 − λ)(n − |I |) log� − (1 − λ)|I j | log� + 1
= 2(t + 1) − (1 − λ)(n − |I \ I j |) log�

To help us prove correctness and the preconditions for Claim 5.5 we will prove that the
following invariants are true in the beginning of each iteration of the while loop (and at the
end of the simulation).

1. yi[xi] = zi is true for all i /∈ I .

2. AI has blockwise min-entropy at least λ log� .

3. |BI | ≥ 2� |I |−t−2(n−|I |) log� .

Proof of invariants. We will prove that the invariants are correct by induction over t. Note
that all conditions hold when t = 0. Now we want to show, assuming the conditions hold for
t, that all conditions hold for t + 1.

Invariant 1 follows from Claim 5.2 and invariant 2 follows from Claim 5.3. To prove
invariant 3 we need to show

|B j,β
I\I j
| ≥ 2� |I\I j |−(t+1)−2(n−|I\I j |) log�

Using Claim 5.5 and then the induction hypothesis we get

|B j,β
I\I j
| ≥ |(B ∩ Bv)I |/2� |I j |+2|I j | log�

≥ 2� |I |−t−2(n−|I |) log�−1/2� |I j |+2|I j | log�

= 2� |I\I j |−(t+1)−2(n−|I\I j |) log�

Now when we have proved that the invariants are correct we can go on to prove that we
are in fact allowed to use Claim 5.5 and then finally the correctness of our decision tree.

Claim 5.7. The preconditions for Claim 5.5 on line 5 in Algorithm 4 is true

Proof. We should show that I ⊆ [n], (A∩ Av)× (B∩ Bv) satisfy the conditions for Claim 5.5.
The blockwise min-entropy of (A ∩ Av)I is at least one less than the blockwise min-entropy
of AI . So condition 1 must be true since blockwise min-entropy of AI is at least λ log� .
Condition 2 holds since:

|(B ∩ Bv)I | ≥ 2� |I |−t−2(n−|I |) log� /2 ≥ 2� |I |−n log�+1

The first inequality holds by invariant 3 and the second inequality holds by the facts: n−|I | =
O(c), t < c log� and c = o(n).

36

5.4 Generalisations

Claim 5.8. The decision tree will answer with a falsified clause of F no matter what the value of z is.

Proof. As we did in the proof of 3.3 we will show that there exists some x ∈ A, y ∈ B such that
yi[xi] = zi holds for all i ∈ [n]. Now assume that we have reached the end of the simulation
and that the invariants hold.

By invariant 1 we know that yi[xi] = zi holds for all x ∈ A, y ∈ B, i ∈ [n] \ I .
By invariant 2 we know that AI has blockwise min-entropy λ log� and by invariant 3 we

know that |BI | ≥ 2� |I |−n log� and we can thus use the Full Range Lemma, 5.2, to get that there
exists an x ∈ A, y ∈ B such that yi[xi] = zi holds for all i ∈ I .

5.4 Generalisations
Lemma 5.1 only works for deterministic communication and it does not consider rounds. As
we ideally would like to use 5.1 to improve our main theorem, 3.1, we need to extend it to
handle both real communication and be round-e�cient.

In [LMM+20] they do actually extend it to real communication, but in an earlier draft
they did not.

5.4.1 Real communication
It turns out it is actually quite easy to generalise Lemma 5.1 to real communication. The
proof will in fact work the exact same way with some additional reasoning about the size of
(A ∩ Av)I × (B ∩ Bv)I .

Let us first consider deterministic communication and think about how our rectangle,
R = A × B, of compatible inputs changes when we go down in the protocol tree. If Alice
speaks then A ∩ Av will be at least half of A and B ∩ Bv = B. Similarly if Bob speaks then
B ∩ Bv will be at least half of B and A ∩ Av = A.

Now consider what happens for real communication where Alice picks a real number φx
and Bob picks a real number ψy. Suppose we sort Alice’s inputs according to the value of φx
and Bob’s inputs according to the value of ψy. We then associate each value of φx with the
rows of a matrix and each value of ψy with the colons and fill the cell at row φx and colon
ψy with the value of φx ≤ ψy, see Figure 5.1 for an example. As noted by [Joh98] there will
always be at least one quadrant that has exactly one value of φx ≤ ψy, so even though R ∩ Rv
is not a rectangle we can always restrict it to a rectangle such that A∩ Av is at least half of A
and B ∩ Bv is at least half of B. If we read through the proof of Lemma 5.1 carefully we can
see that this is in fact enough to make the proof work for the real communication.

5.4.2 Round-efficiency
It is much more di�cult to extend Lemma 5.1 to handle rounds e�ciently. If we look at
Algorithm 4 we can see that every time we move down in the protocol tree there is the
potential of a query. One natural approach to make Algorithm 4 handle rounds would be
Algorithm 5. The only things that are unclear about Algorithm 5 are how we should choose
the j at line 6 and what B j is (as opposed to B j,β). There are a number of things that are
good about this approach. The decision tree will clearly be round-e�cient and the proof

37

5. Alternative proof of lifting lemma

A

B

R ∩ Rvr

R ∩ Rvl

Figure 5.1: Monotone matrix. The white cells correspond to φx ≤

ψy, which is the same as R ∩ Rvr , and the grey cells corresponds to
φx > ψy, which is the same as R ∩ Rvl .

Algorithm 5 Attempt of round-e�cient simulation of communication protocol.
1: v = root,R = A × B = [�]n × {0, 1}n� , I = [n], t = 0
2: while v is not a leaf do
3: while Alice speaks at v do
4: Set v to vl if |(R ∩ Rvl)I | > |RI |/2 otherwise set v to vr .
5: Do rectangle partition on (A ∩ Av) × (B ∩ Bv).
6: Take some good j
7: A = A j , B = B j , I = I \ I j
8: end while
9: Query zi for each i ∈ I j for all j chosen.

10: Restrict B to be compatible.
11: while Bob speaks at v do
12: Set v to vl if |(R ∩ Rvl)I | > |RI |/2 otherwise set v to vr .
13: B = B ∩ Bv
14: end while
15: end while
16: return Same clause as the communication protocol.

of e�ciency and correctness could be the same if the invariants would hold. Let us remind
ourselves about the three invariants:

1. yi[xi] = zi is true for all i ∈ [n] \ I .

2. AI has blockwise min-entropy at least λ log� .

3. |BI | ≥ 2� |I |−t−2(n−|I |) log� .

Both invariant 1 and invariant 2 will hold for any j, so we only really need to care about
invariant 3.

When we did not care about rounds we used Claim 5.5 to get a j such that all B j,β are
large. The problem now is that we can not do the query, so we do not know the value of β, but
we still need to handle B somehow. One way to go forward here would be to do something
similar to what was done in Section 3.4. If we let B j be the "intersection of the projections"

38

5.4 Generalisations

of all B j,β then we only need to prove that B j are large. Ideally we would like to strengthen
Claim 5.5 to, instead of showing that |B j,β

I\I j
| ≥ |BI |/2� |I j |+2|I j | log� , show that

|B j
I\I j
| = |

⋂
β∈{0,1}|I j |

B j,β
I\I j
| ≥ |BI |/2� |I j |+2|I j | log�

Unfortunately, there does not seem to be any way to adapt the current proof of Claim 5.5 to
handle this change.

If we go back to Section 3.4 and look at the Claim 3.5 we see that it is actually quite
close to what we want. The claim roughly states that |Complete(B, I ,U, i)| ≥ |BI |/(21+�) is
very likely to hold. There are a couple of di�erences between Claim 3.5 and what we want.
One is that Claim 3.5 only considers a single coordinate i and another is that we do not
have a random U . We could actually extend the definition of Complete to handle multiple
coordinates in a fairly natural way, Complete(B, I , {Ui : i ∈ I j}, I j) are all those yI\I j such
that there is an y ∈ B with yi[u] = b for all u ∈ Ui, i ∈ I j . We would then have (at least for
constant size I j) that Complete(B, I , {Ui : i ∈ I j}, I j) ≥ |BI |/(2� |I j |+|I j |) is very likely to hold.
If we think about {Ui : i ∈ I j} a little bit we see that it corresponds to α ∈ [�]|I j | with the
di�erences that α is not random and that each Ui is a subset of [�] instead of just an element
of [�]. The fact that U is a subset instead of just an element is not a problem since smaller U
would only make Complete(B, I ,U, i) larger. So for random assignments (I j , α j) it is very
likely that |B j

I\I j
| ≥ |BI |/2� |I j |+|I j | which is even stronger than what we need. The problem is of

course that I j and α j are not random.

5.4.3 Min-Entropy vs Graphs
One interesting thing would be to compare between how the min-entropy used in this al-
ternative lifting lemma compares to the graph perspective used in Chapter 3. This could
perhaps help us understand similarities and di�erences between the proofs of the di�erent
lifting lemmas. In this section we will compare MinDeg and AvgDeg to MinEntropy and
BlockwiseMinEntropy.

First we recap the definition of Graphi(AI). The graph Graphi(AI) is bipartite graph with
left nodes corresponding to values of xi and right nodes corresponding to values of xI\{i} and
for each x ∈ A we add an edge between left node xi and right node xI\{i}. MinDegi(AI) and
AvgDegi(AI) are then the minimum (resp. average) degree of the right nodes with non-zero
degree.

In Chapter 3 the condition to let the decision tree query was that AvgDegi(AI) ≥ λ log�
holds for all i ∈ I . Instead of having AvgDegi(AI) one possibility could be to have
MinEntropyi(AI) ≥ λ log� for all i ∈ I . Here MinEntropyi(AI) would be the min-entropy
of the random variable xi ∈ AI where x ∈ AI is uniformly random. Remembering the
definition of min-entropy we have that MinEntropyi(AI) = minx′∈A − log(Pr[xi = x′i]) So
MinEntropyi(AI) depends on how probable the most likely value of xi is and if we relate this
to Graphi(AI) we can see that Pr[xi = x′i] is the same as the maximum degree of a left node
divided by the sum of degrees of the left nodes. Since the maximum degree of a left node is
at most the number of non-zero degree right nodes, |AI\i |, we have that MinEntropyi(AI) ≥
− log(|AI\{i}|/|AI |). We also know that AvgDegi(AI) = |AI |/|AI\{i}| so actually the following
holds

MinEntropyi(AI) ≥ log(AvgDegi(AI))

39

5. Alternative proof of lifting lemma

This means that AvgDegi(AI) ≥ � λ implies MinEntropyi(AI) ≥ λ log� . The other way is
not true since the following counterexample

AI = {(1, 1, . . . , 1), (2, 2, . . . , 2), . . . , (i, i, . . . , i), . . . , (n, n, . . . n)}

has MinEntropyi(AI) = log� whereas AvgDegi(AI) = 1. This shows that AvgDegi(AI) ≥ � λ
is a strictly stronger condition than MinEntropyi(AI) ≥ λ log� .

The above counterexample also highlights a somewhat unintuitive property of blockwise
min-entropy: even if MinEntropyi(AI) ≥ λ log� holds for all i it could be the case that the
blockwise min-entropy of AI is close to 0.

We will now show with an example that a large blockwise min-entropy do not imply large
MinDeg. Let A ⊆ [�]n be the set [� − 1]n ∪ {� }n, in other words A has (� − 1)n sequences
consisting of only elements from [� − 1] and then a single sequence with many � . The right-
node corresponding to the � sequence will have degree 1, so MinDegi(A) = 1 for all i ∈ [n].
If we now look at the blockwise min-entropy for A we have by definition

min
I⊆[n],x′I∈AI

1
|I |

log(1/ Pr[xI = x′I])

Any sequence in [� − 1]|I | will have probability (�−1)n−|I |

(�−1)n+1 to occur, which is the maximum
probability, so we get that the blockwise min-entropy of A is

−
1
|I |

log
(

(� − 1)n−|I |

(� − 1)n + 1

)
≈ log�

The above example shows that the condition MinDegi(AI) ≥ � µ required in the proof
of Lemma 3.3 is qualitatively di�erent, and possible stronger, than corresponding condition
BlockwiseMinEntropy(AI) ≥ λ log� required in the proof of 5.1.

40

Chapter 6

Summary and Conclusion

The aim of the thesis was to combine the techniques used in "Limited interaction" [DRNV16]
with techniques from "Lifting with Sunflowers" [LMM+20]. In order to manage this the proof
in "Lifting with Sunflowers" needed to be extended to work with real communication and be-
ing round-e�cient. It turns out that the former was relatively easy to achieve, while handling
rounds is much more challenging.

In Section 5.4 we outlined an attempt of making Lemma 5.1 round-e�cient. It was the
most promising approach that was tested, but still there were some obstacles. The main
problem was proving the size of the intersection of all B j,β

I\I j
. Adapting the proof of Claim 5.5

did not seem doable. Even though we did not find any way to adapt Claim 5.5 it of course
still might be possible to use sunflowers or the full-range lemma in some creative way to it.
We also looked at the "random assignment" approach that was used in the proof of Lemma
3.3. The main problem here is that the assignment α is not random, which might be possible
to fix by changing the rectangle partition, but the issue will then be to prove the uniformity
of A.

In our attempt to generalise the lemma we only talked about extending the lemma to
handle rounds when using deterministic communication. Even if we could extend the lemma
to handle rounds we would still need to do real communication at the same time, which may
or may not be easy.

We also looked at some of the di�erences between the entropy based approach used in
the proof of Lemma 5.1 and the graph based approach used in the proof of Lemma 3.3. We
saw that even if the BlockwiseMinEntropy was large the MinDeg could be really terrible.
It could potentially be that the weaker condition of BlockwiseMinEntropy is not su�cient
to guarantee round-e�ciency, so this might be why it is hard to prove the round-e�ciency
with the approach we used.

41

6. Summary and Conclusion

42

References

[ALWZ20] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved bounds
for the sunflower lemma. In Proceedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 624–630, 2020.

[CCT87] William Cook, Collette R Coullard, and Gy Turán. On the complexity of cutting-
plane proofs. Discrete Applied Mathematics, 18(1):25–38, 1987.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM (JACM), 7(3):201–215, 1960.

[DRNV16] Susanna F De Rezende, Jakob Nordström, and Marc Vinyals. How limited in-
teraction hinders real communication (and what it means for proof and circuit
complexity). In 2016 IEEE 57th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 295–304. IEEE, 2016.

[ER60] Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal
of the London Mathematical Society, 1(1):85–90, 1960.

[Gal06] Jean Gallier. The completeness of propositional resolution: A simple and con-
structive proof. arXiv preprint cs/0606084, 2006.

[GPT15] Nicola Galesi, Pavel Pudlák, and Neil Thapen. The space complexity of cutting
planes refutations. In 30th Conference on Computational Complexity (CCC 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[GPW18] Mika Goos, Toniann Pitassi, and Thomas Watson. Deterministic communication
vs. partition number. SIAM Journal on Computing, 47(6):2435–2450, 2018.

[Joh98] Jan Johannsen. Lower bounds for monotone real circuit depth and formula size
and tree-like cutting planes. Information Processing Letters, 67(1):37–41, 1998.

[Kru63] Joseph B Kruskal. The number of simplices in a complex. Mathematical optimiza-
tion techniques, 10:251–278, 1963.

43

REFERENCES

[LMM+20] Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang.
Lifting with sunflowers. In Electron. Colloquium Comput. Complex, page 111, 2020.

[RM97] Ran Raz and Pierre McKenzie. Separation of the monotone nc hierarchy. In
Proceedings 38th Annual Symposium on Foundations of Computer Science, pages 234–
243. IEEE, 1997.

44

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 23 februari, 2022

EXAMENSARBETE Proof complexity with the help of sunflowers
STUDENT Jonatan Nilsson
HANDLEDARE Jakob Nordström (LTH)
EXAMINATOR Jonas Skeppstedt (LTH)

Bevis-komplexitet med hjälp av solrosor

POPULÄRVETENSKAPLIG SAMMANFATTNING Jonatan Nilsson

Att hitta lösningar till ekvationer är ett väldigt fundamentalt problem. Ett relaterat
problem är att bevisa att en olösbar ekvation saknar lösning. I bevis-komplexitet stud-
erar man hur stora sådana olösbarhets-bevis måste vara. Det här arbetet undersöker
om förbättringar inom solrosor (en del av det matematiska området kombinatorik)
kan användas för att förbättra vår förståelse av bevis-komplexitet.

I det här arbetet så visar vi att det finns olös-
bara ekvationer som saknar små bevis. Dessa ek-
vationerna är då i någon mening extra svåra. En
del av metoden för att visa att dessa olösbara ek-
vationer saknar små bevis är att från ekvationen
skapa ett kommunikationsproblem.
Ett kommunikationsproblem har två personer,

Alice och Bob, som tillsammans vill lösa ett prob-
lem. Alice och Bob har inte samma informa-
tion, tillsammans har de tillräckligt för att lösa
problemet, men inte var för sig. Alice och Bob
måste därför prata med varandra för att kunna
lösa problemet, men de vill helst kommunicera så
lite som möjligt. Ett protokoll specificerar hur Al-
ice och Bob ska prata för att lösa sitt problem.
Om en ekvation har ett litet olösbarhets-bevis

så kommer det finnas ett litet protokoll (Alice
och Bob behöver bara prata lite grann) till vårt
kommunikationsproblem. Vi visar sedan att för
vissa ekvationer så finns det inga små protokoll
och därmed inga små bevis. Det är det här sista
steget, att visa att det inte finns några små pro-
tokoll, som skulle kunna förbättras av solrosor.
Vad är då solrosor för någonting? En solros

är ett antal överlappande mängder där snittet av
varje par av mängder är snittet av alla mängder.
Till exempel i Figur 1 så innehåller alla mängder
de 3 kulorna i mitten medan alla andra kulor bara

finns i en enda mängd. Inom området solrosor
så är man intresserad av hur många överlappande
mängder som behövs för att det garanterat ska
finnas en solros av nån viss storlek.

Figure 1: Exempel på en solros.

Det visar sig att det finns en koppling mellan
kommunikationsproblem och solrosor som unge-
fär kan formuleras så här: små protokoll finns en-
dast om det inte finns någon stor solros. Prob-
lemet är att kopplingen mellan solrosor och kom-
munikationsproblem har hittills inte varit tillräck-
ligt stark för att det ska funka i vårt fall. Detta
arbete har undersökt möjligheter att förbättra
kopplingen mellan solrosor och kommunikation-
sproblem på ett sådant sätt att resultat inom
bevis-komplexitet hade kunnat stärkas. Vi lyck-
ades dock inte visa några resultatet inom området
bevis-komplexitet som inte redan var kända.

	Introduction
	Background
	Basics and notation
	Proof systems
	Resolution
	Cutting planes

	Communication complexity
	Deterministic communication
	Real communication

	Decision Trees
	Dymond-Tompa games
	Sunflowers

	Proof trade-offs
	Overview of proof
	Hard formula
	Pebbling contradiction
	Lifted formulas

	Proofs to communication
	Defining Search(F)
	Constructing the protocol
	Search(Lift(F)) and Lift(Search(F))

	Communication to Decision Trees
	Overview
	Notation and definitions
	Deterministic communication
	Real communication

	Decision tree to Dymond-Tompa game
	Lower bounds on Dymond-Tompa game
	Putting it all together

	Potential improvements
	Alternative proof of lifting lemma
	Introduction
	Rectangle partition
	Simulation
	Generalisations
	Real communication
	Round-efficiency
	Min-Entropy vs Graphs

	Summary and Conclusion
	References
	Tom sida

