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Abstract—We significantly strengthen and generalize the the-
orem lifting Nullstellensatz degree to monotone span program
size by Pitassi and Robere (2018) so that it works for any gadget
with high enough rank, in particular, for useful gadgets such as
equality and greater-than. We apply our generalized theorem to
solve three open problems:

• We present the first result that demonstrates a separation
in proof power for cutting planes with unbounded versus
polynomially bounded coefficients. Specifically, we exhibit
CNF formulas that can be refuted in quadratic length
and constant line space in cutting planes with unbounded
coefficients, but for which there are no refutations in subex-
ponential length and subpolynomial line space if coefficients
are restricted to be of polynomial magnitude.

• We give the first explicit separation between monotone
Boolean formulas and monotone real formulas. Specifically,
we give an explicit family of functions that can be computed
with monotone real formulas of nearly linear size but
require monotone Boolean formulas of exponential size.
Previously only a non-explicit separation was known.

• We give the strongest separation to-date between mono-
tone Boolean formulas and monotone Boolean circuits.
Namely, we show that the classical GEN problem, which
has polynomial-size monotone Boolean circuits, requires
monotone Boolean formulas of size 2Ω(n/ polylog(n)).

An important technical ingredient, which may be of indepen-
dent interest, is that we show that the Nullstellensatz degree
of refuting the pebbling formula over a DAG G over any field
coincides exactly with the reversible pebbling price of G. In
particular, this implies that the standard decision tree complexity
and the parity decision tree complexity of the corresponding
falsified clause search problem are equal.

This is an extended abstract. The full version of the paper is
available at https://arxiv.org/abs/2001.02144.

Index Terms—proof complexity; communication complexity;
circuit complexity; cutting planes; trade-offs; pebble games

I. INTRODUCTION

Lifting theorems in complexity theory are a method of

transferring lower bounds in a weak computational model into

lower bounds for a more powerful computational model via

function composition. There has been an explosion of lifting

theorems in the last ten years, essentially reducing communi-

cation lower bounds to query complexity lower bounds.

Early papers that establish lifting theorems include Raz and

McKenzie’s separation of the monotone NC hierarchy [46]

(by lifting decision tree complexity to deterministic communi-

cation complexity), and Sherstov’s pattern matrix method [52]

which lifts (approximate) polynomial degree to (approximate)

matrix rank. More recent works have established query-to-

communication lifting theorems in a variety of models, leading

to the resolution of many longstanding open problems in

many areas of computer science. This includes problems in

communication complexity [21]–[23], [25], [26], monotone

complexity [43], [44], [50], proof complexity [12], [17],

[24], [29], extension complexity of linear and semidefinite

programs [20], [34], [38], data structures [8] and finite model

theory [4].

Lifting theorems have the following form: given functions

f : {0, 1}n → {0, 1} (the “outer function”) and g : X ×
Y → {0, 1} (the “gadget”), a lower bound for f in a

weak computational model implies a lower bound on f ◦ gn
in a stronger computational model. Lifting theorems should

preferably be as general as possible. First, they should hold

for any outer function, and ideally f should be allowed to be

a partial function or a relation (i.e., a search problem). Indeed,

nearly all of the applications mentioned above require lifting

where the outer function is a relation or a partial function.

Second, it is often desirable that the gadget be as small

as possible. The most general lifting theorems established

so far, for example those for deterministic and randomized

communication complexity, require at least logarithmically-

sized gadgets; if these theorems could be improved generically

to hold for constant-sized gadgets, then many results would be

vastly improved. Some notable examples where constant-sized

gadgets are possible include Sherstov’s degree-to-rank lifting

[52], critical block-sensitivity lifting [24], [29], and lifting for

monotone span programs [43], [44], [49].

II. A NEW LIFTING THEOREM

In this work, we generalize a lifting theorem of Pitassi

and Robere [44] to use any gadget that has nontrivial rank.

This theorem takes a search problem associated with an

unsatisfiable CNF formula, and lifts a lower bound on the

Nullstellensatz degree of refuting this formula to a lower

bound on a related communication problem.
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More specifically, let C be an unsatisfiable k-CNF formula.

The search problem associated with C, which we denote

Search(C), takes as input an assignment to the underlying

variables, and outputs a clause that is falsified by the as-

signments. It was proven in [44] that for any unsatisfiable

C, and for a sufficiently rich gadget g, deterministic commu-

nication complexity lower bounds for the composed search

problem Search(C) ◦ gn follow from Nullstellensatz degree

lower bounds for C.1 We significantly improve this lifting

theorem so that it holds for any gadget of large enough rank.

Theorem 1. Let C be a CNF formula over n variables, let F
be any field, and let g be any gadget of rank at least r. Then
the deterministic communication complexity of Search(C)◦ gn
is at least NSF(C), the Nullstellensatz degree of refuting C, as
long as r ≥ cn/NSF(C) for some large enough constant c.

An important special case of our generalized theorem is

when the gadget g is the equality function. In this work, we

apply our theorem to resolve two open problems in proof

complexity and circuit complexity. Both solutions depend

crucially on the ability to use the equality gadget.

We remark that lifting with the equality gadget has recently

been the focus of another paper by Loff and Mukhopad-

hyay [39], who observe that a lifting theorem with equality

for total functions can be proven using a rank argument.

Surprisingly, they also show that it is not possible to lift

query complexity to communication complexity for arbitrary

relations, giving an example of a relation with linear query

complexity whose composition with equality has only poly-

logarithmic communication complexity. However, they prove

a lifting theorem for general relations using the equality

gadget by replacing standard query complexity with a stronger

complexity measure (namely, the 0-query complexity of the

relation).

Unfortunately, we cannot use either of the lifting theorems

of [39] for our applications. We need to lift a search problem

(and therefore cannot use the result for total functions), and

this search problem has small 0-query complexity (meaning

that we cannot use the lifting theorem for general relations).

Indeed, this shows that our lifting theorem is incomparable to

the results of [39], even when specialized to the equality gad-

get. One similarity, though, is that our theorem also bypasses

the impossibility result of [39] by using a stronger complexity

measure, which in our case is Nullstellensatz degree.

III. A SEPARATION IN PROOF COMPLEXITY

The main application of our lifting theorem is the first

separation in proof complexity between cutting planes proofs

with high-weight versus low-weight coefficients. In the cutting

planes proof system, an unsatisfiable CNF formula is refuted

by first translating it into a system of 0-1 linear inequalities and

then showing that this system has no integral solutions. The

latter is achieved by a sequence of steps that derive new integer

1In fact the result is quite a bit stronger—it applies to Razborov’s rank
measure [48], which is a strict strengthening of deterministic communication
complexity.

inequalities from old ones until the plainly contradictory

inequality 0 ≥ 1 is reached. The efficiency of such a refutation

can be measured by its length (i.e., the number of steps) and

space (i.e., the maximal number of inequalities that have to

be stored simultaneously during the derivation).

The standard version of the cutting planes proof system,

commonly denoted by CP, allows the inequalities to use

coefficients of arbitrary size. However, it is also interesting to

consider the variant in which the coefficients are polynomially

bounded, sometimes denoted by CP∗. It is natural to ask how

CP and CP∗ are related: are they polynomially equivalent or

is there a super-polynomial length separation? This question

appeared in [7] and remains stubbornly open to date. In

this work we finally make progress by exhibiting for the

first time a setting in which unbounded coefficients afford

an exponential increase in proof power over polynomially

bounded coefficients.

Theorem 2. There is a family of CNF formulas of size N
that have cutting planes refutations of length Õ(N2) and
space O(1), but for which any refutation in length L and
space s with polynomially bounded coefficients must satisfy
s logL = Ω̃(N).

Although this result is, to the best of our knowledge, the

first of its kind in proof complexity, for Boolean functions the

relative power of high-weight and low-weight linear threshold

functions has been understood for a long time. The greater-

than function can be computed by high-weight threshold func-

tions but not by low-weight threshold functions, and weights of

bit-length polynomial in n suffice [40] for Boolean functions.

For higher-depth threshold formulas, it is known that depth-d
threshold formulas of high-weight can efficiently be computed

by depth-(d+ 1) threshold formulas of low-weight [19].

It is all the more striking, then, that almost nothing is known

about the relative power of high versus low weights in the

context of proof complexity. Buss and Clote [7], building on

work by Cook, Coullard, and Turán [9], proved an analog

of the result of Muroga et al. for cutting planes, showing

that it suffices to have weights of bit-length polynomial in

the length of the proof (i.e., of exponential magnitude). Very

recently Dadush and Tiwari [10] extended this to the more

general linear threshold proof system stabbing planes [2], or

equivalently the tree-like restriction of Krajı́ček’s threshold

logic proof system R(CP) [36], where one can additionally

branch on linear threshold formulas. However, there is still

no nontrivial upper bound on the weights of the unrestricted

threshold logic proof system R(CP) nor of its extension

LK(CP). Prior to our result, there was no separation between

weights of exponential and polynomial magnitude for any

linear threshold proof system.

IV. SEPARATIONS IN CIRCUIT COMPLEXITY

Next, we describe two applications of our lifting theorem

to lower bounds in circuit complexity. Our first application

relates to monotone real circuits, which were introduced by

Pudlák [45]. Monotone real circuits are a generalization of
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monotone Boolean circuits where each gate is allowed to

compute any non-decreasing real function of its inputs, but

the inputs and output of the circuit are Boolean. A formula
is a tree-like circuit, that is, every gate has fan-out 1. The

first (exponential) lower bound for monotone real circuits

was proven already in [45] by extending the lower bound

for computing the clique-colouring function with monotone

Boolean circuits [1], [47]. This lower bound, together with a

generalization of Krajı́ček’s interpolation technique [35], was

used by Pudlák to obtain the first exponential lower bounds

for CP.

Shortly after monotone real circuits were introduced, there

was an interest in understanding the power of monotone real

computation in comparison to monotone Boolean computation.

By extending techniques in [46], Bonet et al. proved that there

are functions with polynomial size monotone Boolean circuits

that require monotone real formulas of exponential size [5],

[30]. This illustrates the power of DAG-like computation over

tree-like computation. A related question is whether mono-

tone real circuits are exponentially stronger than monotone

Boolean circuits. Rosenbloom [51] answered this question

in the affirmative by presenting an elegant and simple (but

non-explicit) proof that monotone real formulas can be expo-

nentially stronger than (even non-monotone) Boolean circuits,

since slice functions can be computed by linear-size monotone

real formulas, whereas by a counting argument we know that

most slice functions require exponential size Boolean circuits.

The question of finding explicit functions demonstrating

that monotone real circuits are stronger than general Boolean

circuits is much more challenging since it involves prov-

ing explicit lower bounds for Boolean circuits—a task that

currently seems completely out of reach. A more tractable

problem is that of finding explicit functions showing that

monotone real circuits or formulas are stronger than monotone
Boolean circuits or formulas, but prior to this work, no

such separation was known either. We provide an explicit

separation for monotone formulas, that is, we provide a family

of explicit functions that can be computed with monotone

real formulas of near-linear size but require exponential size

monotone Boolean formulas. This is the first explicit example

that illustrates the strength of monotone real computation.

Theorem 3. There is an explicit family of monotone functions
fn on n variables that can be computed by monotone real
formulas of size O(n polylog n) but for which every monotone
Boolean formula requires size exp

(
Ω(n/ polylog n)

)
.

Our second application of our lifting theorem gives the

strongest separation to-date between monotone Boolean for-

mulas2 and monotone Boolean circuits. Namely, we prove the

following.3

2In fact, our lower bound holds for circuit models stronger than monotone
Boolean formulas, such as monotone switching networks, monotone span
programs, and monotone comparator circuits.

3We thank an anonymous reviewer for pointing out this corollary of our
main lifting theorem.

Theorem 4. There is an explicit family of functions fn
on n variables that can be computed by polynomial size
monotone boolean circuits, but for which every monotone
Boolean formula requires size exp

(
Ω(n/ polylog n)

)
.

The first superpolynomial separation between monotone

Boolean formulas and monotone Boolean circuits is due to

Karchmer and Wigderson [32], who proved nΩ(logn) lower

bounds on the size of any monotone Boolean formula com-

puting the st-connectivity function. The first exponential sep-

aration is due to Raz and McKenzie [46], who proved 2Ω(nε)

monotone formula size lower bounds for a new function that

they defined called GEN, which is a natural generalization of

st-connectivity. Raz and McKenzie’s GEN lower bound was

strengthened by Göös and Pitassi [24], who proved 2Θ(
√
n)

lower bounds, which was the strongest result prior to our work.

We also note that our 2Ω(n/ polylogn) lower bound also holds

for a restriction of the GEN function.

Observe that our lower bound is close to the strongest

possible separation of O(poly(n)) size monotone circuits

vs. 2Ω(n) size monotone formulas. While 2Ω(n) lower bounds

are known for monotone Boolean formulas computing a mono-

tone function in NP [43], it seems that we cannot obtain such

a lower bound for GEN without using different techniques. For

example, if one could improve our main lifting theorem to use

constant size gadgets (i.e. if we could choose r = O(1) in the

statement of Theorem 1), then one can easily prove that any

monotone Boolean formula for GEN requires size 2Ω(n/ logn);

however, this appears to be the fundamental limit of our lower

bound technique, due to an upper bound of O(n/ log n) on the

Nullstellensatz degree of the underlying search problem.

Finally, another motivation for studying lifting theorems

with simple gadgets in circuit complexity (and, in particular,

the equality gadget) is the connection with proving non-
monotone formula size lower bounds. As noted earlier, lifting

theorems have been extremely successful in proving monotone

circuit lower bounds, and it has also been shown to be

useful in some computational settings that are only “partially”

monotone; notably monotone span programs [43], [44], [50]

and extended formulations [20], [34].

This raises the question of to what extent lifting techniques

can help prove non-monotone lower bounds. The beautiful

work by Karchmer, Raz and Wigderson [31] initiated such

an approach for separating P from NC1
—this opened up a

line of research popularly known as the KRW conjecture.

Intriguingly, steps towards resolving the KRW conjecture are

closely connected to proving lifting theorems for the equality

gadget. The first major progress was made in [14], where

lower bounds for the universal relation game were proven,

which is an important special case of the KRW conjecture.

This result was recently improved in several papers [18], [27],

[33], and Dinur and Meir [13] gave a new top-down proof of

the state-of-the-art Ω
(
n3

)
formula-size lower bounds via the

KRW approach.

The connection to lifting using the equality gadget can

be made by observing that the KRW conjecture involves
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communication problems in which Alice and Bob are looking

for a bit on which they differ—this is exactly an equality
problem. A close examination of the results in [14], [27] shows

that they are equivalent to proving lower bounds for the search

problem associated with the pebbling formula when lifted with

a 1-bit equality gadget on a particular graph [42]. In the full

version of this work we establish near-optimal lower bounds

on the communication complexity of the pebbling formula

lifted with equality for any graph, but with size of the equality

gadget larger than 1. If our main lifting theorem could be

improved with one-bit equality gadgets, this would imply the

results of [14], [27] as a direct corollary and with significantly

better parameters.

V. OVERVIEW OF TECHNIQUES

We now give a brief overview of our techniques, while also

trying to convey some of the simplicity of the proofs which

we believe is an extra virtue of these results.

Lifting theorem: In order to prove their lifting theorem,

Pitassi and Robere [44] defined a notion of “good” gadgets.

They then showed that if we compose a polynomial p with

a good gadget g, the rank of the resulting matrix p ◦ gn

is determined exactly by the non-zero coefficients of p and

the rank of g. Their lifting theorem follows by using this

correspondence to obtain bounds on the ranks of certain

matrices, which in turn yield the required communication

complexity lower bound.

In this work, we observe that every gadget g can be

turned into a good gadget using a simple transformation. This

observation allows us to get an approximate bound on the

rank of p ◦ gn for any g with nontrivial rank. While the

correspondence we get in this way is only an approximation

and not an exact correspondence as in [44], it turns out that

this approximation is sufficient to prove the required lower

bounds. We thus get a lifting theorem that works for every

gadget g with sufficiently large rank.

Cutting planes separation: The crux of our separation

between CP and CP∗ is the following observation: CP can

encode a conjunction of linear equalities with a single equality

by using exponentially large coefficients. This allows CP refu-

tations to obtain a significant saving in space when working

with linear equalities, and in fact Filmus et al. [15] exploit it to

separate the semantic and syntactic variants of cutting planes.

Achieving such savings is not possible with the polynomially

bounded coefficients in CP∗, and this difference between the

proof systems is what allows us to establish the separation.

In order to exploit this observation, one of our main innova-

tions is to concoct the separating formulas. To do this, we must

come up with candidate formulas that can only be refuted by

reasoning about a large conjunction of linear equalities, show

that cutting planes (CP) can efficiently refute them, and then

proof that low-weight cutting planes (CP∗) cannot do so.

To find such candidates we resort to the pebbling formulas
PebG which have played a major role in many proof complex-

ity trade-off results. Let G be any directed acyclic graph with

a unique sink node t. Formally, the pebbling formula PebG is

the following CNF formula. For each vertex u ∈ V there is a

variable zu (intuitively, zu should take the value “true” if and

only if it is possible to place a “pebble” on u). The variables

are constrained by the following clauses.

• a clause zs for each source vertex s (i.e., we can always

place a pebble on any source),

• a clause
∨

u∈pred(v) ¬zu∨zv for each non-source vertex v
with predecessors pred(v) (i.e., if we can place a pebble

on the predecessors of v, then we can place a pebble on

v), and

• a clause ¬zt for the sink t (i.e., it is impossible to place

a pebble on t).

Interestingly, pebbling formulas have short refutations in

the resolution proof system that reason in terms of large

conjunctions of literals. We show that when pebbling formu-

las are “lifted” with an equality gadget—by replacing each

variable zu with an equality EQ(x, y) on “fresh” variables

x, y—then the efficient resolution refutations of PebG can be

simulated in cutting planes for PebG ◦ EQn using the large

coefficients to encode the conjunction of many lifted literals

with a single equality. In this way, we can construct cutting

planes refutations of any pebbling formula in quadratic length

and constant space.

For cutting planes with bounded coefficients, however, we

establish a time-space lower bound showing that any CP∗

refutation requires large length or large space for the right

type of pebbling formulas. To prove this lower bound, the

first step is to instantiate the connection in [29] linking time-

space lower bounds for many proof systems to communi-

cation complexity lower bounds for lifted search problems.

This connection means that we can obtain the desired CP∗-

lower bounds for our lifted pebbling formulas PebG ◦ EQn

by proving communication complexity lower bounds for the

corresponding lifted search problem Search(PebG) ◦ EQn.

In order to show the latter bounds, we first prove lower

bounds on the Nullstellensatz degree of refuting pebbling

formulas PebG, and then invoke our new lifting theorem to

translate such bounds into communication complexity lower

bounds for Search(PebG) ◦ EQn. Our Nullstellensatz degree

lower bounds, in turn, follow from the next lemma, which

establishes an equivalence between Nullstellensatz degree and

reversible pebbling price, a result that we find to be interesting

in its own right.

Lemma 5. For any field F and any directed acyclic graph G,
the Nullstellensatz degree of refuting the pebbling formula
PebG is equal to the reversible pebbling price of G.

Connections between Nullstellensatz degree and pebbling

were previously shown in [6], but were not tight. We remark

that building on our work, the connection between Null-

stellensatz and reversible pebbling in Lemma 5 was further

strengthened in [11]. We also want to point out that, thanks

to previously known results in query and proof complexity,

this lemma immediately implies that Nullstellensatz degree

coincides with (deterministic) decision tree and parity decision
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tree complexity. We record this corollary here as another result

that can potentially be of independent interest.

Corollary 6. For any field F and any directed acyclic graph G,
the Nullstellensatz degree over F of refuting PebG, the de-
cision tree depth of Search(PebG), and the parity decision
tree depth of Search(PebG) all coincide and are equal to the
reversible pebbling price of G.

Returning from this brief detour to the cutting planes

separation, by considering the family of graphs with maximal

pebbling price in [41] and appealing to Lemma 5, we obtain

the time-space lower bound for CP∗ stated in Theorem 2.

We wish to highlight the specific combination of lifting

theorem and gadget that we need in order to achieve our

separation of CP from CP∗. On the one hand, the gadget

should be strong enough, so that the lifting result applies for

deterministic communication, which can simulate small-size

small-space CP∗ refutations efficiently. On the other hand, the

gadget also has to be weak enough, so that the lifted prob-

lem does not also become hard for stronger communication

models such as randomized or real communication, which

would immediately imply lower bounds for cutting planes with

unbounded coefficients. The reason that we are focusing on the

equality gadget is that it hits this sweet spot—it requires large

deterministic communication complexity, yet admits efficient

randomized and real protocols. Furthermore, when conjunc-

tions of literals are lifted with the equality gadget, the lifted

conjunction can be efficiently represented with a single linear

equality with exponentially large coefficients.

Separations in monotone circuit complexity: First, as is

the case for the separation between CP and CP∗, in order to

establish our separations between monotone Boolean formulas

and monotone real formulas/monotone Boolean circuits we

must find a function that has just the right level of hardness.

In both cases, to obtain a size lower bound for monotone

Boolean formulas we invoke the characterization of monotone

formula depth in terms of the communication complexity of

the monotone Karchmer–Wigderson game [32]. By a standard

reduction [16], [48], for any gadget g one can reduce the

search problem Search(PebG)◦gn to the monotone Karchmer-

Wigderson game separating a family of minterms and max-

terms of the GEN function—more precisely, we will always
obtain minterms and maxterms of GEN, but the exact family of

minterms and maxterms produced by the reduction will depend

on the choice of G and g. Our main lifting theorem then

implies a size lower bound for monotone Boolean formulas

from the communication lower bound for this search problem,

since monotone Boolean formulas can be balanced. To be

precise, our lower bounds will hold for any function that

separates the family of minterms and maxterms defined by

Search(PebG) ◦ gn, for a suitable choice of G and for any

gadget g for which our lifting theorem applies.

In the other direction, it is well-known [46] that the GEN

function has polynomial-size monotone Boolean circuits, so

the upper bound for Theorem 4 is immediate. However, the

upper bound for Theorem 3 is more subtle, since it is known

that GEN requires exponential-size monotone real formulas

[5], [12]. To handle this issue, we make a special choice of

gadget g—namely, the equality gadget—and show that the

family of minterms and maxterms produced by the reduction

can then be separated by a small monotone real formula. We

construct this small monotone real formula in a novel way:

namely, we first construct a small cutting planes refutation

and then extract a small monotone real formula from it. This

is essentially equivalent to feasible interpolation, a technique

that has been used previously to prove proof complexity lower

bounds, but this is perhaps the first time it is used to prove

circuit upper bounds.

In more detail: analogous to the Karchmer–Wigderson re-

lation, it was shown in [28] that there is a correspondence

between real DAG-like communication protocols (as defined

in [37]) and monotone real circuits. Using this relation, a

small monotone real circuit can be extracted from a short CP

refutation of a lifted pebbling formula. However, we would

like to establish a monotone real formula upper bound. One

way to achieve this is by finding small tree-like CP refutations

of pebbling formulas lifted with the equality gadget. The

problem is that for many gadgets lifted pebbling formulas

require exponentially long tree-like proofs. Nevertheless, for

pebbling formulas lifted with the equality gadget we are able

to exhibit a short semantic tree-like CP refutation, which via

real communication yields small monotone real formulas.

VI. CONCLUDING REMARKS

In this paper, we show that the cutting planes proof system

(CP) is stronger than its variant with polynomially bounded

coefficients (CP∗) with respect to simultaneous length and

space. This is the first result in proof complexity demonstrating

any situation where high-weight coefficients are more pow-

erful than low-weight coefficients. We also prove an explicit

separation between monotone Boolean formulas and monotone

real formulas. Previously the result was only known to hold

non-constructively. To obtain these results we strengthen a

lifting theorem of [44] to allow the lifting to work with

any gadget with sufficiently large rank, in particular with

the equality gadget—a crucial ingredient for obtaining the

separations discussed above.

This work raises a number of questions. Prior to our

result, no explicit function was known separating monotone

real circuits or formulas from monotone Boolean circuits or

formula. Although we prove an explicit formula separation,

it remains open to obtain an explicit function that separates

monotone real circuits from monotone Boolean circuits.

The most glaring open problem related to our cutting

planes contribution is to strengthen our result to a true length

separation, without any assumption on the space complexity. It

is natural to ask whether techniques inspired by [17], [53] can

be of use. Another thing to note about our trade-off result for

CP∗ is that it is not a “true trade-off”: we know that length and

space cannot be optimised simultaneously, but we do not know

if there in fact exist small space refutations. An interesting

problem is, therefore, to exhibit formulas that present “true
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trade-offs” for CP∗ but are easy with regard to space and length

in CP.
It follows from our results that standard decision tree com-

plexity, parity decision tree complexity, and Nullstellensatz

degree are equal for the falsified clause search problem of

lifted pebbling formulas. In view of this we can ask ourselves

what complexity measure we are actually lifting. We know

that for general search problem decision tree complexity is

not enough for a lifting result. How about parity decision tree

complexity? Or can we leverage the fact that we have “well-

behaved” rectangle covers and small certificate complexity to

lift weaker complexity models? It would be valuable to have

a better understanding of the relation between gadgets, outer

functions/relations and complexity measures.
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[17] A. Garg, M. Göös, P. Kamath, and D. Sokolov, “Monotone circuit
lower bounds from resolution,” in Proceedings of the 50th Annual
ACM Symposium on Theory of Computing (STOC ’18), Jun. 2018, pp.
902–911.

[18] D. Gavinsky, O. Meir, O. Weinstein, and A. Wigderson, “Toward better
formula lower bounds: The composition of a function and a universal
relation,” SIAM Journal on Computing, vol. 46, no. 1, pp. 114–131, Feb.
2017.
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