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We say that a graph with n vertices is c-Ramsey if it does not contain either a clique or an
independent set of size c logn. We define a CNF formula which expresses this property for
a graph G. We show a superpolynomial lower bound on the length of resolution proofs that
G is c-Ramsey, for every graph G. Our proof makes use of the fact that every c-Ramsey
graph must contain a large subgraph with some properties typical for random graphs.

Introduction

The proof of the existence of c-Ramsey graphs, that is, graphs that have
no clique or independent set of size c logn, was one of the first applications
of the probabilistic method in combinatorics [10]. The problem, posed by
Erdős, of constructing such graphs explicitly is still open [8]. The condition
of being explicitly constructed can be interpreted in various ways. From the
point of view of complexity theory, the most interesting question is whether
such graphs can be constructed in polynomial time. In this paper we consider
the following related problem: how hard is it to certify that a graph G of size
n is c-Ramsey? Do polynomial-size certificates exist? A natural certificate
would be a resolution proof that G is c-Ramsey. We show that no such proof
exists with length shorter than nΩ(logn), for any fixed constant c ≥ 2. Let
us stress that our lower bound nΩ(logn) holds for every c-Ramsey graph G.
On the other hand, a brute-force check that G satisfies the property takes
time nO(logn) and can be turned into a resolution proof. Hence, our result is
asymptotically optimal.

Mathematics Subject Classification (2000): 03F20, 05C55

http://dx.doi.org/10.1007/s00493-015-3193-9


254 MASSIMO LAURIA, PAVEL PUDLÁK, VOJTĚCH RÖDL, NEIL THAPEN

Since most SAT solvers used in practice are essentially proof search al-
gorithms for resolution [15], our lower bound on resolution proof size shows
that the problem of verifying that a graph is c-Ramsey is hard for quite a
large class of algorithms. Also note that, while it does not follow from the
resolution lower bound that there is no algorithm which will construct a c-
Ramsey graph in polynomial time, it does follow that, given an algorithm,
there is no polynomial-size resolution proof of the fact that the algorithm
produces c-Ramsey graphs.

We briefly survey some previous results on the proof complexity of the
Ramsey theorem. The finite Ramsey theorem states that for any k, there is
some N such that every graph of size at least N contains a clique or inde-
pendent set of size k; the least such N is denoted by r(k). Since a c-Ramsey
graph is a witness that r(c logn)>n, proving that a graph is c-Ramsey is,
in some sense, proving a lower bound for r(k). Previously, proof complexity
has focused on upper bounds for r(k). Krishnamurthy and Moll [14] proved
partial results on the complexity of proving the exact upper bound, and
conjectured that the propositional formalization of the exact upper bound
is hard in general. Kraj́ıček later proved an exponential lower bound on the
length of bounded depth Frege proofs of the tautology proposed by Krish-
namurthy and Moll [13]. The upper bound r(k) ≤ 4k has short proofs in
a relatively weak fragment of sequent calculus, in which every formula in a
proof has small constant depth [13,17]. More recently Pudlák [18] has shown
a lower bound on proofs of r(k)≤4k in resolution. There are also results on
the proof complexity of the off-diagonal Ramsey theorem where the size of
cliques and the size of independent sets are two different parameters, see [7].

The paper is organized as follows. In Section 1 we formally state our
main result, mention some open problems, and then outline the method we
will use. In Section 2 we apply this to prove a simple version of our main
theorem, restricted to the case when G is a random graph. In Section 3 we
prove the full version. This will use one extra ingredient, a result from [16]
that every c-Ramsey graph G has a large subset with some of the statistical
density properties of the random graph. We conclude the paper with some
open problems.

1. Definitions and results

1.1. Resolution

Resolution is one of the most studied propositional proof systems. In this
system one can prove every logically valid propositional formula (that is,



THE COMPLEXITY OF PROVING THAT A GRAPH IS RAMSEY 255

every tautology) which is in disjunctive normal form (DNF). However, since
a resolution proof is a proof “by contradiction”, we usually view resolution
rather as a system for refuting unsatisfiable propositional CNFs (proposi-
tional formulas in conjunctive normal form).

A resolution refutation is a sequence of disjunctions of propositional vari-
ables and negated variables; in this context we call the variables and negated
variables literals and the disjunctions clauses. Resolution has a single infer-
ence rule: from two clauses A∨x and B ∨¬x we can infer the new clause
A∨B (which is a logical consequence). A general resolution refutation of a
CNF φ is a derivation of the empty clause from the clauses of φ. That is,
it is a sequence of clauses that are either clauses of φ or are derived from
previous clauses in the sequence by applications of the rule. We will also
consider tree-like refutations where the proof is presented in the form of a
binary tree with its vertices labeled by clauses in such a way that the leaves
are labeled by clauses of φ (the same clause can appear many times) and
the root is labeled by the empty clause.

For an unsatisfiable formula φ, we define L(φ) to be the length, measured
by the number of clauses, of the shortest resolution refutation of φ. If φ is
satisfiable we consider L(φ) to be infinite.

1.2. Formalizing the Ramsey property

Let c≥2 be a constant, whose value will be fixed for the rest of the paper.1

Definition 1 (c-Ramsey graph). We say that a graph with n vertices is
c-Ramsey if there is no set of c logn vertices which form either a clique or
an independent set.

We now describe our formalization of the c-Ramsey property in a way
suitable for the resolution proof system. Given a graph G on n=2k vertices,
we will define a formula ΨG in conjunctive normal form which is satisfiable if
and only if there is a homogeneous set (a set inducing an empty or complete
subgraph) of size ck in G, that is, if and only if G is not c-Ramsey. We
identify the vertices of G with the binary strings of length k. In this way we
can use an assignment to k propositional variables to determine a vertex.
We will also sometimes talk about the j-th coordinate of a vertex v, meaning
the j-th bit in its representation as a string.

The formula ΨG has variables to represent an injective mapping from a
set of ck “indices” to the vertices of G, and asserts that the vertices map onto

1 All results hold true for any c> 0, but it is not known whether for 1/2<c< 2 there
are infinitely many c-Ramsey graphs.
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either a clique or an independent set in a one-to-one manner. Furthermore,
ΨG has one additional variable y to indicate which of these two cases holds.

In more detail, for each i∈ [ck] we have k variables xi1, . . . ,x
i
k which we

think of as naming the coordinates of the vertex of G to which i is mapped.
With the additional variable y, there are ck2+1 variables in total. To simplify
notation we will write propositional literals in the form “xib = 1”, “xib 6= 0”,
“xib=0” and “xib 6=1”. The first and the second are aliases for the literal xib.
The third and the fourth are aliases for literal ¬xib.

Formally, the formula ΨG expressing that G is c-Ramsey is a conjunction
of the clauses listed in 1, 2 and 3 below. The conjunction of the clauses in
each group expresses the property stated in the heading.

1. The mapping from indices to G is injective. For each vertex v ∈
V (G), represented as v1 · · ·vk in binary, and each pair of distinct i, j∈ [ck],
we have the clause

k∨
b=1

(xib 6= vb) ∨
k∨
b=1

(xjb 6= vb).

These clauses guarantee that no two indices i and j map to the same
vertex v.

2. If y= 0, then the image of the mapping is an independent set.
For each pair of distinct vertices u,v∈V (G), represented respectively as
u1 · · ·uk and v1 · · ·vk, and each pair of distinct i, j∈ [ck], if {u,v}∈E(G)
we have the clause

y ∨
k∨
b=1

(xib 6= ub) ∨
k∨
b=1

(xjb 6= vb).

These clauses guarantee that, if y= 0, then no two indices are mapped
to two vertices with an edge between them.

3. If y=1, then the image of the mapping is a clique. For each pair
of distinct vertices u,v ∈ V (G), represented respectively as u1 · · ·uk and
v1 · · ·vk, and each pair of distinct i, j ∈ [ck], if {u,v} /∈E(G) we have the
clause

¬y ∨
k∨
b=1

(xib 6= ub) ∨
k∨
b=1

(xjb 6= vb).

These clauses guarantee that, if y= 1, then no two indices are mapped
to two vertices without an edge between them.
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The formula ΨG has m = c log2n + 1 variables. It is a conjunction of(
ck
2

)(
1+
(
n
2

))
=2O(

√
m) clauses in total, and so is unusual in that the number

of clauses is exponentially larger than the number of variables. However, the
number of clauses is polynomial in n, the number of vertices of G.

If G is c-Ramsey, that is, if ΨG is unsatisfiable, we can refute ΨG in
quasipolynomial size by systematically eliminating variables, as is done in
the proof of the completeness of resolution, because it has only c log2n+1
variables. We state this fact as:

Proposition 1. IfG is c-Ramsey, the formula ΨG has a (tree-like) resolution
refutation of size nO(logn).

We now state our main result. We postpone the proof to Section 3.

Theorem 1. Let G be any graph with n vertices. Then L(ΨG)≥nΩ(logn).

If G is not c-Ramsey, then this is trivial, since ΨG is satisfiable and there-
fore L(ΨG) is infinite by convention. If G is c-Ramsey, then by Proposition
1 this bound is tight and we know that L(ΨG)=nΘ(logn).

For comparison, we recall the usual formalization of the Ramsey theorem
as previously studied in proof complexity. (The reader who is only interested
in our main result may skip to the next subsection.) This is the family RAMn

of propositional CNFs, where RAMn has one variable for each distinct pair
of points in [n] and asserts that the graph represented by these variables is
1
2 -Ramsey. Hence, RAMn is satisfiable if and only if any 1

2 -Ramsey graph
on n vertices exists. In contrast, our formula ΨG is satisfiable if and only if
our particular graph G is not c-Ramsey.

Put differently, a refutation of RAMn is a proof that r(k)≤22k. This was
recently shown to require exponential size (in n) resolution refutations [18].
On the other hand a refutation of ΨG is a proof that G is c-Ramsey, and

hence that G witnesses that r(k)>2
k
c .

1.3. Resolution width and combinatorial games

The width of a clause is the number of literals it contains. The width of a
CNF φ is the width of its widest clause. Similarly the width of a resolution
refutation Π is the width of its widest clause. The width of refuting an
unsatisfiable CNF φ is the minimum width of Π over all refutations Π of
φ. We will denote it by W (φ). We assume that the clauses of φ are always
present in the proof, so the width of a proof is at least the width of the
formula.
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Due to a remarkable result of Ben-Sasson and Wigderson, in many cases
it is possible to prove a lower bound on the proof length by proving a lower
bound on the proof width. We will use this approach for our formula.

Theorem 2 ([4]). For any CNF φ with m variables and width k,

L(φ) ≥ 2
Ω

(
(W (φ)−k)2

m

)
.

To prove a lower bound on the width, it often helps to view resolution
refutations as strategies for a combinatorial game associated with the for-
mula. We will also present our proof in this way.

The game is played between two players, called Prover and Adversary.
Prover claims that a CNF φ is unsatisfiable and Adversary claims to know a
satisfying assignment. At each round of the game Prover asks for the value
of some variable and the Adversary has to answer. Prover saves the answer
in memory, where each variable value occupies one memory location. Prover
can also delete any saved value, in order to save memory. If the deleted
variable is asked again, Adversary is allowed to answer differently. Prover
wins when the partial assignment in memory falsifies a clause of φ. Adversary
wins if he has a strategy to play forever.

Formally, Prover is a deterministic procedure (function) that, given the
time and the contents of memory, decides what to erase from memory and
which variable to ask Adversary the value of. Similarly, Adversary is a pro-
cedure that, given the content of Prover’s memory and the variable Prover
asks, produces a bit as a reply.

If φ is in fact unsatisfiable, then Prover can always eventually win by
asking variable-by-variable for the total assignment and forgetting nothing.
If φ is satisfiable, then there is an obvious winning strategy for the Adversary
(answering according to a fixed satisfying assignment). However, even if φ
is unsatisfiable, it may be that Prover cannot win the game unless he uses
a large amount of memory. Indeed, it turns out that the smallest number of
memory locations that Prover needs to win the game for an unsatisfiable φ
is related to the width of resolution refutations. (We only need one direction
of this relationship – for a converse see [2].)

Lemma 1. Given an unsatisfiable CNF φ, Prover needs only W (φ)+1 mem-
ory locations in order to win the game against any Adversary.

The idea of the proof is to view a refutation of φ as a strategy for Prover. The
players start at the empty clause and move upwards to the initial clauses.
Prover’s queries are the variables with respect to which clauses are resolved.
The content of Prover’s memory corresponds to the current clause.
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Thus the task of proving a lower bound on the size of resolution refuta-
tions reduces to proving a lower bound on the size of the memory needed by
the Prover. Specifically, we need to prove a lower bound of the form Ω(k2).

1.4. The clique formula

We now specify the game for the formula that we are interested in. First,
however, we observe that by fixing the bit y we can reduce the proof of the
lower bound to a proof of a lower bound for a simpler formula.

For any graph G, the formula ΨG�y=1 is satisfiable if and only if G has
a clique of size ck. We will call this restricted formula Clique(G). Thus
Clique(G) is the conjunction of the clauses from group 1 and group 3 where
we delete the literal ¬y. Dually, ΨG�y=0 is equivalent to Clique(Ḡ).

Since fixing a variable in a resolution refutation results in a refutation
for the corresponding restricted formula, we have

max
{
L(Clique(G)), L(Clique(Ḡ))

}
≤ L(ΨG).

Hence, it suffices to prove a lower bound on L(Clique(G)). We observe that
we do not lose much by this reduction because we can easily construct a
refutation of ΨG from refutations of ΨG�y=1 and ΨG�y=0 whose size is at
most L(Clique(Ḡ))+L(Clique(G))+1.

We can now give a high-level description of our approach. To prove a
lower bound on L(ΨG) it is enough to prove a lower bound on L(Clique(G)),
which we will do indirectly by exhibiting a good strategy for Adversary in
the game on Clique(G). This game for Clique(G) works as follows. Adversary
claims to know ck strings in {0,1}k that are coordinates of ck vertices in
G that form a clique. Prover starts with no knowledge of these strings but
can query them, one bit at a time, and can also forget bits to save memory.
Prover wins if at any point there are two fully-specified strings for which the
corresponding vertices are not connected by an edge in G. (In particular,
Prover wins if two strings are equal.) Note that in the nontrivial case when
G does not have a clique of size ck, Adversary only pretends to have strings
that determine such a clique. So he may be forced to change his answers in
order to be consistent with his claim.

We will give a strategy for Adversary which will beat any Prover limited
to εk2 memory for a constant ε> 0. It follows by Lemma 1 that Clique(G)
is not refutable in width εk2. The formula Clique(G) has ck2 variables and
has width 2k. Hence, applying Theorem 2 we get

L(ΨG) ≥ L(Clique(G)) ≥ 2
Ω

(
(εk2−2k)2

ck2

)
≥ 2Ω(k2) ≥ nΩ(logn).
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1.5. Other notation

We will consider simple graphs with n=2k vertices. We identify the vertices
with the binary strings of length k. For any vertex v∈G we denote its binary
representation by v1 · · ·vk.

A pattern is a partial assignment to k variables. Formally, it is a string
p=p1 · · ·pk∈{∗,0,1}k, and we say that p is consistent with v if for all i∈ [k]
either pi=vi or pi=∗. The size |p| of p is the number of bits set to 0 or 1.
The empty pattern is a string of k stars.

For a vertex v ∈ V (G), we denote by N(v) the set {u
∣∣{v,u} ∈E(G)} of

neighbors of v. Notice that v 6∈ N(v). For any U ⊆ V (G) we let N(U) be
the set of vertices of G which neighbor every point in U , that is, N(U) =⋂
v∈UN(v). Notice that U ∩N(U)=∅.

2. Lower bounds for the random graph

As a warm-up, we will prove our result for the special case of random graphs.
The reader not interested in it may safely skip this section.

We consider random graphs on n vertices given by the usual distribution
G(n, 12) in the Erdős-Rényi model, i.e., the uniform distribution.

Theorem 3. If G is a random graph, then with high probability L(ΨG) =
nΩ(logn). More precisely, there exists a constant ε> 0 such that the proba-
bility that L(ΨG)≤nε logn tends exponentially to zero as n goes to infinity.

We will use the approach outlined above and define a strategy for the
Adversary in the game on Clique(G) which forces Prover to use a large
amount of memory. This strategy, presented in Lemma 3 below, is simpler
than the one used in the general case. We first prove a lemma which captures
the property of the random graph which we need. Recall that k=log2n.

Lemma 2. For a random graph G, the following property P holds with
high probability. Let U⊆V (G) with |U |≤ 1

3k and let p be any pattern with

|p|≤ 1
3k. Then p is consistent with at least one vertex in N(U).

Proof. Fix such a set U and such a pattern p. The probability that an
arbitrary vertex v /∈U is in N(U) is at least 2−k/3=n−1/3. The pattern p is
consistent with at least n2/3−|U | vertices outside U . The probability that
no vertex consistent with p is in N(U) is hence at most(

1− n−1/3
)n2/3−|U |

≤ e−(1−o(1))n1/3
.
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We can bound the number of such sets U by nk/3≤nlogn and the number of
patterns p by 3k≤n2, so by the union bound property P fails to hold with

probability at most 2−Ω(n1/3).

Lemma 3. Let G be any graph with the property P defined in Lemma 2.
Then there is an Adversary strategy in the game on Clique(G) which wins
against any Prover who uses at most 1

9k
2 memory locations.

Proof. For each index i∈ [ck], we will write pi for the pattern representing
the current information in Prover’s memory about the ith vertex. Adver-
sary’s strategy is to answer queries arbitrarily (say with 0) as long as the
index i being queried has |pi|< 1

3k−1. If |pi|= 1
3k−1, Adversary privately

fixes the ith vertex to be some particular vertex vi of G consistent with pi,
and then answers queries to i according to vi until, through Prover forget-
ting bits, |pi| falls below 1

3k again, at which point Adversary considers the
ith vertex no longer to be fixed.

If Adversary is able to guarantee that the set of currently fixed vertices
always forms a clique, then Prover can never win. So suppose we are at a
point in the game where Adversary has to fix a vertex for index i, that is,
where Prover is querying a bit for i and |pi|= 1

3k−1. Let U ⊆V (G) be the
set of vertices that Adversary currently has fixed. It is enough to show that
there is some vertex consistent with pi which is connected by an edge in G
to every vertex in U . But by the limitation on the size of Prover’s memory,
no more than 1

3k vertices can be fixed at any one time. Hence |U |≤ 1
3k and

the existence of such a vertex follows from property P.

3. Lower bounds for c-Ramsey graphs

We now prove that for every c-Ramsey graph G on n vertices, L(ΨG) ≥
nΩ(logn), which is Theorem 1. As in the previous section, we will do this
by showing that Adversary has a strategy for the game on Clique(G) that
forces Prover to use a lot of memory (Lemma 5 below).

Definition 2. Given sets A,B⊆V (G) we define their mutual density by

d(A,B) =
e(A,B)

|A||B|
,

where we write e(A,B) for the number of edges in G with one end in A
and the other in B. For a single vertex v we will write d(v,B) instead of
d({v},B).
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Our main tool in our analysis of c-Ramsey graphs is the statistical prop-
erty shown in Corollary 1 below, which plays a role analogous to that played
by Lemma 2 for random graphs. We use the following result which is estab-
lished in Case II of the proof Theorem 1 of [16]:

Lemma 4 ([16]). There exist constants β > 0, δ > 0 such that if G is a

c-Ramsey graph, then there is a set S⊆V (G) with |S| ≥n
3
4 such that, for

all A,B⊆S, if |A|, |B|≥|S|1−β, then δ≤d(A,B)≤1−δ.

(Recall that c is fixed throughout the paper; in fact, β and δ depend on c.)
Now fix a c-Ramsey graph G. Let S, β and δ be as in the above lemma,

and let m= |S|. Notice that since our goal is to give an Adversary strategy
for the formula Clique(G), we will only use the lower bound δ≤d(A,B) from
the lemma.

Corollary 1. Let X,Y1,Y2, . . . ,Yr ⊆ S be such that |X| ≥ rm1−β and
|Y1|, . . . , |Yr| ≥ m1−β. Then there exists v ∈ X such that d(v,Yi) ≥ δ for
each i=1, . . . , r.

Proof. For i=1, . . . , r let

Xi = {u ∈ X | d(u, Yi) < δ}.

By Lemma 4, each |Xi|<m1−β. Hence X \
⋃
iXi is non-empty and we can

take v to be any vertex in X \
⋃
iXi.

The next lemma implies our main result, Theorem 1.

Lemma 5. There is a constant ε > 0, independent of n and G, such that
there exists a strategy for Adversary in the game on Clique(G) which wins
against any Prover who is limited to ε2k2 memory locations.

Proof. Let ε > 0 be a constant, whose precise value we will fix later. As
in the proof of Lemma 3, Adversary’s replies when queried about the ith
vertex will depend on the size of pi, the pattern representing the current
information known to Prover about the ith vertex. If |pi|<εk−1, Adversary
can reply in a somewhat arbitrary way (see below), but if |pi|≥εk−1, then
Adversary will fix a value vi for the ith vertex, consistent with pi, and will
reply according to vi until |pi| falls back below εk, at which point the vertex
is no longer fixed. By the limitation on Prover’s memory, no more than εk
vertices can be fixed simultaneously, which will allow Adversary to ensure
that the set of currently fixed vertices always forms a clique.

Let S, β and δ be as in Lemma 4 and let m= |S|. We will need to use
Corollary 1 above to make sure that Adversary can find a vi with suitable
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density properties when fixing the ith vertex. But here there is a difficulty
which does not arise with the random graph. Corollary 1 only works for
subsets of the set S, and we cannot assume that S is distributed uniformly
with respect to the sets defined by patterns. In particular, through some
sequence of querying and forgetting bits for i, Prover may be able to force
Adversary into a position where the set of vertices consistent with a small
pi has only a very small intersection with S, and then it will not be possible
to apply Corollary 1.

Let α be a constant with 0<α<β, whose precise value we will fix later.
We write Cp for the set of vertices of G consistent with a pattern p. We write
Pεk for the set of patterns p with |p|≤ εk. To avoid the problem mentioned
in the previous paragraph, we will construct a non-empty set S∗ ⊆ S with
the property that, for every p∈Pεk, either

Cp ∩ S∗ = ∅ or |Cp ∩ S∗| > m1−α.

In the second case we will call the pattern p active. Adversary can then focus
on the set S∗, in the sense that he will pretend that his clique is in S∗ and
will ignore the vertices outside S∗.

We construct S∗ in a straight-forward way. We start with S0 = S and
define a sequence of subsets S0,S1, . . . where each St+1 = St \Cp for the
lexicographically first p∈ Pεk for which 0< |St∩Cp| ≤m1−α, if any such p
exists. We stop as soon as there is no such p, and let S∗ be the final subset
in the sequence. To show that S∗ is non-empty, notice that at each step
at most m1−α elements are removed. Furthermore, there are at most |Pεk|
steps, since a set of vertices Cp may be removed at most once. Recall that

n=2k and m≥n
3
4 . We have

|Pεk| =
εk∑
i=0

2i
(
k

i

)
≤ 2εk

εk∑
i=0

(
k

i

)
≤ nεnH(ε),

where H(x) is the binary entropy function −x logx−(1−x) log(1−x), and we

are using the estimate
∑εk

i=0

(
k
i

)
≤2kH(ε) which holds for 0<ε<1/2. Then

|S∗| ≥ |S| − |Pεk| ·m1−α ≥ n
3
4 − nε+H(ε)n

3
4
(1−α),

so, for large n, S∗ is non-empty as long as we choose α and ε satisfying

3
4α > ε+H(ε).(?)

Notice that if S∗ is non-empty, then in fact |S∗| > m1−α, since S∗ must
intersect at least the set Cp where p is the empty pattern.
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We can now give the details of Adversary’s strategy. Adversary’s strategy
is to maintain the following three conditions, which clearly guarantee that
Prover will never win.

1. For each index i, if |pi|<εk, then pi is active, that is, Cpi ∩S∗ 6=∅.
2. For each index i, if |pi| ≥ εk, then the ith vertex is fixed to some vi ∈
Cpi ∩S∗; furthermore, the set U of currently fixed vertices vj forms a
clique.

3. For every active p∈Pεk and every U ′⊆U , we have

|Cp ∩ S∗ ∩N(U ′)| ≥ |Cp ∩ S∗| · δ|U
′|.

(Recall that 0<δ<1 is the constant from Lemma 4.)
These three conditions are true at the start of the game, because no

vertices are fixed and each pi is the empty pattern. It remains to prove that
they can be preserved as long as Prover does not exceed the limitation on
his memory.

Suppose that, at a turn in the game, Prover queries a bit for an index i
for which he currently has information pi. We consider three cases.

• If |pi|<εk−1, then by condition 1 there is at least one vertex v in Cpi∩S∗.
Adversary chooses an arbitrary such v and replies according to the bit
of v.
• If |pi|≥ εk, then a vertex vi∈Cpi is already fixed, and Adversary replies

according to the bit of vi.
• If εk−1≤ |pi|< εk, then Adversary must fix a vertex vi for i in a way

that satisfies conditions 2 and 3. To preserve condition 2, vi must be
connected to every vertex in the set U of currently fixed vertices. To
preserve condition 3, it is enough to choose vi such that

d(vi, Cp ∩ S∗ ∩N(U ′)) ≥ δ

for every active p in Pεk and every U ′ ⊆ U . To find such a vi, we will
apply Corollary 1, with one set Y for each pair of a suitable p and U ′.
We put

X = Cpi ∩N(U) ∩ S∗,
Y(p,U ′) = Cp ∩N(U ′) ∩ S∗ for each active p ∈ Pεk and each U ′ ⊆ U,

r = |{pairs (p, U ′)}| ≤ |Pεk| · 2|U |.

We know that |U |≤εk. By condition 1, we know that pi is active, hence
|Cpi ∩S∗|>m1−α. So, by condition 3, we have

|X| ≥ m1−αδεk = m1−αnε log δ ≥ m1−α+ 4
3
ε log δ,
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because 2k =n, m≤n3/4 and logδ < 0. For similar reasons, we have the
same lower bound on the size of each Y(p,U ′). Furthermore,

r ≤ 2εk · nε+H(ε) = n2ε+H(ε) ≤ m
8
3
ε+ 4

3
H(ε).

To apply Corollary 1, we need to satisfy |X|≥rm1−β and |Y(p,U ′)|≥m1−β.
Both conditions hold as long as α and ε satisfy

β − α > 8
3ε+ 4

3H(ε)− 4
3ε log δ.(†)

We now fix values for the constants α and ε to satisfy the inequalities (?)
and (†). We put α=β/2. Then we can satisfy (?) and (†) by setting ε to be
a small constant, because H(ε) goes to zero as ε goes to zero.

Finally, it is straightforward to check that if the Prover’s move is to forget
a bit for an index i, then the three conditions are preserved.

4. Open problems

Our formula ΨG, apart from being natural, is motivated by a conjecture
proposed independently by Kraj́ıček in [11] and Alekhnovich, Ben-Sasson,
Razborov and Wigderson in [1]. The conjecture states that for some class
of pseudorandom generators, if Γ : {0,1}n→{0,1}m, n<m, is in the class,
then the propositional formula expressing the fact that Γ (x) 6= b is a hard
tautology for any fixed b∈{0,1}m that is not in the range of Γ . Note that
for c≥2, the graphs that are not c-Ramsey can be efficiently encoded by less
than

(
n
2

)
bits. So one can express the fact that a graph G is c-Ramsey in the

same way as it is required in the conjecture about pseudorandom generators.
Unfortunately, our formula ΨG is not of such a form, nor we were able to
show that it is equivalent to such a formula. Thus it would be interesting to
prove a lower bound for other formalizations of the fact that G is c-Ramsey.

We call ΨG the binary encoding because the vertices of the graph are
represented by strings of propositional variables. One can also consider the
unary encoding ΨuG in which a vertex of the graph is determined by a single
propositional variable. More precisely, the mapping from an index i to the
vertices of G is represented by n variables {piv : v ∈ V (G)} and we have
clauses asserting that for each i, exactly one of the variables piv is true.
Otherwise the structure of ΨuG is similar to that of ΨG. As before, if G is a

c-Ramsey graph we have the brute-force upper bound L(ΨuG)=nO(logn), but
we are not able to prove a superpolynomial lower bound on resolution size.
However, we are able to prove such a lower bound if we restrict to tree-like
resolution, as a corollary of our main theorem. (We are grateful to Leszek
Ko lodziejczyk for pointing out this simple proof.)
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Theorem 4. Let G be any c-Ramsey graph with n vertices. Then ΨuG re-

quires tree-like resolution refutations of size nΩ(logn).

Proof. (Sketch) Suppose we have a small tree-like resolution refutation of
the unary formula ΨuG. We can produce from it an at most polynomially
larger tree-like Res(k) refutation of the binary formula ΨG as follows. Re-
place each variable piv asserting that index i is mapped to vertex v with the

conjunction
∧k
b=1x

i
b = vb. The substitution instance of ΨuG is then almost

identical to ΨG, except for the additional clauses asserting that every index
maps to exactly one vertex; but these are easy to derive in tree-like Res(k).

It is well known that every tree-like depth d+1 Frege proof can be made
into a DAG-like depth d Frege proof with at most polynomial increase in
size [12]. In particular, we can turn our tree-like Res(k) refutation of ΨG into
a resolution refutation. The lower bound then follows from Theorem 1.

Lower bounds for DAG-like resolution would have interesting conse-
quences for various areas of proof complexity [3,9]. The problem of proving
a superpolynomial lower bound on ΨuG is related to the following open prob-
lem (rephrased from [6]): consider a random graph G distributed according

to G(n,n−(1+ε)
2

k−1 ) for some ε>0. Does every resolution proof that there is
no k-clique in G require size nΩ(k)? For tree-like resolution this was proved
already in [5].

Another natural problem is to extend our lower bound to proof systems
stronger than resolution. A superpolynomial lower bound on the proofs of ΨG
in Res(log) (resolution with logarithmic size conjunctions in clauses) would
imply a superpolynomial lower bound on general resolution proofs of ΨuG.
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