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Abstract—One of the major open problems in complexity
theory is proving super-logarithmic lower bounds on the depth
of circuits (i.e., P �⊆ NC1). Karchmer, Raz, and Wigderson
[13] suggested to approach this problem by proving that
depth complexity behaves “as expected” with respect to the
composition of functions f � g. They showed that the validity
of this conjecture would imply that P �⊆ NC1.

Several works have made progress toward resolving this
conjecture by proving special cases. In particular, these works
proved the KRW conjecture for every outer function f , but only
for few inner functions g. Thus, it is an important challenge to
prove the KRW conjecture for a wider range of inner functions.

In this work, we extend significantly the range of inner
functions that can be handled. First, we consider the monotone
version of the KRW conjecture. We prove it for every monotone
inner function g whose depth complexity can be lower bounded
via a query-to-communication lifting theorem. This allows us
to handle several new and well-studied functions such as the
s-t-connectivity, clique, and generation functions.

In order to carry this progress back to the non-monotone
setting, we introduce a new notion of semi-monotone compo-
sition, which combines the non-monotone complexity of the
outer function f with the monotone complexity of the inner
function g. In this setting, we prove the KRW conjecture for
a similar selection of inner functions g, but only for a specific
choice of the outer function f .

Keywords-KRW; Lifting; Simulation; Karchmer-Wigderson
relations; KW relations; circuit complexity; circuit lower
bounds; formula complexity; formula lower bounds; depth
complexity; depth lower bounds; communication complexity;

I. INTRODUCTION

A major frontier of the research on circuit complexity is

proving super-logarithmic lower bounds on the depth com-

plexity of an explicit function, i.e., proving that P �⊆ NC1.

This question is an important milestone toward proving

lower bounds on general circuits, and also captures the

natural question of whether there are tractable computational

tasks that cannot be parallelized. The state of the art is

the work of Håstad [10], which proved a lower bound of

(3− o(1)) · log n, following a long line of work [24], [15],

[1], [19], [12]. This lower bound has not been improved for

more than two decades except for the lower order terms [25],

and it is an important problem to break this barrier.

Karchmer, Raz, and Wigderson [13] proposed to approach

this problem by studying the (block-)composition of Boolean

functions, defined as follows: if f : {0, 1}m → {0, 1} and

g : {0, 1}n → {0, 1} are Boolean functions, then their

composition f � g takes inputs in ({0, 1}n)m and is defined

by

f � g(x1, . . . , xm) = f (g(x1), . . . , g(xm)) . (1)

Let us denote by D(f) the minimal depth of a circuit with

fan-in 2 that computes f . The circuit that computes f � g
using Equation (1) has depth D(f) + D(g). Karchmer et

al. [13] conjectured that this upper bound is roughly optimal:

Conjecture I.1 (The KRW conjecture). Let f : {0, 1}m →
{0, 1} and g : {0, 1}n → {0, 1} be non-constant functions.
Then

D(f � g) ≈ D(f) + D(g). (2)

Karchmer et al. observed that their conjecture, if proved,

would imply that P �⊆ NC1. They also successfully used

this approach to give an alternative proof for P �⊆ NC1

in the monotone setting. The meaning of “approximate

equality” in Equation (2) is intentionally left vague, since

there are many variants that would imply the separation.

While we are still far from resolving the KRW conjecture,

several works [13], [6], [11], [10], [7], [5], [16] have made

progress toward it by proving special cases. The state of the

art is that the KRW conjecture is known to hold for every

outer function f , but only when combined with two specific

choices of the inner function g: the parity function, and the

universal relation. There are no results proving the KRW

conjecture for a broader family of inner functions.

In this work, we prove the KRW conjecture for a rich

family of inner functions g, namely, those functions whose

depth complexity can be lower bounded using lifting the-
orems. This includes functions that are considerably more

interesting than previous composition theorems could han-

dle. We prove these results in the monotone setting, and

in a new setting which we call the semi-monotone setting.

Below, we discuss the background to this work and present

our results.
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Karchmer-Wigderson relations: It is useful to study the

KRW conjecture through the lens of communication com-

plexity, and in particular, using the framework of Karchmer-
Wigderson relations. Let us denote the (deterministic) com-

munication complexity of a problem R by CC(R). The

Karchmer-Wigderson relation of a function f : {0, 1}n →
{0, 1}, denoted KWf , is the communication problem in

which the inputs of Alice and Bob are x ∈ f−1(1) and

y ∈ f−1(0) respectively, and their goal is to find a coor-

dinate i such that xi �= yi. Karchmer and Wigderson [14]

observed that D(f) = CC(KWf ). This connection between

functions and communication problems allows us to study

the depth complexity of functions using techniques from

communication complexity.

The KRW conjecture from the KW perspective: Let f :
{0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be non-constant

functions. It will be useful to denote the KW relation KWf�g
of the composed function by KWf � KWg . In this relation,

Alice and Bob get X ∈ (f � g)−1(1) and Y ∈ (f � g)−1(0),
viewed as m×n matrices, and their goal is to find an entry

(i, j) such that Xi,j �= Yi,j . The KRW conjecture can be

restated as:

CC(KWf � KWg) ≈ CC(KWf ) + CC(KWg).

It is worth noting the obvious protocol for solving KWf �
KWg: Let a, b be the column vectors that are obtained from

applying g to the rows of X,Y , and observe that they

constitute an instance of KWf . The players begin by solving

KWf on a and b, thus obtaining a coordinate i ∈ [m]
such that ai �= bi. Then, they solve KWg on the rows

Xi, Yi, which constitute an instance of KWg , thus obtaining

a coordinate j ∈ [n] where Xi,j �= Yi,j . The communication

complexity of this protocol is CC(KWf )+CC(KWg), and the

KRW conjecture says that this obvious protocol is roughly

optimal.

Previous work on the KRW conjecture: The KRW

conjecture has been studied extensively, and a long line of

papers have made progress on important restricted cases.

These papers can be broadly divided into two categories.

The first category involves proving the KRW conjec-

ture for a simplified communication problem. Specifically,

Karchmer et al. [13] proposed a simplification of KW

relations called the universal relation (denoted Un) which is

the following communication problem: Alice and Bob get

two distinct strings x, y ∈ {0, 1}n, and their goal is to find a

coordinate on which they disagree. The universal relation is

harder to solve than KW relations, since the inputs of Alice

and Bob are not assumed to come from the preimage of some

function f , and so the protocol cannot take advantage of any

properties of f . Just as the universal relation is a simplified

version of KW relations, one can define simplified versions

of KWf � KWg , such as the composition Um � Un of two

universal relations and the composition KWf �Un of a KW

relation and a function. Several works have studied this type

of compositions [13], [6], [11], [7], [16], and the state of the

art is that the KRW conjecture holds for KWf �Un for every

non-constant function f : {0, 1}m → {0, 1} [7], [16].

The second category where important progress was made

is for KWf �KW⊕ where f can be any non-constant function

and
⊕

is the parity function. The KRW conjecture for this

case has been proved implicitly by Håstad [10], and an

alternative proof was recently given by Dinur and Meir [5].

The papers discussed so far are able to handle an arbitrary

choice of the outer relation KWf , but only very specific

choices of the inner relation KWg . This seems to suggest that

the crux of the difficulty in proving the KRW conjecture lies

in having to deal with an arbitrary choice of KWg . In order

to bypass this difficulty, Meir [18] recently observed that in

order to prove that P �⊆ NC1, it suffices to prove a version

of the KRW conjecture in which KWg is replaced with a

specific communication problem, namely, the multiplexor
relation MUX of [6]. Specifically, he defined a composition

of the form KWf � MUX, and showed that if a variant of

the KRW conjecture for KWf �MUX holds for every non-

constant outer function f , then P �⊆ NC1.

Motivation: Following the above discussion, our goal is

to “replace” the relations Un and KW⊕ in the known results

with MUX. Unfortunately, this seems to be very difficult

— in particular, the relation MUX seems to be significantly

more complicated than Un and KW⊕.

In order to make progress, we propose that a good inter-

mediate goal would be to try to prove the KRW conjecture

for the composition KWf �KWg for inner functions g that are
as complex and expressive as possible. Ideally, by extending

the range of inner functions g that we can handle, we will

develop stronger techniques, which would eventually allow

us to prove the conjecture for KWf �MUX.

An additional motivation for proving the KRW conjecture

for harder inner functions is that it may allow us to improve

the state of the art lower bounds on depth complexity. The

best known lower bound of (3− o(1)) · log n [1], [19], [12],

[10] was achieved by implicitly proving the KRW conjecture

for KWf � KW⊕, and it may be improved by proving the

KRW conjecture for new inner functions.

The question is, which inner functions g would be good

candidates for such a program? Ideally, a good candidate

for g would be such that the KW relation KWg is more

interesting than Un and KW⊕, but less complicated than

MUX. Unfortunately, there are not too many examples for

such relations: in fact, the relations Un, KW⊕, and MUX
are more or less the only relations that are well-understood.

Thus, we have a shortage of good candidates g for this

program.

As a way out of this shortage, we propose to consider

monotone depth complexity in the study of inner functions.

Given a monotone function f , the monotone depth complex-
ity of f , denoted mD(f), is the minimal depth of a monotone
circuit that computes f . The monotone KW relation of a
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monotone function f , denoted mKWf , is defined similarly to

KWf , but this time the goal of Alice and Bob is to find a co-

ordinate i such that xi > yi (rather than xi �= yi). Karchmer

and Wigderson [14] observed that mD(f) = CC(mKWf ).
Fortunately, there are many monotone KW relations that

are well-understood, and which are significantly more in-

teresting than Un and KW⊕. We would like to study

compositions in which these monotone KW relations serve

as the “inner part”, in the hope that such study would lead

us to discover new techniques.

A. Our results

1) The monotone composition theorem: Motivated by

considerations discussed above, our first result concerns the

monotone KRW conjecture. This conjecture says that for

every two non-constant monotone functions f, g it holds that

CC(mKWf � mKWg) ≈ CC(mKWf ) + CC(mKWg)

(where mKWf � mKWg
def
= mKWf�g). This conjecture was

studied in the original paper of Karchmer et al. [13], who

proved it for the case where both f and g are the set-

cover function, and used the latter result to prove that

P �⊆ NC1 in the monotone setting. However, this conjecture

received far less attention than the non-monotone conjecture,

perhaps because the monotone analogue of P �⊆ NC1 has

been known to hold for a long time, and monotone depth

complexity is considered to be very well understood in

general.

Nevertheless, we believe that this conjecture is interesting

for several reasons: First, it is a very natural question in its

own right. Second, if we cannot prove the KRW conjecture

in the monotone setting, what hope do we have to prove it

in the non-monotone setting, which is far less understood?

Finally, proving the monotone KRW conjecture might prove

useful for tackling other important questions on monotone

depth complexity, such as proving lower bounds on slice

functions (which in particular would imply non-monotone

lower bounds).

Our first main result is a proof of the monotone KRW

conjecture for every non-constant monotone function f , and

for a wide range of monotone functions g. Specifically, our

result holds for every function g whose monotone depth

complexity can be lower bounded using a “lifting theorem”:

A lifted search problem S � gd is obtained by composing a

search problem S with an appropriate “gadget” function gd.

A lifting theorem is a theorem that translates a lower bound

for S in a weak model of computation to a lower bound

for S � gd in a strong model.

Here, the relevant weak model of computation is query

complexity. Informally, the query complexity of a search

problem S, denoted Q(S), is the number of queries one

should make to the input in order to find a solution. Fix a

gadget gd : {0, 1}t × {0, 1}t → {0, 1} of input length t. A

few lifting theorems [20], [3], [27], [2] establish that if the

gadget gd satisfies certain conditions, then CC(S � gd) =
Ω(Q(S) · t). In this work, we use a lifting theorem of

Chattopadhyay et al. [2], which holds for every gadget gd
that has sufficiently low discrepancy and sufficiently large

input length (see the full version of this work for the formal

statement).

Our result says that the monotone KRW conjecture holds

whenever the lower bound on mKWg can be proved using

the theorem of [2]. More specifically, there should exist a

reduction to mKWg from a lifted search problem S � gd
that satisfies the conditions of [2]. This is a much wider

family of inner functions than what previous composition

theorems could handle (i.e., universal relation and parity),

though we are now working in the monotone rather than the

non-monotone setting. Informally, the composition theorem

can be stated as follows (see the full version of this work

for the formal statement):

Theorem I.2 (monotone composition theorem, informal).
Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be
non-constant monotone functions. If there is a lifted search
problem S � gd that reduces to mKWg and satisfies the
conditions of the theorem of [2], then

CC(mKWf � mKWg) ≥ CC(mKWf ) + Ω(Q(S) · t).
In particular, if CC(mKWg) = Õ (Q(S) · t), then

CC(mKWf �mKWg) ≥ CC(mKWf ) + Ω̃(CC(mKWg)). (3)

We would like to note that the theorem is applicable to

many interesting inner functions, including the classical s-t-
connectivity function [14], [9], clique function [8], [21], and

generation function [20] (see the full version of this work

for details). Moreover, we would like to mention that the

bound of Equation (3) is good enough for the purposes of

the KRW conjecture.

We would also like to stress that while the statement

of our monotone composition theorem refers to the lifting

theorem of [2], we believe it can be adapted to work with

similar lifting theorems such as the ones of [20], [3], [27]

(in other words, the specific choice of the lifting theorem

is not particularly crucial). Finally, it should be mentioned

that the formal statement of the monotone composition

theorem actually refers to formula complexity rather than

depth complexity.

In order to prove Theorem I.2, we introduce a gener-

alization of the lifting theorem of [2], which may be of

independent interest. Roughly, our generalization shows a

lower bound for the lifted problem S � gd even when

restricted to a subset of its inputs, as long as this subset

satisfies a certain condition. See Section I-B1 for further

discussion.

2) The semi-monotone composition theorem: Recall that

our end goal is to gain insight into the non-monotone
setting. To this end, we define a new form of composition,
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called semi-monotone composition, which composes a non-
monotone outer KW relation with a monotone inner KW

relation. The purpose of this new composition is to enjoy

the best of both worlds: On the one hand, this notion allows

us to use candidates for the inner function g that come from

the monotone setting. On the other hand, we believe that this

notion is much closer to the non-monotone setting. Thus, by

studying semi-monotone composition we can tackle issues

that come up in the non-monotone setting but not in the

monotone setting.

In order to gain intuition for the definition of this compo-

sition, consider the obvious protocol for the non-monotone

composition KWf � KWg . Recall that the inputs to this

protocol are matrices X,Y ∈ {0, 1}m×n
, and that we denote

by a, b the column vectors that are obtained by applying g
to the rows of those matrices. Observe that there are two key

properties of KWf �KWg that allow the obvious protocol to

work:

• The players can find a row i ∈ [m] such that ai �= bi
by solving KWf on a, b.

• For every i ∈ [m] such that ai �= bi, the players can

find a solution for KWf � KWg by solving mKWg on

the rows Xi, Yi.

Note that, while the obvious protocol always finds a solution

in a row i where ai �= bi, the rows where ai = bi might

contain solutions as well.

We define the semi-monotone composition of KWf and

mKWg as a communication problem that is identical to

KWf � KWg , except that in the second property above, the

non-monotone relation KWg is replaced with the monotone

relation mKWg . Formally, we define semi-monotone compo-

sition as follows.

Definition I.3 (Semi-monotone composition). Let f :
{0, 1}m → {0, 1} be a non-constant (possibly non-

monotone) function, and let g : {0, 1}n → {0, 1} be a non-

constant monotone function. The semi-monotone composi-
tion KWf �mKWg is the following communication problem.

Alice and Bob get as inputs m×n binary matrices X and Y
respectively. Let a, b ∈ {0, 1}m denote the column vectors

that are obtained by applying g to each row of X and Y
respectively. Then, f(a) = 1 and f(b) = 0, and the goal of

the players is to find an entry (i, j) that satisfies one of the

following three options:

• ai > bi and Xi,j > Yi,j .

• ai < bi and Xi,j < Yi,j .

• ai = bi and Xi,j �= Yi,j .

Note that this communication problem has the desired

structure: Indeed, it is not hard to see that when ai �= bi,
finding a solution in the i-th row is equivalent to solv-

ing mKWg on Xi, Yi. It is also not hard to show that

CC(KWf �mKWg) ≤ CC(KWf )+CC(mKWg) bits, by using

an appropriate variant of the obvious protocol of KWf �KWg .

Therefore, a natural “semi-monotone variant” of the KRW

conjecture would be the following.

Conjecture I.4 (Semi-monotone KRW conjecture). For
every non-constant function f : {0, 1}m → {0, 1} and non-
constant monotone function g : {0, 1}n → {0, 1},

CC(KWf � mKWg) � CC(KWf ) + CC(mKWg).

Our result: Ideally, we would have liked to prove

Conjecture I.4 for every outer function f and for a wide

range of inner functions g. Unfortunately, we are only able

to prove it for the case where the outer relation KWf is

replaced with the (non-monotone) universal relation, i.e.,

the composition Um � mKWg . This composition is defined

similarly to Definition I.3, with the following difference:

instead of promising that f(a) = 1 and f(b) = 0, we only

promise that a �= b. The natural conjecture in this case would

be that

CC(Um�mKWg) � CC(Um)+CC(mKWg) ≥ m+CC(mKWg),
(4)

where the second inequality holds since CC(Um) = m +
Θ(1) (see [13], [26]). Our semi-monotone composition theo-

rem proves such a result for every monotone inner function g
for which a lower bound on CC(mKWg) can be proved using

a lifting theorem of [4].

Before describing our result, we briefly describe the lifting

theorem of [4]. Given an unsatisfiable CNF formula φ, its

associated search problem Sφ is the following task: given

an assignment z to φ, find a clause of φ that is violated

by z. The Nullstellensatz degree of φ, denoted NSF(φ), is

a complexity measure that reflects how hard it is prove that

φ is unsatisfiable in the Nullstellensatz proof system over a

field F. Fix a gadget gd : {0, 1}t×{0, 1}t → {0, 1} of input

length t. The lifting theorem of [4] says that CC(Sφ �gd) ≥
Ω(NSF2

(φ) · t) provided that the gadget gd has sufficiently

large rank.

Our result says that Equation (4) holds whenever there is

a reduction from such a lifted problem Sφ � gd to mKWg .

We require the gadget gd to be the equality function eq,

and require the reduction to be injective (see the full ver-

sion of this work for the definition of injective reduction).

Informally, our semi-monotone composition theorem can be

stated as follows (see the full version of this work for the

formal statement):

Theorem I.5 (semi-monotone composition theorem, infor-

mal). Let g : {0, 1}n be a non-constant monotone function,
and let eq be the equality function on strings of length t.
Suppose there exists a lifted search problem Sφ � eq that
reduces to mKWg via an injective reduction and satisfies
the conditions of the theorem of [4]. Then

CC(Um � mKWg) ≥ m+Ω(NSF2(φ) · t).
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In particular, if CC(mKWg) = Õ(NSF2
(φ) · t), then

CC(Um � mKWg) ≥ m+ Ω̃(CC(mKWg)).

As in the case of the monotone composition theorem,

the semi-monotone theorem is applicable to many interest-

ing inner functions, including the classical s-t-connectivity,

clique, and generation functions mentioned above (see the

full version of this work for details), and the bound that

it gives is good enough for the purposes of the KRW

conjecture.

Comparison to monotone composition: Recall that our

goal in defining semi-monotone composition is to captures

issues that arise in the non-monotone setting but are not cap-

tured by the monotone setting. We claim that our definition

succeeds in this task for at least one significant issue, to be

discussed next.

Recall that the KRW conjecture says that the obvious

protocol for KWf � KWg is essentially optimal. Intuitively,

this should be the case since it seems that the best strategy

for the players is to work on a row where ai �= bi, and to do

it, they must first find such a row. While it seems reasonable

that the best strategy is to work on a row where ai �= bi, it is

not clear how to prove it: indeed, this is a central challenge

in the proofs of known composition theorems (though not

the only challenge).

On the other hand, Karchmer et al. [13] observed that in

the monotone setting, the players can be forced to solve

the problem on a row where ai > bi. This means that

in the monotone setting, we can easily bypass a central

challenge of the non-monotone case. An important feature of

semi-monotone composition is that the observation of [13]

fails for this composition. Hence, we believe that the semi-

monotone setting is much closer to the non-monotone KRW

conjecture than the monotone setting.

B. Our techniques

1) The monotone composition theorem: We use the high

level proof strategy that was introduced by [6], and further

developed in [5], [17], [16]. The main technical lemma is

a structure theorem, formalizing that any correct protocol

must first solve mKWf , and then solve mKWg . A bit more

formally, we show that for any partial transcript π1 of Π,

if mKWf has not yet been solved at π1, then Π must send

≈ CC(mKWg) additional bits before it can find a solution

for mKWf � mKWg .

To accomplish this, at π1, we partition the rows of X,Y
into two types: (1) “revealed” rows where π1 reveals a lot

of information, and (2) “unrevealed” rows, where π1 reveals

only a small amount of information. We then show that the

revealed rows can be forced to be useless (that is, we can

ensure that there is no solution (i, j) where i is a revealed

row). It follows that in order for the protocol to finish after

π1, it has to solve mKWg on one of the unrevealed rows.

The remaining step is therefore to show that in order to

solve mKWg on one of the unrevealed rows, the protocol

must transmit ≈ CC(mKWg) additional bits. While this

claim sounds intuitive, proving it is non-trivial since some

(small amount of) information has been learned about each

unrevealed row, and this revealed information can be highly

dependent. Moreover, the protocol is allowed to choose

on which unrevealed row it solves mKWg , and this could

in principle make the task significantly easier. In previous

works, these issues are dealt with in a way that is tailored

to the particular choice of g. Specifically, one takes a

known lower bound proof for KWg , and shows that it still

goes through even after accounting for the aforementioned

complications.

In our case, we do not know the particular choice of g,

but we do know that the lower bound for mKWg is proved

using the lifting theorem of [2]. Hence, our goal is show that

this lower bound proof still goes through. To this end, we

prove a generalization of this lifting theorem which may

be of independent interest. Informally, our generalization

shows that S � gd remains hard even if we restrict it to a

subset X ×Y of its inputs, as long as the coordinates remain

unpredictable. Since this is the case for the unrevealed rows,

we get the lower bound that we desire.

The notion of unpredictability required by our lifting

theorem is based on average degree as defined by [6],

[20]: given a set of strings W ∈ Λ� and a subset of

coordinates I ⊆ [�], the average degree AvgDegI(W) is

the average number of ways to complete a string in W|[�]−I

to a string in W . Informally, our generalized lifting theorem

says the following (see the full version of this work for the

formal statement):

Theorem I.6 (informal). Let S � gd be a lifted search
problem that satisfies the conditions of of [2]. Let X × Y
be a subset of the inputs of S � gd such that AvgDegI(X )
and AvgDegI(Y) are sufficiently large for every set of co-
ordinates I . Then, the communication complexity of solving
S � gd on the inputs in X × Y is at least Ω (Q(S) · t).

Our proof of the generalized lifting theorem mostly fol-

lows the proof of [2], except for one significant issue: The

original proof of [2] uses a potential argument to bound

the communication complexity, where the potential function

is the min-entropy deficiency with respect to the uniform

distribution over all the inputs. In our proof, on the other

hand, the potential function measures the deficiency with

respect to the uniform distribution over the restricted set of
inputs. The latter distribution is less structured, and hence

the potential argument requires a more refined analysis.

2) The semi-monotone composition theorem: We prove

the lower bound on Um � mKWg using the Razborov rank

method [22]. Basically, in order to use this method to prove

a lower bound on a communication problem S ⊆ X ×Y ×
O, one needs to construct a matrix A of order |X | × |Y|
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such that A has high rank, but its restriction to every S-

monochromatic rectangle has low rank. Roughly, the lifting

theorem of [4] gives such a matrix A for mKWg , and we

use this matrix to construct a corresponding matrix M for

Um � mKWg .

The matrix M for Um �mKWg is constructed as follows.

The rows and columns of M are indexed by matrices X
and Y respectively. We view the matrix M as a block matrix

that consists of 2m · 2m blocks — a block for each value of

a and b. For every a, b such that a = b, the corresponding

block is the all-zeros matrix. For every other choice of a, b,
the corresponding block is formed by taking the Kronecker

product, for every i ∈ [m], of either A (if ai �= bi) or the

identity matrix I (if ai = bi).
The matrix M is constructed in this way in order to

guarantee that all its restrictions to monochromatic rectan-

gles have low rank. On the one hand, having the matrix

A in rows i where ai �= bi guarantees that monochromatic

rectangles that solve mKWg on such rows Xi, Yi have low

rank. On the other hand, having the identity matrix I in

rows i where ai = bi guarantees that monochromatic

rectangles that find different entries Xi,j �= Yi,j are all-zeros

rectangles.

An important part of the proof is the observation that the

when the theorem of [4] is applied with the equality gadget

over F2 (as we do), it gives a matrix A that satisfies A2 = I .

This property creates a connection between A and I that

allows us to analyze the rank of M and of its sub-matrices

using Gaussian elimination.

II. OPEN QUESTIONS

An obvious question that arises from this work is whether

we can strengthen our semi-monotone composition theorem

(Theorem I.5) to work for every non-constant outer func-

tion f . As a starting point, can we prove such a semi-

monotone composition theorem that holds when the inner

function g is the s-t-connectivity function? We note that

proving such a result would likely require new ideas, since

our techniques seem to be insufficient:

• On the one hand, we cannot prove such a result along

the lines of our monotone composition theorem, since

in the semi-monotone setting we cannot assume that

the protocol outputs an entry (i, j) for which ai �= bi
(as in the observation of [13] in the monotone case).

• On the other hand, we cannot prove such a result along

the lines of our semi-monotone composition theorem,

since the Razborov rank measure cannot prove inter-

esting lower bounds for non-monotone KW relations

[23]. In particular, we would not be able to analyze

the complexity of a non-monotone outer relation KWf

using this technique.

Another interesting question is whether we can strengthen

our monotone composition theorem (Theorem I.2) even

further: Although this theorem holds for many choices of the

inner functions g, there are still a few “classical” functions

that it does not cover — most notably the matching func-

tion [21]. Can we prove a monotone composition theorem

where f can be any non-constant monotone function, and

g is the matching function?

Finally, recall that in the long run, our goal is to prove

the KRW conjecture for the composition KWf � MUX (for

every f ), since this would imply that P �⊆ NC1. To this end,

it seems reasonable to try to prove first the monotone and

semi-monotone versions of this conjecture. The monotone

version might be within reach (see [18] for the statement of

this conjecture). Can we prove it?
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