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Abstract. We establish an exactly tight relation between reversible
pebblings of graphs and Nullstellensatz refutations of pebbling formulas,
showing that a graph G can be reversibly pebbled in time t and space s
if and only if there is a Nullstellensatz refutation of the pebbling formula
over G in size t + 1 and degree s (independently of the field in which
the Nullstellensatz refutation is made). We use this correspondence
to prove a number of strong size-degree trade-offs for Nullstellensatz,
which to the best of our knowledge are the first such results for this
proof system.
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1. Introduction

In this work, we obtain strong trade-offs in proof complexity by
making a connection to pebble games played on graphs. Let us
start with a brief overview of these two areas and then explain how
our results follow from connecting the two.

1.1. Proof complexity. Proof complexity is the study of effi-
ciently verifiable certificates for mathematical statements. More
concretely, statements of interest claim to provide correct answers
to questions like:
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◦ Given a CNF formula, does it have a satisfying assignment
or not?

◦ Given a set of polynomials over some finite field, do they have
a common root or not?

There is a clear asymmetry here in that it seems obvious what
an easily verifiable certificate for positive answers to the above
questions should be, while it is not so easy to see what a concise
certificate for a negative answer could look like. The focus of proof
complexity is therefore on the latter scenario.

In this paper, we study the algebraic proof system system Null-
stellensatz introduced by Beame et al. (1994). A Nullstellensatz
refutation of a set of polynomials P = {pi | i ∈ [m]} with coeffi-
cients in a field F is an expression

(1.1)
m∑

i=1

pi · ri +
n∑

j=1

(x2
j − xj) · sj = 1

(where ri, sj are also polynomials), showing that 1 lies in the poly-
nomial ideal in the ring F[x1, . . . , xn] generated by the set of poly-
nomials P ∪ {

x2
j − xj

∣∣j ∈ [n]
}
. By (a slight extension of) Hilbert’s

Nullstellensatz, such a refutation exists if and only if there is no
common {0, 1}-valued root for the set of polynomials P.

Nullstellensatz can also be viewed as a proof system for certify-
ing the unsatisfiability of CNF formulas. If we translate a clause
like, e.g., C = x∨y ∨z to the polynomial p(C) = (1−x)(1−y)z =
z − yz − xz + xyz, then an assignment to the variables in a CNF
formula F =

∧m
i=1 Ci (where we think of 1 as true and 0 as false) is

satisfying precisely if all the polynomials {p(Ci) | i ∈ [m]} vanish.
The size of a Nullstellensatz refutation (1.1) is the total number

of monomials in all the polynomials pi ·ri and (x2
j −xj)·sj expanded

out as linear combinations of monomials. Another, more well-
studied, complexity measure for Nullstellensatz is degree, which
is defined as max{deg(pi · ri), deg((x2

j − xj) · sj)}.
In order to prove a lower bound d on the Nullstellensatz degree

of refuting a set of polynomials P, one can construct a d-design,
which is a map D from degree-d polynomials in F[x1, . . . , xn] to F

such that



cc Nullstellensatz Size-Degree Trade-offs Page 3 of 45     4 

1. D is linear, i.e., D(αp + βq) = αD(p) + βD(q) for α, β ∈ F;

2. D(1) = 1;

3. D(rp) = 0 for all polynomials p ∈ P and r ∈ F[x1, . . . , xn]
such that deg(rp) ≤ d;

4. D(x2s) = D(xs) for all polynomials s ∈ F[x1, . . . , xn] such
that deg(s) ≤ d − 2.

Designs provide a characterization of Nullstellensatz degree in that
there is a d-design for P if and only if there is no Nullstellen-
satz refutation of P in degree d (Buss 1998). Another possible
approach to prove degree lower bounds is by computationally ef-
ficient versions of Craig’s interpolation theorem. It was shown in
(Pudlák & Sgall 1998) that constant-degree Nullstellensatz refu-
tations yield polynomial-size monotone span programs, and that
this is also tight: every span program is a unique interpolant for
some set of polynomials refutable by Nullstellensatz. This con-
nection has not been used to obtain Nullstellensatz degree lower
bounds, however, due to the difficulty of proving span program
lower bounds.

Lower bounds on Nullstellensatz degree have been proven
for sets of polynomials encoding combinatorial principles such
as the pigeonhole principle (Beame et al. 1998), induction
principle (Buss & Pitassi 1998), house-sitting principle (Buss 1998;
Clegg et al. 1996), matching (Buss et al. 1997), and pebbling
(Buresh-Oppenheim et al. 2002). It seems fair to say that re-
search in algebraic proof complexity soon moved on to stronger
proof systems such as polynomial calculus (Alekhnovich et al. 2002;
Clegg et al. 1996), where the proof that 1 lies in the ideal gener-
ated by P ∪ {

x2
j − xj

∣∣j ∈ [n]
}

can be constructed dynamically by
a step-by-step derivation. However, Nullstellensatz has been the
focus of renewed interest in a recent line of works (de Rezende et al.
2020; Pitassi & Robere 2017, 2018; Robere et al. 2016) showing that
Nullstellensatz lower bounds can be lifted to stronger lower
bounds for more powerful computational models using
composition with gadgets. The size complexity measure for Null-
stellensatz has also received attention in recent papers such as
(Atserias & Ochremiak 2019; Berkholz 2018).
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In this work, we are interested in understanding the relation
between size and degree in Nullstellensatz. In this context, it is
relevant to compare and contrast Nullstellensatz with polynomial
calculus as well as with the well-known resolution proof system
(Blake 1937), which operates directly on the clauses of a CNF for-
mula and repeatedly derives resolvent clauses C ∨ D from clauses
of the form C ∨x and D ∨x until contradiction, in the form of the
empty clause without any literals, is reached. For resolution, size is
measured by counting the number of clauses, and width, measured
as the number of literals in a largest clause in a refutation, plays
an analogous role to degree for Nullstellensatz and polynomial cal-
culus.

By way of background, it is not hard to show that for all
three proof systems upper bounds on degree/width imply upper
bounds on size, in the sense that if a CNF formula over n vari-
ables can be refuted in degree/width d, then such a refutation can
be carried out in size nO(d). Furthermore, this upper bound has
been proven to be tight up to constant factors in the exponent—
that is, there are formulas that can be refuted in degree/width d
but require refutations of size nΩ(d) regardless of the degree/width
of the refutation—for resolution and polynomial calculus (Atse-
rias et al. 2016), and it follows from (Loera et al. 2009) that
this also holds for Nullstellensatz. In the other direction, it has
been shown for resolution and polynomial calculus that strong
enough lower bounds on degree/width imply lower bounds on size
(Ben-Sasson & Wigderson 2001; Impagliazzo et al. 1999). This is
known to be false for Nullstellensatz, and the pebbling formulas dis-
cussed in more detail later in this paper provide a counter-example
(Buresh-Oppenheim et al. 2002).

The size lower bounds in terms of degree/width in
(Ben-Sasson & Wigderson 2001; Impagliazzo et al. 1999) can be
established by transforming refutations in small size to refutations
in small degree/width. This procedure blows up the size of the
refutations exponentially, however. It is natural to ask whether
such a blow-up is necessary or whether it is just an artefact of the
proof. More generally, given that a formula has proofs in small
size and small degree/width, it is an interesting question whether
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both measures can be optimized simultaneously, or whether there
has to be a trade-off between the two.

For resolution, this question was finally answered by Thapen
(2016), which established that there are indeed strong trade-offs be-
tween size and width making the size blow-up in
(Ben-Sasson & Wigderson 2001) unavoidable. For polynomial cal-
culus, an analogous result was obtained in (Lagarde et al. 2020)
(after the publication of the conference version (de Rezende et al.
2019) of the current paper).

In this work, we complete the picture by showing that there
are strong trade-offs between size and degree also for Nullstellen-
satz. We do so by establishing a tight relation between Nullstel-
lensatz refutations of pebbling formulas and reversible pebblings
of the graphs underlying such formulas. In order to discuss this
connection in more detail, we first need to describe what reversible
pebblings are. This brings us to our next topic.

1.2. Pebble games. In the pebble game first studied by
Paterson & Hewitt (1970), one places pebbles on the vertices of
a directed acyclic graph (DAG) G according to the following rules:

◦ If all (immediate) predecessors of an empty vertex v contain
pebbles, a pebble may be placed on v.

◦ A pebble may be removed from any vertex at any time.

The game starts and ends with the graph being empty, and a pebble
should be placed on the (unique) sink of G at some point. The
complexity measures to minimize are the total number of pebbles
on G at any given time (the pebbling space) and the number of
moves (the pebbling time). The pebbling price of G is the minimum
space required to pebble G without any constraint on time.

The pebble game has been used to study flowcharts and recur-
sive schemata (Paterson & Hewitt 1970), register allocation (Sethi
1975), time and space as Turing-machine resources (Cook 1974;
Hopcroft et al. 1977), and algorithmic time-space trade-offs (Chan-
dra 1973; Savage & Swamy 1978, 1979; Swamy & Savage 1983;
Tompa 1978). In the last two decades, pebble games have seen
a revival in the context of proof complexity (see, e.g., Nordström
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2013), and pebbling has also turned out to be useful for appli-
cations in cryptography (Alwen & Serbinenko 2015; Dwork et al.
2005). An excellent overview of the first decade of pebbling re-
search can be found in (Pippenger 1980), and another in-depth
treatment of some classic results can be found in (Savage 1998,
Chapter 10). Some more recent developments are covered in the
upcoming survey (Nordström 2020).

Bennett (1989) introduced the reversible pebble game as part
of a broader program (Bennett 1973) aimed at eliminating or re-
ducing energy dissipation during computation. Reversible pebbling
has also been of interest in the context of quantum computing. For
example, it was noted by Meuli et al. (2019) that reversible pebble
games can be used to capture the problem of “uncomputing” inter-
mediate values in quantum algorithms. The reversible pebble game
adds the requirement that the whole pebbling performed in reverse
order should also be a correct pebbling, which means that the rules
for pebble placement and removal become symmetric as follows:

◦ If all predecessors of an empty vertex v contain pebbles, a
pebble may be placed on v.

◦ If all predecessors of a pebbled vertex v contain pebbles, the
pebble on v may be removed.

We refer to the minimum space required for a reversible pebbling of
a graph G as the reversible pebbling price of G and for a (standard)
pebbling of G—without the extra restriction on pebble removals—
as the standard pebbling price.

The reversible pebble game has been studied in (Komarath et al.
2018; Královič 2004; Li & Vitányi 1996) and has been used to prove
time-space trade-offs in reversible simulations of irreversible com-
putation in (Buhrman et al. 2001; Lange et al. 2000; Li et al. 1998;
Williams 2000). In a different context, Potechin (2010) implic-
itly used reversible pebbling to obtain lower bounds in monotone
space complexity, with the connection made explicit in later works
(Chan & Potechin 2014; Filmus et al. 2013). In (Torán & Wörz
2020), reversible pebbling was used as a tool to study space com-
plexity in tree-like resolution as compared to general resolution.
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Chan et al. (2015) (to which paper this overview is indebted) stud-
ied the relative power of standard and reversible pebblings with re-
spect to space, and also established PSPACE-hardness results for es-
timating the minimum space required to pebble graphs (reversibly
or not).

1.3. Our contributions. In this paper, we obtain an exactly
tight correspondence between on the one hand reversible pebblings
of DAGs and on the other hand Nullstellensatz refutations of peb-
bling formulas over these DAGs. We show that for any DAG G
it holds that G can be reversibly pebbled in time t and space s
if and only if there is a Nullstellensatz refutation of the pebbling
formula over G in size t + 1 and degree s. This correspondence
holds regardless of the field in which the Nullstellensatz refutation
is operating, and so, in particular, it follows that pebbling formulas
have exactly the same complexity for Nullstellensatz regardless of
the ambient field.

We then revisit the time-space trade-off literature for the stan-
dard pebble game, focusing on the papers (Carlson & Savage 1980,
1982; Lengauer & Tarjan 1982). The results in these papers do
not immediately transfer to the reversible pebble game, and we
are not fully able to match the tightness of the results for standard
pebbling, but we nevertheless obtain strong time-space trade-off
results for the reversible pebble game.

This allows us to derive Nullstellensatz size-degree trade-offs
from reversible pebbling time-space trade-offs that have the follow-
ing form. Suppose that we have a DAG G such that:

1. G can be reversibly pebbled in space s1.

2. G can be reversibly pebbled in time t1 and space s2 � s1.

3. There is no reversible pebbling of G that simultaneously
achieves space s1 and time t1. More specifically, any re-
versible pebbling of G in space slightly less than s2 must
take time t2 � t1.

Then, for Nullstellensatz refutations of the pebbling formula PebG

over G (which will be formally defined shortly) we can deduce that:
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1. Nullstellensatz can refute PebG in degree s1.

2. Nullstellensatz can also refute PebG in simultaneous size t1+1
and space s2 � s1.

3. There is no Nullstellensatz refutation of PebG that simulta-
neously achieves degree s1 and size t1 + 1. More specifically,
any Nullstellensatz refutation of PebG in degree slightly less
than s2 must have size t2 + 1 � t1 + 1.

We prove four such trade-off results, which can be found in
Section 4. The following theorem (which is a simplified version of
Theorem 4.1) is one example of such a result.

Theorem 1.2. There is a family of
3-CNF formulas {Fn}∞

n=1 of size Θ(n) such that:

(i) There is a Nullstellensatz refutation of Fn in degree s1 =
O

(
6
√

n log n
)
.

(ii) There is a Nullstellensatz refutation of Fn of near-linear size
and degree s2 = O

(
3
√

n log n
)
.

(iii) Any Nullstellensatz refutation of Fn in degree at most 3
√

n
must have exponential size.

It should be noted that this is not the first time proof complex-
ity trade-off results have been obtained from pebble games. Peb-
bling formulas were used in (Alwen et al. 2017; Ben-Sasson 2009;
Ben-Sasson & Nordström 2011) to obtain size-space trade-offs for
resolution, and in (Beck et al. 2013) also for polynomial calculus.
However, the current reductions between pebbling and Nullstellen-
satz are much stronger in that they go in both directions and are
exact even up to additive constants.

With regard to the Nullstellensatz proof system, it was shown
by Buresh-Oppenheim et al. (2002) that Nullstellensatz degree is
lower-bounded by standard pebbling price. This was strengthened
by de Rezende et al. (2020), who used the connection between
designs and Nullstellensatz degree discussed above to establish that
the degree needed to refute a pebbling formula exactly coincides
with the reversible pebbling price of the corresponding DAG (which
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is always at least the standard pebbling price, but can be much
larger). Our reduction significantly improves on de Rezende et al.
(2020) by constructing a more direct reduction, inspired by Göös
et al. (2019), that can simultaneously capture both time and space.

1.4. Outline of this paper. After having discussed the neces-
sary preliminaries in Section 2, we present the reductions between
Nullstellensatz and reversible pebblings in Section 3. In Section 4,
we prove time-space trade-offs for reversible pebblings in order to
obtain size-degree trade-offs for Nullstellensatz. Section 5 contains
some concluding remarks with suggestions for future directions of
research.

2. Preliminaries

All logarithms in this paper are base 2 unless otherwise specified.
For a positive integer n, we write [n] to denote the set of integers
{1, 2, . . . , n}.

A literal a over a Boolean variable x is either the variable x
itself or its negation x (a positive or negative literal, respectively).
A clause C = a1∨· · ·∨ak is a disjunction of literals. A k-clause is a
clause that contains at most k literals. A formula F in conjunctive
normal form (CNF) is a conjunction of clauses F = C1 ∧ · · · ∧ Cm.
A k-CNF formula is a CNF formula consisting of k-clauses. We
think of clauses and CNF formulas as sets, so that the order of
elements is irrelevant and there are no repetitions. A truth value
assignment ρ to the variables of a CNF formula F is satisfying if
every clause in F contains a literal that is true under ρ.

2.1. Nullstellensatz. Let F be any field and let �x={x1, . . . , xn}
be a set of variables. We identify a set of polynomials P = {pi(�x) |
i ∈ [m]} in the ring F[�x] with the statement that all pi(�x) have
a common {0, 1}-valued root. A Nullstellensatz refutation of this
claim is a syntactic equality

(2.1)
m∑

i=1

pi(�x) · ri(�x) +
n∑

j=1

(x2
j − xj) · sj(�x) = 1 ,
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where ri, sj are also polynomials in F[�x]. We sometimes refer to
the polynomials pi(�x) as (input) axioms and x2

j − xj as Boolean
axioms.

As discussed in the introduction, the Nullstellensatz proof sys-
tem can be used also for CNF formulas by translating a clause C =∨

x∈P x ∨ ∨
y∈N y to the polynomial p(C) =

∏
x∈P (1 − x) · ∏

y∈N y
and viewing Nullstellensatz refutations of {p(Ci) | i ∈ [m]} as
refutations of the CNF formula F =

∧m
i=1 Ci.

The degree of a Nullstellensatz refutation of the form (2.1) is
max{deg(pi(�x) · ri(�x)), deg((x2

j − xj) · sj(�x))}. We define the size
of a refutation to be the total number of monomials encountered
when all products of polynomials are expanded out as linear combi-
nations of monomials. To be more precise, let mSize(p) denote the
number of monomials in a polynomial p written as a linear combi-
nation of monomials. Then, the size of a Nullstellensatz refutation
on the form (2.1) is

(2.2)
m∑

i=1

mSize
(
pi(�x)

) · mSize
(
ri(�x)

)
+

n∑

j=1

2 · mSize
(
sj(�x)

)
.

This is consistent with how size is defined for the “dynamic version”
of Nullstellensatz known as polynomial calculus (Alekhnovich et al.
2002; Clegg et al. 1996), and also with the general size definitions
for so-called algebraic and semialgebraic proof systems in (Atserias
et al. 2016; Atserias & Ochremiak 2019; Berkholz 2018).

We remark that this is not the only possible way of measuring
size, however. It can be noted that the definition (2.2) is quite
wasteful in that it forces us to represent the proof in a very inef-
ficient way. Other papers in the semialgebraic proof complexity
literature, such as (Dantchev et al. 2009; Grigoriev et al. 2002;
Kojevnikov & Itsykson 2006), instead define size in terms of the
polynomials in isolation, more along the lines of

(2.3)
m∑

i=1

(
mSize

(
pi(�x)

)
+mSize

(
ri(�x)

))
+

n∑

j=1

(
2+mSize

(
sj(�x)

))
,

or as the bit size or “any reasonable size” of the representation of
all polynomials ri(�x), pi(�x), and sj(�x).
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In the end, the difference is not too important since the two
measures (2.2) and (2.3) are at most a square apart, and for size we
typically want to distinguish between polynomial and superpolyno-
mial. In addition, and more importantly, in this paper we will only
deal with k-CNF formulas with k = O(1), and in this setting the
two definitions are the same up to a constant factor 2k. Therefore,
we will stick with (2.2), which matches best how size is measured
in the closely related proof systems resolution and polynomial cal-
culus, and which gives the cleanest statements of our results. We
refer the reader to Section 2.4 in (Atserias & Hakoniemi 2019) for a
more detailed discussion of the definition of proof size in algebraic
and semialgebraic proof systems.

When proving lower bounds for algebraic proof systems it is of-
ten convenient to consider a multilinear setting where refutations
are presented in the ring F[�x]/{x2

j − xj | j ∈ [n]}, so that no vari-
able appears raised to a higher power than 1 in any polynomial.
Since the Boolean axioms x2

j − xj are no longer needed, the refuta-
tion (2.1) can be written simply as

(2.4)
m∑

i=1

pi(�x) · ri(�x) = 1 ,

where we assume that all results of multiplications are implicitly
multilinearized. It is clear that any refutation on the form (2.1)
remains valid after multilinearization, and so the size and degree
measures can only decrease in a multilinear setting. In this paper,
we prove our lower bound in our reduction in the multilinear setting
and the upper bound in the non-multilinear setting, making the
tightly matching results even stronger.

2.2. Reversible pebbling and pebbling formulas. In what
follows, G = (V,E) will always denote a directed acyclic graph
(DAG) of constant fan-in with vertices V (G) = V and edges
E(G) = E. For an edge (u, v) ∈ E we say that u is a predecessor
of v and v a successor of u. We write predG(v) to denote the sets
of all predecessors of v, and drop the subscript when the DAG G
is clear from context. Vertices with no predecessors/successors are
called sources/sinks . Unless stated otherwise, we will assume that
all DAGs under consideration have a unique sink z.
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A pebble configuration on a DAG G = (V,E) is a subset of
vertices P ⊆ V . A reversible pebbling strategy for a DAG G with
sink z, or a reversible pebbling of G for short, is a sequence of
pebble configurations P = (P0,P1, . . . ,Pt) such that P0 = Pt = ∅,
z ∈ ⋃

0≤t≤t Pt, and such that each configuration can be obtained
from the previous one by one of the following rules:

1. Pi+1 = Pi ∪ {v} for v /∈ Pi such that predG(v) ⊆ Pi (a pebble
placement on v).

2. Pi+1 = Pi \ {v} for v ∈ Pi such that predG(v) ⊆ Pi (a pebble
removal from v).

The time of a pebbling P = (P0, . . . ,Pt) is time(P) = t and the
space is space(P) = max0≤t≤t{|Pt|}.

We could also say that a reversible pebbling P = (P0, . . . ,Pt)
should be such that P0 = ∅ and z ∈ Pt, and define the time of such
a pebbling to be 2t. This is so since once we have reached a con-
figuration containing z we can simply run the pebbling backwards
(because of reversibility) until we reach the empty configuration
again, and without loss of generality all time- and space-optimal
reversible pebblings can be turned into such pebblings. For simplic-
ity, we will often take this viewpoint in what follows. For technical
reasons, it is sometimes important to distinguish between visiting
pebblings , for which z ∈ Pt, and persistent pebblings , which meet
the more stringent requirement that z ∈ Pt = {z}. (It can be noted
that for the more relaxed standard pebble game discussed in the
introductory section any pebbling can be assumed to be persistent
without loss of generality.)

Pebble games can be encoded in CNF by so-called pebbling for-
mulas (Ben-Sasson & Wigderson 2001), also referred to as pebbling
contradictions. Given a DAG G = (V,E) with a single sink z, we
associate a variable xv with every vertex v and add clauses encod-
ing that

◦ the source vertices are all true;

◦ if all immediate predecessors are true, then truth propagates
to the successor;
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z

u v

p q r

(a) Pyramid.

xp

∧ xq

∧ xr

∧ (xp ∨ xq ∨ xu)
∧ (xq ∨ xr ∨ xv)
∧ (xu ∨ xv ∨ xz)
∧ xz

(b) CNF formula

1 − xp

1 − xq

1 − xr

xpxq(1 − xu)
xqxr(1 − xv)
xuxv(1 − xz)
xz

(c) Polynomials..

Figure 2.1: Example pebbling contradiction for the pyramid graph
of height 2 in CNF and translated to polynomials

◦ but the sink is false.

In short, the pebbling formula over G consists of the clauses
xv ∨ ∨

u∈pred (v) ¬xu for all v ∈ V (note that if v is a source, then

pred (v) = ∅), and the clause ¬xz.
We encode this formula by a set of polynomials in the standard

way. Given a set U ⊆ V , we denote by xU the monomial
∏

u∈U xu

(in particular, x∅ = 1). For every vertex v ∈ V , we have the
polynomial

(2.5) Av := xpred(v) · (1 − xv) ,

and for the sink z we also have the polynomial

(2.6) Asink := xz .

See Figure 2.1 for an illustration, including how the CNF
formula is translated to a set of polynomials.

3. Pebblings and Nullstellensatz refutations

In this section, we prove the correspondence between the reversible
pebbling game on a graph G and Nullstellensatz refutation of the
pebbling contradiction of G, which can be stated formally as fol-
lows.

Theorem 3.1. Let G be a directed acyclic graph with a single
sink, let φ be the corresponding pebbling contradiction, and let F

be a field. Then, there is a reversible pebbling strategy for G in
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time at most t and space at most s if and only if there is a Nullstel-
lensatz refutation for φ over F of size at most t + 1 and degree at
most s. Moreover, the same holds for multilinear Nullstellensatz
refutations.

We prove each of the directions of Theorem 3.1 separately in
Sections 3.1 and 3.2 below.

3.1. From pebbling strategies to Nullstellensatz
refutations. We start by proving the “only if” direction of The-
orem 3.1. Let

(3.2) P =
(
P0, . . . ,Pt

)

be a reversible pebbling strategy for G. Let Pt′ be the first config-
uration in which there is a pebble on the sink z. Without loss of
generality, we may assume that t = 2 ·t′: if the last t−t′ steps were
more efficient than the first t′ steps, we could have obtained a more
efficient strategy by replacing the first t′ steps with the (reverse of)
the last t − t′ steps, and vice versa.

We use P to construct a Nullstellensatz refutation over F for
the pebbling contradiction φ. To this end, we will first construct
for each step i ∈ [t′] of P a Nullstellensatz derivation of the polyno-
mial xPi−1

− xPi
. The sum of all these polynomials is a telescoping

sum and is therefore equal to

(3.3) xP0 − xPt′ = 1 − xPt′ .

We will then transform this sum into a Nullstellensatz refutation
by adding the polynomial

(3.4) xPt′ = Asink · xPt′−{z} .

We turn to constructing the aforementioned derivations. To
this end, for every i ∈ [t′], let vi ∈ V denote the vertex which was
pebbled or unpebbled during the ith step, i.e., during the transition
from Pi−1 to Pi. Then, we know that in both configurations Pi−1

and Pi the predecessors of vi have pebbles on them, i.e., pred(vi) ⊆
Pi−1 ∩ Pi. Let us denote by Ri = Pi − {vi} − pred(vi) the set of
other vertices that have pebbles during the ith step. Finally, let bi
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be 1 if vi was pebbled during the ith step or −1 if vi was unpebbled.
Now, observe that

(3.5) xPi−1
− xPi

= bi · xPi−1−{vi}(1 − xvi
) = bi · xRi

Avi
,

where the last step follows since the predecessors of vi are neces-
sarily in Pi−1. Therefore, our final refutation for φ is

t′∑

i=1

Avi
· bi · xRi

+ xPt′ = xPt′ +
t′∑

i=1

(
xPi−1

− xPi

)
(3.6)

= xPt′ + (xP0 − xPt′ ) = 1 .

Note that it is a multilinear Nullstellensatz refutation, since it con-
tains only multilinear monomials and does not use the Boolean
axioms. It remains to analyse the degree and size.

For the degree, observe that every monomial in the proof is
of the form xPi

, and the degree of each such monomial is exactly
the number of pebbles used in the corresponding configuration.
Therefore, the maximal degree is exactly the space of the pebbling
strategy P .

As for the size of the refutation, using the definition in (2.2) we
obtain

(3.7)
t′∑

i=1

mSize
(
Avi

) · mSize
(
bi · xRi

)
+ mSize

(
xPt′

)
=

=
t′∑

i=1

2 · 1 + 1 = t + 1 ,

where for the first equality we recall that mSize
(
Avi

)
= 2 for every

vertex vi.

3.2. From Nullstellensatz refutations to pebbling strate-
gies. We turn to prove the “if” direction of Theorem 3.1. We
note that it suffices to prove it for multilinear Nullstellensatz refu-
tations, since every standard Nullstellensatz refutation implies the
existence of a multilinear one with at most the same size and degree.
Let

(3.8)
∑

v∈V

Av · qv + Asink · qsink = 1
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be a multilinear Nullstellensatz refutation of φ over F of degree s.
We will use this refutation to construct a reversible pebbling strat-
egy P for G. Let us note right away that without loss of generality
we have that no monomial m in any qv in (3.8) contains the vari-
able xv, since if so the factor 1 − xv in Av will make m · Av cancel
due to multilinearity. We will use this observation in what follows.

To extract a pebbling strategy P for G from the Nullstellensatz
refutation (3.8), we construct a “configuration graph” C, whose
vertices consist of all possible configurations of at most s pebbles
on G (i.e., the vertices will be all subsets of V of size at most s).
The edges of C will be determined by the polynomials qv of the
refutation, and every edge {U1, U2} in C will constitute a legal move
in the reversible pebbling game (i.e., it will be legal to transition
from U1 to U2 and vice versa). We will show that C contains a path
from the empty configuration ∅ to a configuration Uz that contains
the sink z, and our pebbling strategy will be generated by walking
on this path from ∅ to Uz and back.

The edges of the configuration graph C are defined as follows:
Let v ∈ V be a vertex of G, and let m be a monomial of qv in (3.8)
(where, as observed above, we can assume that m does not con-
tain xv). Let W ⊆ V be the set of vertices such that m = xW (such
a set W exists since the refutation is multilinear). We put an edge
em in C that connects U1 = W ∪pred(v) and U2 = W ∪pred(v)∪{v}
(we allow parallel edges). It is easy to see that the edge em connects
configurations of size at most s, and that it indeed constitutes a
legal move in the reversible pebbling game. We note that C is a
bipartite graph: to see this, note that every edge connects a con-
figuration of odd size to a configuration of even size.

For the sake of analysis, we assign weights to edges in C in the
following way. Let em = {U1, U2} be an edge as defined above
and let c be the coefficient of m in qv. Note that em represents an
occurrence of the monomial xU1 with coefficient c and of xU2 with
coefficient −c in the polynomial Av · qv. We assign the edge em a
weight in F that is equal to (−1)|U1| · c = (−1)|U2| · (−c). Observe
that both sides of the equation are indeed the same since every
edge connects an odd-sized to an even-sized configuration.
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We define the weight of a configuration U to be the sum of the
weights of all the edges that touch U (where the addition is done in
the field F). We use the following technical claim, which we prove
at the end of this section.

Claim 3.9. Let U ⊆ V be a configuration in C that does not
contain the sink z. If U is the unique empty configuration, then
its weight is 1. Otherwise, its weight is 0.

We now show how to construct the required pebbling strategy P
for G. To this end, we first prove that there is a path in C from the
empty configuration to a configuration that contains the sink z.
Suppose for the sake of contradiction that this is not the case,
and let H be the connected component of C that contains the
empty configuration. Note that the empty configuration cannot
be an isolated vertex, since it has weight 1 according to our claim.
What our assumption says is that none of the configurations in H
contains z.

The connected component H is bipartite since C is bipartite.
Without loss of generality, assume that the empty configuration
is in the left-hand side of H. Clearly, the sum of the weights
of the configurations on the left-hand side should be equal to the
corresponding sum on the right-hand side, since they are both equal
to the sum of the weights of the edges in H. However, the sum of
the weights of the configurations on the right-hand side is 0 (since
all these weights are 0 by Claim 3.9), while the sum of the weights
of the left-hand side is 1 (again, by Claim 3.9). We reached a
contradiction, and therefore, H must contain some configuration Uz

that contains the sink z.
Next, let ∅ = P0,P1, . . . ,Pt′ = Uz be a path from the empty

configuration to Uz. Our reversible pebbling strategy for G is

(3.10) P = (P0, . . . ,Pt′−1,Pt′ ,Pt′−1, . . . ,P0) .

This is a valid pebbling strategy since, as noted above, every edge
of C constitutes a legal move in the reversible pebbling game. The
strategy P uses space s, since all the configurations in C contain at
most s pebbles by definition. The time of P is t = 2 · t′. It there-
fore remains to show that the size of the Nullstellensatz refutation
in (3.8) is at least t + 1.
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To this end, note that every edge em in the path corresponds to
some monomial m in some polynomial qv. When the monomial m
is multiplied by the axiom Av, it generates two monomials in the
proof: the monomial m · xpred(v) and the monomial m · xpred(v) · xv.
Hence, the Nullstellensatz refutation contains at least 2 · t′ mono-
mials that correspond to edges from the path. In addition, the
product Asink · qsink must contain at least one monomial, since the
refutation must use the sink axiom Asink (because without this
axiom the rest of φ is satisfiable, and so cannot have any Nullstel-
lensatz refutation). It follows that the refutation contains at least
2 · t′ + 1 = t + 1 monomials, as required. We conclude the proof of
the “if” direction of Theorem 3.1 by establishing Claim 3.9.

Proof (Proof of Claim 3.9.). A monomial m may be generated
multiple times in the refutation (3.8). We refer to each time it is
generated as an occurrence of m and say that such an occurrence
is generated by a monomial mv of qv in (3.8) if m appears in the
product Av · mv.

We first prove the claim for the non-empty case. Let U ⊆ V
be a non-empty configuration such that z /∈ U . We would like
to prove that the weight of U is 0. Note that by definition the
weight of U is equal to the sum of the weights of all the edges
that touch U , i.e., (−1)|U | times the sum of the coefficients of the
occurrences of xU generated by monomials mv of qv in (3.8). Since
z /∈ U , these are all occurrences of xU in (3.8)—i.e., xU can only be
generated by products Av ·qv and can never appear in Asink ·qsink =
xz · qsink—and so the (multi-)set of edge weights for edges incident
to U in our configuration graph C is precisely the (multi-)set of
coefficients (multiplied by (−1)|U |) of all occurrences of xU in (3.8).
But from (3.8), we can also see that the sum of these coefficients
must be 0 in F, since the coefficient of xU on the right-hand side
is 0. Hence, the weight of U is 0.

In the case that U is the empty configuration, the proof is
identical, except that the sum of the coefficients of all occurrences
is 1, since the coefficient of ∅ is 1 on the right-hand side of (3.8). �

3.3. An alternative perspective. Another way to view this
proof is by considering a Nullstellensatz refutation as a solution to
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a matrix equation in the following manner. Let P = {pi : i ∈ [m]}
be a set of polynomials with no common root. Given d ∈ N, let
Md be a matrix such that

◦ the rows of Md are indexed by all multilinear monomials
xU of degree at most d, with the first row indexed by the
monomial 1;

◦ the columns of Md are indexed by all the (multilinearized)
products of the form pi · xV where xV is a multilinear mono-
mial such that deg(pi · xV ) ≤ d; and

◦ the entry of Md at (xU , pi · xV ) contains the coefficient of the
monomial xU in the polynomial pi · xV .

It is not hard to see that P has a multilinear Nullstellensatz refu-
tation of degree at most d if and only if the equation Md · x =
(1, 0, 0, . . . , 0)T has a solution. Moreover, the size of the refutation
is the sum of the number of nonzero entries in all columns i such
that the ith entry of x is nonzero.

In order to prove the “only if” direction of Theorem 3.1, that is,
that from a pebbling strategy in time t and space s we can extract
a Nullstellensatz refutation of size at most t + 1 and degree at
most s, it is enough to show how to translate a pebbling strategy
into a solution to Md · x = (1, 0, 0, . . . , 0)T . This can be argued
along the lines of what was done in Section 3.1.

The other direction—that from a Nullstellensatz refutation we
can extract a pebbling strategy—is where this perspective proves
more elucidating. The crucial observation here is that in the spe-
cific case of pebbling contradictions the matrix Md is totally uni-
modular, that is, the determinant of every square submatrix of Md

is in {0,±1}. Indeed, it is easy to see that this matrix satisfies the
following sufficient condition for total unimodularity.

Fact 3.11 (Heller & Tompkins 1957). Let A be matrix over F

with entries in {0,±1}.

◦ If the characteristic of F is not 2, and every column of A
contains at most one 1 and at most one −1, then A is totally
unimodular.
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◦ If the characteristic of F is 2, and every column of A contains
at most two 1’s, then A is totally unimodular.

Now consider a Nullstellensatz refutation of size t + 1 and de-
gree d. Let M = Md be the matrix defined by the pebbling
contradiction and let x∗ be the solution to the equation Mx =
(1, 0, 0, . . . , 0)T corresponding to this Nullstellensatz refutation. The
proof proceeds in two steps. First we show that there exists a so-
lution y∗ that satisfies the following two conditions: (1) y∗ has
entries in {0,±1}, and (2) the support of y∗ is contained in the
support of x∗. This latter condition implies that y∗ corresponds to
a Nullstellensatz refutation of size at most t + 1 (the fact that the
degree of this refutation is at most d follows by definition of M). In
the second step, we show that from y∗, we can extract a pebbling
strategy in time at most t and space at most d.

To show that such a solution y∗ exists, we use the following
known property of totally unimodular matrices, which can be
proven by Cramer’s rule.

Proposition 3.12. Let A be a totally unimodular matrix. If the
equation Ax = (1, 0, 0, . . . , 0)T has a solution then it has a solution
with entries in {0,±1}.

Now let I be the support of x∗, and let M ′ be the restriction
of M to the columns in I. Clearly, the matrix M ′ is totally unimod-
ular and the equation M ′ ·y = (1, 0, 0, . . . , 0)T has a solution. Thus,
by Proposition 3.12, it has a solution y′ with entries in {0,±1}. Let
y∗ be the vector of same dimension as x∗ that is equal to y′ in all
coordinates in I and is equal to 0 in all other coordinates. It is easy
to see that y∗ is a solution to Mx = (1, 0, 0, . . . , 0)T that satisfies
the two required conditions.

We now show that from y∗ we can extract a pebbling strategy
in time at most t and space at most d. As in Section 3.2, this can
be done by first defining the configuration graph C and proving
there is a path of length at most t/2 from the empty configuration
to a configuration that contains the sink z, and then showing how
to extract a pebbling from such a path. We sketch the first part
below—which is simpler since the entries of y∗ are in {0,±1}—but
omit the second part since it is exactly the same as in Section 3.2.
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We can view M as an incidence matrix of a graph M: the rows
of M determine the vertices of M and the columns of M with two
nonzero entries (i.e., a column that come from some axiom Av)
determine the edges. Note that the nonzero entries of y∗ define
a subgraph C of M with at most t/2 edges. Moreover, the vertex
corresponding to row 1 has odd degree in C (since the first entry
in My∗ is 1) and vertices corresponding to monomials that do not
contain xz have even degree in C. Therefore, there must be a path
in C of length at most t/2 from row 1 to a row corresponding to a
monomial that contains xz.

We conclude by remarking that, in light of this perspective,
a key ingredient for the equivalence between reversible pebbling
and Nullstellensatz refutations is that the matrix corresponding to
a pebbling refutation is totally unimodular. Moreover, this also
gives an explanation as to why degree and size of Nullstellensatz
refutations of pebbling contradictions are independent of the field.

4. Nullstellensatz trade-offs from pebbling

In this section, we prove Nullstellensatz refutation size-degree trade-
offs for different degree regimes. In what follows, by a Nullstellen-
satz refutation of a CNF formula F we mean a Nullstellensatz refu-
tation of the translation of F to a set of polynomials as described
in Section 2.

In order to obtain our trade-offs, we are looking for
non-decreasing and suitably well-behaved functions d1(n) and fam-
ilies of CNF formulas {Fn}∞

n=1 of size Θ(n) such that

1. The formula Fn has a Nullstellensatz refutation of (small)
degree d1(n).

2. The formula Fn has a Nullstellensatz refutation of (close to)
linear size, but in (much larger) degree d2(n) � d1(n).

3. Any Nullstellensatz refutation of Fn in degree only slightly
below d2(n) must have size nearly nd1(n).

Below, we present explicit constructions of formulas providing
such trade-offs in several different parameter regimes. We start by
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giving an overview of the kind of results we are able to achieve, and
then spend the rest of the section on proving the reversible pebbling
trade-offs that together with Theorem 3.1 yield these Nullstellen-
satz size-degree trade-offs.

We remark that a simple trick to achieve some of these results
would be to glue together two different formulas (over disjoint set
of variables) that have very different properties with respect to
proof size and degree, similarly to what was done for other pairs
of complexity measures for the resolution proof system in (Nord-
ström 2009). However, the fact that two disjoint formulas can
yield a “trade-off result” in this sense when glued together does
not seem to be too interesting. Intuitively, we want to find one
single formula that exhibits this trade-off behaviour. One way of
formalizing this is to require that the formulas in question be min-
imally unsatisfiable (i.e., that removing any axiom of the formula
would make it satisfiable). It is straightforward to verify that the
pebbling formulas we study in this paper have this minimal unsat-
isfiability property.

Our first trade-off result says that there are formulas that re-
quire exponential size in Nullstellensatz if the degree is bounded by
some (sublinear) polynomial function, but that for slightly larger
degree admit nearly linear-size proofs.

Theorem 4.1. There exists a constant K > 0 and a family of
explicitly constructible unsatisfiable 3-CNF formulas {Fn}∞

n=1 of
size Θ(n) such that for any constant ε > 0 :

(i) There is a Nullstellensatz refutation of Fn in degree d1 =
O

(
6
√

n log n
)
.

(ii) There is a Nullstellensatz refutation of Fn of size O(n1+ε) and
degree

d2 = O
(
d1 · 6

√
n
)

= O
(

3
√

n log n
)

.

(iii) Any Nullstellensatz refutation of Fn in degree at most d =
Kd2/ log n = O

(
3
√

n
)

must have size
(

6
√

n
)
! .

We also analyse a family of formulas that can be refuted in
close to logarithmic degree and show that even if we allow up to
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a certain polynomial degree, the Nullstellensatz size required is
superpolynomial.

Theorem 4.2. Let δ > 0 be an arbitrarily small positive constant
and let g(n) be any arbitrarily slowly growing monotone function
ω(1) = g(n) ≤ n1/4. Then, there is a family of explicitly con-
structible unsatisfiable 3-CNF formulas {Fn}∞

n=1 of size Θ(n) such
that for any constant ε > 0 :

(i) There is a Nullstellensatz refutation of Fn in degree d1 =
g(n) log(n).

(ii) There is a Nullstellensatz refutation of Fn of size O(n1+ε) and
degree

d2 = O
(
d1 · n1/2/g(n)2

)
= O

(
n1/2 log n/g(n)

)
.

(iii) Any Nullstellensatz refutation of Fn in degree at most

d = O
(
d2/n

δ log n
)

= O
(
n1/2−δ/g(n)

)

must have size superpolynomial in n.

Still in the small-degree regime, we present a very robust trade-
off in the sense that superpolynomial size lower bound holds for
degree from log2(n) all the way up to n/ log(n).

Theorem 4.3. There exists a constant K > 0 and a family of
explicitly constructible unsatisfiable 3-CNF formulas {Fn}∞

n=1 of
size Θ(n) such that for any constant δ > 0 :

(i) There is a Nullstellensatz refutation of Fn in degree d1 =
O(log2 n).

(ii) There is a Nullstellensatz refutation of Fn of size O(n) and
degree

d2 = O(d1 · n/ log3−δ n) = O(n/ log1−δ n) .

(iii) Any Nullstellensatz refutation of Fn in degree at most d =
Kd2/ logδ n = O(n/ log n) must have size nΩ(log log n).

Finally, we study a family of formulas that have Nullstellensatz
refutation of quadratic size and that present a smooth size-degree
trade-off.
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Theorem 4.4. There is a family of explicitly constructible un-
satisfiable 3-CNF formulas {Fn}∞

n=1 of size Θ(n) such that any
Nullstellensatz refutation of Fn that optimizes size given degree
constraint d = nΘ(1) < n has size Θ

(
n2/d

)
.

As already mentioned, we prove these results by obtaining anal-
ogous time-space trade-offs for reversible pebblings and then apply-
ing the tight correspondence between size and degree in Nullstellen-
satz and time and space in reversible pebbling in Theorem 3.1. We
proceed to establishing such reversible pebbling trade-offs. Recall
that, as mentioned in Section 2.2, we assume that all DAGs under
consideration have a single sink, denoted z, and that every other
vertex has some path to this sink. Some of the graph constructed
below have multiple sinks, but we will explain how to turn them
into single-sink DAGs.

4.1. Upper bounds for reversible pebbling time-space
trade-offs. Our strategy for proving reversible pebbling trade-
offs will be to analyse standard pebbling trade-offs. Clearly, lower
bounds from standard pebbling transfer to reversible pebbling; the
next theorem shows how, in a limited sense, we can also transfer
upper bounds. It is based on a reversible simulation of irreversible
computation proposed by Bennett (1989) and analysed precisely
by Levin & Sherman (1990).

Theorem 4.5 (Bennett 1989; Levin & Sherman 1990). Let G be
an arbitrary DAG and suppose G has a standard pebbling in
space s and time t ≥ 2s. Then for any ε > 0, G can be reversibly
pebbled in time t1+ε/sε using ε(21/ε − 1) s log(t/s) pebbles.

We also use the following general proposition, which allows
upper-bounding the reversible pebbling price of a DAG by its depth
and maximum indegree. Here, the depth of a DAG is the number
of edges in a longest directed path in it, and we remind the reader
that persistent pebblings were defined in Section 2.2.

Proposition 4.6. Any DAG with maximum indegree 
 and
depth d has a persistent reversible pebbling strategy in space at
most d
 + 1.
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Proof. The proof is by induction on the depth. For d = 0, we
can clearly persistently reversibly pebble the graph with 1 pebble.

For d ≥ 1, we first pebble all the (at most 
) predecessors of the
sink persistently, so that all these vertices are covered by pebbles
but there are no other pebbles in the graph. By the induction
hypothesis, this can be done in space at most (
−1)+(d−1)
+1 =
d
. Now we place a pebble on the sink, and then run the previous
pebbling in reverse. Clearly, this adds 1 to the space, so that the
total space is at most d
 + 1 as claimed. �

Some of the family of DAGs considered in this section are more
naturally described as DAGs with multiple sinks and have been
studied as such in the pebbling literature. For the purpose of the
analysis, we adopt the commonly used definition of (reversible)
pebbling of a multi-sink graph: a (reversible) pebbling that places
pebbles on each sink at some point (the pebbles do not need to be
present in the last configuration). Let G be a DAG with m sinks
and let T be a directed binary tree (arbitrary but fixed) of depth
�log m�, with m leaves all being sources and the root being the only

sink. We define the single-sink DAG Ĝ to be the graph obtained
by identifying the sinks of G with the sources of T . We refer to T
as the top binary tree of Ĝ. Note that |V (Ĝ)| = |V (G)| + m − 1.

Moreover, it is not hard to see that G and Ĝ have similar pebbling
bounds. We state formally below the relations between these two
graphs that we use.

Lemma 4.7. Let G be a DAG with m sinks. We have the following
properties of the single-sink DAG Ĝ.

(i) If G has reversible pebbling price s then Ĝ has reversible
pebbling price at most s + 2�log m� + 1.

(ii) If G has a standard pebbling in simultaneous time t and

space s then Ĝ has a standard pebbling in simultaneous time
at most t + 2(m − 1) and space at most s + m.

Proof. By Proposition 4.6, we can reversibly pebble a depth-
�log m� binary tree in space 2�log m� + 1. To prove item (i), we

simulate this pebbling on the top binary tree of Ĝ and every time
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we have to pebble (or unpebble) a leaf of the tree, which coincides
with some sink of G, say zi, we simulate the space s reversible
pebbling of G until the moment when we would pebble zi (except
that, in order not to interfere with the pebbling of the top binary
tree, we skip steps that would place or remove pebbles from other
sinks of G). Let P be this (partial) simulation of the reversible
pebbling of G. We then pebble (or unpebble) zi, and reverse P in
order to remove any pebbles not on the top binary tree. Note that
this adds at most an extra s pebbles on top of the space required
for pebbling a depth-�log m� binary tree.

Let P ′ be a standard pebbling of G in time t and space s. To
prove item (ii), we first simulate P ′ on Ĝ except that we do not
remove pebbles from the leaves of the top binary tree (i.e., from
the sinks of G). Note that this takes time at most t−m and space
at most s+m. At this point, we only have pebbles on the m leaves
of the top binary tree. We can now finish pebbling the binary tree
in space m+1 and time m+2(m− 1). The claimed upper bounds
on space and time follow. �

We remark that Lemma 4.7 is very similar to Observation 3.8
in (Nordström 2020), and that it would not be hard to strengthen
item (ii) in the lemma to get a pebbling in the same time that uses
only space s + O(log m) by making slightly stronger assumptions,
but since we only care about the asymptotics here we opted for a
slightly simpler proof instead.

4.2. Carlson-Savage graphs. The first family of graphs for
which we present reversible pebbling trade-offs are the so-called
Carlson-Savage graphs described next. Carlson & Savage (1980,
1982) defined these graphs with the goal of proving robust trade-
offs for the standard pebble game. We refer the reader to Figure 4.1
for an illustration (noting that for this and other graph descriptions
below we are relying heavily on Nordström 2020).

Definition 4.8. [Carlson-Savage graphs (Carlson & Savage 1980,
1982; Nordström 2012)] The graph family Γ(c, r), for c, r ∈ N

+, is
defined by induction over the parameter r. The base graph Γ(c, 1)
is a DAG consisting of two sources s1, s2 and c sinks γ1, . . . , γc
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with directed edges (si, γj) for i = 1, 2 and j = 1, . . . , c from both
sources to all sinks. The graph Γ(c, r + 1) has c sinks and is built
from the following components:

◦ c disjoint copies Π
(1)
r , . . . , Π

(c)
r of a so-called pyramid graph

of height/depth r.

◦ one copy of Γ(c, r).

◦ c disjoint and identical path graphs, which we call spines,
where each spine is composed of r sections and every section
contains 2c vertices.

The above components are connected as follows: In every section of
every spine, each of the first c vertices has an incoming edge from
the sink of one of the first c pyramids, where the ith section vertex
is connected to the ith pyramid, and each of the last c vertices
has an incoming edge from one of the sinks of Γ(c, r), with the ith
vertex in the second half of the section connected to the ith sink.

Note that Γ(c, r) has c sinks and maximum indegree 2. We
focus for now on these graphs and only later consider their single-
sink version as per Lemma 4.7. Carlson and Savage showed that
the graphs Γ(c, r) are of size Θ

(
cr3+c2r2

)
and satisfy the following

property.

Theorem 4.9 (Carlson & Savage 1982). If P is a standard peb-
bling of Γ(c, r) in space less than (r + 2) + s, for 0 < s ≤ c − 3,
then

time(P) ≥
(

c − s

s + 1

)r

· r! .

This lower bound holds for space up to c + r − 1. By allowing
only a constant factor more pebbles it is possible to pebble the
graph in linear time in the standard pebble game.

Lemma 4.10 (Nordström 2012). The graphs Γ(c, r) have standard
pebbling strategies in simultaneous space O(c + r) and time linear
in the size of the graphs.
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z1 γ1z2 γ2z3 γ3

Π(1)
r Π(2)

r Π(3)
r

Γ(3, r)

Figure 4.1: Inductive definition of Carlson-Savage graph Γ(3, r + 1)
with 3 spines and sinks

Carlson and Savage also proved that the standard pebbling
price of the graph Γ(c, r) is r+2. This upper bound does not carry
over to reversible pebbling, because the path graph requires more
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pebbles in reversible pebbling than in standard pebbling. However,
we can adapt the standard pebbling strategy to reversible pebbling
using the following fact.

Proposition 4.11 (Li & Vitányi 1996). The visiting reversible
pebbling price of the path graph on n vertices is �log(n + 1)�, and
the persistent reversible pebbling price is �log(n − 1)� + 2.

Using this result, we get the following upper bound (which is
slightly stronger then what we would get by applying Theorem 4.5).

Lemma 4.12. The graphs Γ(c, r) have reversible pebbling price at
most r(log(cr) + 3).

Proof. The proof is by induction on r. Clearly, Γ(c, 1) can be
reversibly pebbled with 3 pebbles.

In order to pebble any sink of Γ(c, r) for r ≥ 2, we can reversibly
pebble the corresponding spine with the space-efficient strategy for
reversibly pebbling a path graph (as per Proposition 4.11). In order
to pebble and unpebble a vertex on the spine, we will also need
to have a pebble on the sink of the subgraph Π

(i)
r−1 or Γ(c, r − 1)

connected to the spine vertex, and we will achieve this by reversibly
pebbling the appropriate subgraph. By Proposition 4.6, pyramids
of depth r − 1 can be reversibly pebbled with 2(r − 1) + 1 pebbles,
and by the induction hypothesis sinks of Γ(c, r − 1) can be pebbled
with (r−1)(log(c(r−1))+3) ≥ 2(r−1)+1 pebbles. Therefore, by
induction on r we get that the reversible pebbling price of Γ(c, r)
is at most (r−1)(log(c(r−1))+3)+log(cr)+3 ≤ r(log(cr)+3). �

We can now choose different values for the parameters c and r
and obtain graphs with trade-offs in different space regimes. The
first family of graphs we consider are those that exhibit exponential
time lower bounds.

Theorem 4.13. There exists a constant K > 0 and an explicitly
constructible family of DAGs {Gn}∞

n=1 of size Θ(n) and maximum
indegree 2 such that for any constant ε > 0:

(i) The graph Gn has reversible pebbling price s1 = O
(

6
√

n log n
)
.
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(ii) There is a reversible pebbling of Gn in time O(n1+ε) and
space

s2 = O
(
s1 · 6

√
n
)

= O
(

3
√

n log n
)

.

(iii) Any standard pebbling of Gn in space at most

s =
Ks2

log n
= O

(
3
√

n
)

must take time at least
(

6
√

n
)
! .

Proof. Let Gn = Γ̂(c(n), r(n)) be the single-sink graph ob-
tained from Γ(c(n), r(n)) as per Lemma 4.7 for parameters c(n) =
3
√

n and r(n) = 6
√

n. Since Γ(c(n), r(n)) has size Θ
(
c(n)(r(n))3 +

(c(n))2(r(n))2
)

= Θ(n), so does Gn. By Lemma 4.7, item (i) follows
from Lemma 4.12, and item (ii) follows from applying Theorem 4.5
to Lemma 4.10. Finally, item (iii) follows from Theorem 4.9. �

It is also interesting to consider families of graphs that can
be reversibly pebbled in very small space, close to the logarithmic
lower bound on the number of pebbles required to reversibly pebble
a single-sink DAG. In this small-space regime, we cannot expect
exponential time lower bounds, but we can still obtain superpoly-
nomial ones.

Theorem 4.14. Let δ > 0 be an arbitrarily small positive con-
stant and let g(n) be any arbitrarily slowly growing monotone
function ω(1) = g(n) ≤ n1/4. Then, there is a family of explicitly
constructible DAGs {Gn}∞

n=1 of size Θ(n) and maximum indegree 2
such that for any constant ε > 0 :

(i) The graph Gn has reversible pebbling price s1 ≤ g(n) log(n).

(ii) There is a reversible pebbling of Gn in time O(n1+ε) and
space

s2 = O
(
s1 · n1/2/g(n)2

)
= O

(
n1/2 log n/g(n)

)
.

(iii) Any standard pebbling of Gn in space at most

s = O
(
s2/n

δ log n
)

= O
(
n1/2−δ/g(n)

)

requires time superpolynomial in n.
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Proof. The proof is analogous to that of Theorem 4.14 with
parameters r(n) = g(n) and c(n) = n1/2/g(n). �

We note that in the second items of both the foregoing theo-
rems, we could have reduced the time of the reversible pebbling to
O

(
n1+o(1)

)
by applying Theorem 4.5 with ε = O(1/log log n). This

would have come at a cost of an extra logarithmic factor in the
corresponding space bounds.

Given Theorem 3.1, which proves the tight correspondence be-
tween reversible pebbling and Nullstellensatz refutations, Theo-
rem 4.1 follows from Theorem 4.13, and Theorem 4.2 from The-
orem 4.14.

4.3. Stacks of superconcentrators. Lengauer & Tarjan (1982)
also studied robust superpolynomial trade-offs for standard peb-
bling and showed that there are graphs that have standard pebbling
price O(log2 n), but for which any standard pebbling in space up
to Kn/ log n, for some constant K, requires superpolynomial time.
For reversible pebbling, we get almost the same result for the same
family of graphs.

Theorem 4.15. There exists a constant K > 0 and an explicitly
constructible family of DAGs {Gn}∞

n=1 of size Θ(n) and maximum
indegree 2 such that for any constant δ > 0:

(i) The graph Gn has reversible pebbling price s1 = O(log2 n).

(ii) There is a reversible pebbling of Gn in time O(n) and space

s2 = O(s1 · n/ log3−δ n) = O(n/ log1−δ n) .

(iii) Any standard pebbling Pn of Gn using at most pebbles s =
Ks2

logδ n
= O(n/ log n) requires time nΩ(log log n).

Note that together with Theorem 3.1 this implies Theorem 4.3.
In order to describe the graphs in Theorem 4.15, we need to intro-
duce the notion of superconcentrators.

A directed acyclic graph G is an m-superconcentrator if it has
m sources S = {s1, . . . , sm}, m sinks Z = {z1, . . . , zm}, and for
any subsets S ′ and Z ′ of sources and sinks of size

∣∣S ′∣∣ =
∣∣Z ′∣∣ = 
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it holds that there are 
 vertex-disjoint paths between S ′ and Z ′

in G.
Pippenger (1977) proved that there are superconcentrators of

linear size, constant indegree and logarithmic depth, and Gabber
& Galil (1981) gave the first explicit construction. It is easy to see
that we can modify these superconcentrators so that the maximum
indegree is 2 by substituting each vertex with indegree δ > 2 by
a binary tree with δ leaves. Note that this only increases the size
and the depth by constant factors. Let us write this down as a
formal statement.

Theorem 4.16 (Gabber & Galil 1981). There are explicitly con-
structible m-superconcentrators with O(m) vertices, maximum in-
degree 2 and depth O(log m).

Given an m-superconcentrator Gm, we define a stack of r super-
concentrators Gm to be r disjoint copies of Gm where each sink of
the ith copy is connected to a different source of the (i + 1)st copy
for i ∈ [r −1]. Since these graphs have m sinks, we will later apply
Lemma 4.7 to obtain single-sink DAGs. Lengauer & Tarjan (1982)
proved the following theorem for stacks of superconcentrators.

Theorem 4.17 (Lengauer & Tarjan 1982). Let Φ(m, r) denote a
stack of r (explicitly constructible) linear-size m-superconcentrator
with maximum indegree 2 and depth log m, as per Theorem 4.16.
Then the following holds:

(i) The standard pebbling price of Φ(m, r) is O(r log m).

(ii) There is a linear-time standard pebbling strategy P for
Φ(m, r) with space(P) = O(m).

(iii) If P is a standard pebbling strategy for Φ(m, r) in space
s ≤ m/20, then time(P) ≥ m · (

rm
64s

)r
.

With this result in hand we can now proceed to prove Theo-
rem 4.15.

Proof (Proof of Theorem 4.15). Let Gn = Φ̂(n/ log n, log n) be
the single-sink DAG obtained from Φ(n/ log n, log n) as per
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Figure 4.2: A bit-reversal permutation graph

Lemma 4.7. Note that Gn has Θ(n) vertices, indegree 2 and depth
O(log2 n). By Proposition 4.6, we have that Gn can be reversibly
pebbled with O(log2 n) pebbles, proving item (i).

By using Lemma 4.7 together with Theorem 4.5 with ε = 1/
(δ log log n) applied to item (ii) in Theorem 4.17, we conclude that
Gn can be reversibly pebbled in simultaneous time O

(
n21/δ

)
and

space O
(
n/(δ log1−δ n)

)
, from which item (ii) follows. Finally,

item (iii) in the theorem follows from item (iii) in Theorem 4.17. �

4.4. Permutation graphs. Another family of graphs that has
been studied in the context of standard pebbling trade-offs is that
of permutation graphs as defined next.

Definition 4.18. Given a permutation σ ∈ S([n]), the permu-
tation graph G(σ) consists of two paths (x1, . . . , xn) (the bottom
path) and (y1, . . . , yn) (top path) which are connected as follows:
for every 1 ≤ i ≤ n, there is an edge from xi to yσ(i).

Lengauer & Tarjan (1982) proved that permutation graphs
present the following smooth trade-off when instantiated with the
permutation that reverses the binary representation of the index i
(see Fig. 4.2 for an illustration).

Theorem 4.19 (Lengauer & Tarjan 1982). Let Gn be a
bit-reversal permutation graph on 2n vertices (for n a power of 2).
For any 3 ≤ s ≤ n, there is a standard pebbling of Gn in space s
and time O

(
n2/s

)
. Moreover, any standard pebbling Pn in space s

satisfies time(Pn) = Ω
(
n2/s

)
.

We show that these graphs also present a smooth reversible
pebbling trade-off and, in particular, for s = nΘ(1) and s ≤ n, any
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reversible pebbling Pn in space s satisfies time(Pn) = Ω
(
n2/s

)
and

there are almost matching upper bounds. To this end, we use the
following proposition.

Proposition 4.20. For every natural number k, the path graph
over n vertices can be reversibly pebbled using 2k · n1/k pebbles in
time 2k · n.

Proof. Observe that there is a standard pebbling of the path
graph over n vertices using 2 pebbles and in time 2n. The propo-
sition follows now by applying Theorem 4.5 with ε = k/ log n. �

Using Proposition 4.20, we obtain the following result.

Theorem 4.21. Let Gn be a bit-reversal permutation graph on
2n vertices (for n a power of 2). Then, Gn satisfies the following
properties:

(i) The reversible pebbling price of Gn is at most 2 log n + 2.

(ii) If s satisfies 4 log n ≤ s ≤ 2n and k is such that s = 4kn1/k,
then there is a reversible strategy in simultaneous space s
and time O

(
k22k · n2/s

)
. In particular, if s = nε for some

constant ε, the time of the strategy becomes O
(
n2/s

)
, where

the big-oh notation hides a factor that depends on ε.

(iii) Any standard pebbling Pn of Gn must satisfy time(Pn) =
Ω

(
n2/space(Pn)

)
.

Proof. The upper bounds in items (i) and (ii) hold for any
permutation graph.

For item (i), we can simulate a reversible pebbling of the top
path that uses space at most log n + 1 (as per Proposition 4.11),
and every time we need a pebble on a vertex v of the bottom path
in order to place or remove a pebble on the top path, we reversibly
pebble the bottom path until v is pebbled (which can be done
with log n + 1 pebbles), make the move on the top path, and then
unpebble the bottom path.
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To obtain item (ii), we consider a two-phase strategy. In the
first phase, we place n1/k pebbles spaced equally apart on the bot-
tom path. We refer to these pebbles as fixed pebbles, since they
will remain on the graph until the sink is pebbled. In the sec-
ond phase, we simulate a reversible pebbling on the top path with
2kn1/k pebbles, and every time we need a pebble on a vertex v on
the bottom path to make a move on the top path we reversibly
pebble v (with 2(k −1)n1/k pebbles) from the nearest fixed pebble,
make the move on the top path, and then unpebble the segment
on the bottom path.

All that is left to show is that this can be done within the space
budget of 4kn1/k in time O(22k · n2/s). For the first phase, we
reversibly pebble n1/k segments of length m = n1−1/k. By Propo-
sition 4.20, each of the segments can be reversibly pebbled using
2(k − 1)n1/k = 2(k − 1)mk−1 pebbles in time 2k−1n1−1/k. Since ev-
ery segment must be pebbled and then unpebbled, the total time
for the first phase is 2 · 2k−1n1−1/k · n1/k = 2kn, and the total num-
ber of pebbles used is less than 2kn1/k, where the number of fixed
pebbles is n1/k and 2(k − 1)n1/k pebbles are needed for pebbling
each segment.

We turn to analysing the second phase. By Proposition 4.20,
the top path can be reversibly pebbled in simultaneous space 2kn1/k

and time 2kn. For each move in the top path, we need to pebble
and unpebble a segment of length at most n1−1/k. As argued be-
fore, this can be done in simultaneous space 2(k − 1)n1/k and time
2 · 2k−1n1−1/k. Therefore, at any point in the pebbling strategy
there are at most 2kn1/k pebbles on the bottom path and at most
2kn1/k pebbles on the top path, and the total time of the pebbling
is at most 2kn + 22kn2−1/k ≤ 4k22kn2/s.

Finally, item (iii) follows from the standard pebbling lower
bound in Theorem 4.19. �

From Theorem 4.21, we obtain the following corollary that, to-
gether with Theorem 3.1, implies Theorem 4.4.

Corollary 4.22. Any reversible pebbling strategy Pn for the bit-
reversal permutation graph Gn on 2n vertices that optimizes time
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given the space constraint nΘ(1) < n exhibits a trade-off of the form
time(Pn) = Θ

(
n2/space(Pn)

)
.

5. Concluding remarks

In this paper, we prove that size and degree of Nullstellensatz
refutations of pebbling formulas are exactly captured by time and
space of reversible pebblings of the underlying graphs, regardless
of the ambient field. This allows us to prove a number of strong
size-degree trade-offs for Nullstellensatz. To the best of our under-
standing, no such results have been known previously.

An interesting question is whether the tight relation between
Nullstellensatz and reversible pebbling could make it possible to
prove even sharper trade-offs for size versus degree in Nullstellen-
satz, where just a small constant drop in the degree would lead
to an exponential blow-up in size. Such results for pebbling time
versus space have been shown for the standard pebble game, e.g.,
in (Gilbert et al. 1980). It is conceivable that a similar idea could
be applied to the reversible pebbling reductions in (Chan et al.
2015), but it is not obvious whether just adding a small amount of
space makes it possible to carry out the reversible pebbling time-
efficiently enough. We remark that the techniques in (Ben-Sasson
& Nordström 2008, 2011) cannot establish such sharp trade-offs,
since the reductions there between so-called black-white pebbling
and resolution size/space are only tight up to constant factors, and
for polynomial calculus the reductions in (Beck et al. 2013) are even
more lossy.

Also, it should be noted that our results crucially depend on
that we are in a setting with variables only for positive literals. For
polynomial calculus it is quite common to consider the stronger
setting with “twin variables” for negated literals (as in the gen-
eralization of polynomial calculus as defined in Clegg et al. 1996
to polynomial calculus resolution in Alekhnovich et al. 2002). It
would be nice to extend our size-degree trade-offs for Nullstellen-
satz to this setting, but it seems that some additional ideas would
be needed to make this work.
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