
Relating Proof Complexity Measures
and Practical Hardness of SAT

Matti Järvisalo1, Arie Matsliah2, Jakob Nordström3, and Stanislav Živný4

1 Department of Computer Science & HIIT, University of Helsinki, Finland
2 IBM Research and Technion, Haifa, Israel

3 KTH Royal Institute of Technology, Stockholm, Sweden
4 University of Oxford, United Kingdom

Abstract. Boolean satisfiability (SAT) solvers have improved enormously in per-
formance over the last 10–15 years and are today an indispensable tool for solv-
ing a wide range of computational problems. However, our understanding of what
makes SAT instances hard or easy in practice is still quite limited. A recent line
of research in proof complexity has studied theoretical complexity measures such
as length, width, and space in resolution, which is a proof system closely related
to state-of-the-art conflict-driven clause learning (CDCL) SAT solvers. Although
it seems like a natural question whether these complexity measures could be rel-
evant for understanding the practical hardness of SAT instances, to date there has
been very limited research on such possible connections. This paper sets out on
a systematic study of the interconnections between theoretical complexity and
practical SAT solver performance. Our main focus is on space complexity in res-
olution, and we report results from extensive experiments aimed at understanding
to what extent this measure is correlated with hardness in practice. Our conclu-
sion from the empirical data is that the resolution space complexity of a formula
would seem to be a more fine-grained indicator of whether the formula is hard
or easy than the length or width needed in a resolution proof. On the theory side,
we prove a separation of general and tree-like resolution space, where the lat-
ter has been proposed before as a measure of practical hardness, and also show
connections between resolution space and backdoor sets.

1 Introduction

In the last 10–15 years, SAT solvers have become a standard tool for solving a wide
variety of real-world computational problems [1]. Although all known SAT solvers have
exponential running time in the worst case, dramatic improvements in performance have
led to modern SAT solvers that can handle formulas with millions of variables. At the
same time, very small formulas with just a few hundred variables are known which are
completely beyond the reach of even the very best solvers. Understanding what makes
a SAT instance hard or easy for state-of-the-art SAT solvers is therefore a fundamental
problem. In particular, a natural, but not at all well-understood, question is whether one
can find a good measure on the practical hardness of SAT instances.

The current work addresses this question from the viewpoint of conflict-driven
clause learning (CDCL) solvers [2, 3, 4], which—applying efficient data structures,

clause learning, forgetting, restarting, phase saving, and other important schemes—
form the most prominent SAT solver paradigm today. Our goal is to explore possi-
ble connections between practical hardness—as witnessed by running times of CDCL
solvers on SAT instances—and proof complexity measures employed in the formal
study of the resolution proof systems that can be seen to underlie CDCL SAT solvers.

The main bottleneck for CDCL solvers—apart from the obvious exponential worst
case behavior—is the amount of memory used. In practice, it is completely infeasible to
store all clauses learned during a CDCL run, and one therefore needs to design a highly
selective and efficient clause caching scheme that learns and keeps the clauses needed
for the CDCL solver to finish fast. Thus, understanding time and memory requirements
for clause learning algorithms, and how these resources are related to each other, is a
question of great practical importance.

Proof complexity provides a possible approach for analyzing the potential and lim-
itations of SAT solvers by studying the formal systems of reasoning which the solvers
use to generate proofs. A lower bound for a proof system tells us that any algorithm,
even an optimal (non-deterministic) one making all the right choices, must necessarily
use at least the amount of a certain resource specified by this bound. In the other di-
rection, theoretical upper bounds on a proof complexity measure give hope that SAT
solvers can perform well with respect to the measure if an efficient search algorithm
can be designed. Whereas the plain Davis–Putnam–Logemann–Loveland procedure
(DPLL) [5, 6] is known to correspond to tree-like resolution, by recent theoretical ac-
counts (including [7, 8]) CDCL solvers can be understood as deterministic instantiations
of the general resolution proof system. In this context, the proof complexity measures
of length (a.k.a. size) and space are interesting since they in some sense model the run-
ning time and memory consumption of (optimal) CDCL solvers, while width is another
measure that seems relevant for practical performance in view of e.g. [9]. An informal
description of these measures is as follows (see Section 2 for the formal definitions):

Length: The number of clauses in a resolution proof.
Width: The size of a largest clause in a resolution proof.
Space: The number of clauses needed “on the board” in a self-contained presentation

of a proof, where inferences can only be made from what is currently on the board.

The length, width, or space of proving a formula is defined in the natural way by taking
the minimum over all possible proofs with respect to the measure in question. As will
be discussed in more detail below, these measures have been proven to form a strict
hierarchy in the sense that for any formula we have the (informally stated) relations

space ≥ width ≥ log length (1)

(scaling length so that all measures have the same magnitude—length can be exponen-
tial while space and width are always at most linear), and these inequalities can all be
asymptotically strict.

When discussing whether these theoretical complexity measures have any bearing
on the practical hardness of formulas, perhaps the most obvious candidate to start with is
length. Indeed, if the shortest resolution proof is very long then clearly no CDCL solver
can do well, since a resolution proof can be extracted from the run of such a solver.

2

Thus a strong lower bound on length is a sure indicator of hardness. But in the opposite
direction, the fact that there exists a short resolution proof does not mean that this proof
is easy to find. On the contrary, [10] indicates that it might be computationally infeasible
to find any proof in reasonable length even given the guarantee that a short proof exists.
Therefore, length seems too “optimistic” as a measure of hardness in practice.

Turning next to width, if the shortest proof for a formula is very long, then the width
of a “narrowest” proof must by necessity also be large (simply by counting the number
of possible clauses). However, the fact that a resolution proof needs to be wide, i.e.,
has to contain some large clause, does not necessarily imply that the minimum length
is large [11]. Width is thus a stricter hardness measure than length. Recently, is was
shown in [9] (under some theoretical assumptions) that if the minimum width of any
resolution proof for a formula is w, then a CDCL solver (that does not at all care about
width per se) will with high probability decide the formula in time something like nw.
This seems to indicate that resolution width could be a measure that correlates well
with practical hardness for CDCL solvers. On the other hand, some of the technical
assumptions needed to establish this result seem somewhat idealized compared to how
CDCL solvers work in practice.

Since, as already discussed, memory consumption is a major concern in practice, the
related theoretical measure of space clearly seems interesting to study in this context.
Indeed, this was arguably the main reason why research into proof space complexity
was initiated in the late 1990s. It was shown in [12] that if there is no narrow proof for a
formula, then there is no small-space proof either. However, large space does not imply
anything about the width [13], and hence space is an even stricter hardness measure than
width. Intuitively, one could argue that for a formula with high space complexity, CDCL
solvers would need to learn many clauses and keep them in memory, and therefore such
formulas should be hard in practice. A stronger conjecture would be that it also holds
that if a formula has low space complexity—which also guarantees that there are both
short and narrow proofs—then a CDCL solver should (at least in principle) be able to
learn the few clauses needed to quickly produce a short proof.

The purpose of our work is to provide an empirical evaluation of these proof com-
plexity measures and their relevance for hardness in practice, focusing in particular on
space. Our work can be seen to implement a program outlined previously in [14]. It
should be noted, however, that [14] suggested tree-like space, i.e., space measured in
the subsystem of resolution producing only tree-like proofs, as a measure of practical
hardness. We will return to the question of general versus tree-like space later, but let us
just remark here that in tree-like resolution space is tightly correlated with length in the
sense that there is a short tree-like proof if and only if there is a space-efficient one [15]
(which is provably not true in general resolution by [13]). If tree-like space were a good
indicator of hardness in practice, this would mean that CDCL solvers could decide a
formula efficiently if and only if it had a short tree-like proof, which in turn would seem
to imply that in practice CDCL solvers cannot provide any significant improvements in
performance over plain DPLL solvers. This does not seem consistent with observations
that the former can vastly outperform the latter; observations that have been corrobo-
rated by theoretical papers arguing that CDCL proof search is closely related to general
resolution [7, 8] instead of mere tree-like resolution.

3

1.1 Contributions of This Paper

The main contribution of this work is to provide a first extensive empirical evaluation of
the connections between resolution space complexity and practical hardness for CDCL
solvers. We remark that although [14] suggested this, as far as we are aware no such
evaluation has previously been carried out (and, indeed, has only been made possible
by recent advances in proof complexity providing formulas with the necessary theoret-
ical guarantees). We investigate to what extent resolution space correlates with running
times for state-of-the-art CDCL solvers. In the experiments, we employ highly struc-
tured SAT instances—so-called pebbling formulas—allowing us to make controlled
observations on the relation between space complexity and SAT solver performance.
Pebbling formulas are guaranteed to be very easy with respect to length (the short proof
consists of just listing the clauses of the formula in the right order and doing a very small
constant number of intermediate derivation steps in between each such clause) and also
with respect to width (the proofs just sketched will have width equal to the width of
the formula, which in all cases is a one-digit constant) but can be varied with respect
to their space complexity from constant all the way up to almost linear. This makes it
possible to study which level of granularity (if any) is the best one in the hierarchy of
measures in (1) when we are looking for indicators of hardness in practice. If length or
width were the most relevant measure, then CDCL solvers should behave in essentially
the same way for all formulas in our experiments. If, however, the more fine-grained
measure of space is a more precise indicator of hardness, then we would expect to see
a clear correlation between running times and theoretical space complexity. As we will
argue below, the conclusion from our experiments is that the latter case seems to hold.

Complementing the empirical evaluation, we also present some theoretical results
related to resolution space. In particular, we prove the first non-trivial separation of
general and tree-like resolution space. Previously, only a constant-factor separation was
known [16], meaning that it could not be ruled out that the two measures were essen-
tially the same except for small multiplicative constants. We improve this to a logarith-
mic separation, which, while still leaving room for further improvements, shows that
the measures are fundamentally different. This in turn motivates our focus on general
space as a measure of practical hardness for CDCL solvers. Furthermore, elaborating
on and extending related results in [14], we also address the relation between resolution
space and backdoor sets [17], a somewhat more practically motivated measure previ-
ously proposed as a proxy for practical hardness.

2 Proof Complexity Preliminaries

We now give a brief overview of the relevant proof complexity background; for more
details, see e.g. [18]. We assume familiarity with CNF formulas, which are conjunctions
of clauses, where a clause is a disjunction of literals (unnegated or negated variables,
with negation denoted by overbar). It is convenient to view clauses as sets, so that there
is no repetition of literals and order is irrelevant. A k-CNF formula has all clauses of
size at most k, which is implicitly assumed to be some (small, say one-digit) constant
throughout this paper. Below we will focus on k-CNF formulas to get cleaner statements
of the theoretical results (analogous results hold in general but are not as simple to state).

4

A resolution refutation π : F `⊥ of an unsatisfiable CNF formula F , also known
as a resolution proof for F , is an ordered sequence of clauses π = (D1, . . . , Dτ) such
that Dτ = ⊥ is the empty clause containing no literals, and each line Di, 1 ≤ i ≤ τ ,
is either one of the clauses in F (axioms) or is derived from clauses Dj , Dk in π with
j, k < i by the resolution rule B∨x C∨x

B∨C (where the clause B ∨ C is the resolvent of
the clauses B ∨ x and C ∨ x on x). With every resolution proof π we can associate
a graph Gπ by having a sequence of vertices vi labelled by the clauses Di on a line
in order of increasing i, and with edges from vj and vk to vi if Di was derived by
resolution from Dj and Dk. Note that there might be several occurrences of a clause D
in the proof π, and if so each occurrence gets its own vertex in Gπ .

The length L(π) of a resolution proof π is the number of clauses in it (counted with
repetitions). The width W(C) of a clause C is |C|, i.e., the number of literals, and the
width W(π) of a proof π is the size of a largest clause in π. The space (sometimes
referred to as clause space) of a proof at step i is the number of clauses Cj , j < i,
with edges to clauses Ck, k ≥ i, plus 1 for the clause Ci derived at this step. That is,
intuitively space measures the number of clauses we need to keep in memory at step i,
since they were derived before step i but will be used to infer new clauses after step i
(or possibly at step i). The space of a proof is the maximum space over all steps in
the proof. Tree-like (clause) space is defined in exactly the same way except that the
graph Gπ representing π is constrained to be a (binary) tree.

We next briefly review what is known about these measures. As shown in [19, 20]
and many later papers, the length of refuting a CNF formula F can be exponential in
the size of F (measured as the total number of literals counted with repetitions), and it
is easy to show that the worst case is at most exponential. For width, clearly the size of
the formula (and, in particular, the number of distinct variables in it) is an upper bound,
and there are matching lower bounds up to constant factors [21]. If a formula has a
narrow proof then this proof must also be short (simply by counting the total number
of distinct clauses). The opposite does not necessarily hold as proven in [11] (although
very strong lower bounds on width do imply strong lower bounds on length by [21]).

Just as for width, although somewhat less obviously, space is also at most linear
(even for tree-like space) as shown in [15], and again there are matching lower bounds,
e.g., in [22, 23]. In [12] it was shown that if a formula can be refuted in small space, this
implies there is also a small-width proof (although in general this will not be the same
proof). The converse of this is false in the strongest sense possible—there are formulas
with constant-width proofs that require almost linear (i.e., worst-case) space [13]. Since
space upper-bounds width, and also width upper-bounds length as discussed above, it
follows that upper bounds on space imply upper bounds on length. Conversely, in [15]
it was shown that small length implies small space for the restricted case of tree-like
resolution. In general resolution, however, the fact that a formula is refutable in small
length says essentially nothing about the space complexity [13].

3 Pebbling Formulas

To study the proof complexity measures of length, width and space, and to relate them to
the practical hardness of CNF formulas, we focus on so-called pebbling formulas (also

5

known as pebbling contradictions). Our main motivation for using pebbling formulas is
that, as explained below, recent theoretical advances allow us to construct such formulas
with varying (and fully specified) space complexity properties while keeping the length
and width complexity fixed.

Pebbling formulas are so called since they encode instances of pebble games played
on directed acyclic graphs (DAGs). Wee refer to the survey [24] for more information
about such games. The pebbling formula over G associates one variable with each ver-
tex, postulates the source vertices (with no incoming edges) to be true and the (unique)
sink vertex (with no outgoing edges) to be false, and then specifies that truth propagates
from the sources to the sink. More formally, as defined in [21] the pebbling formula
PebG over a DAG G consists of:

– for all source vertices s in G, a unit clause s (source axioms),
– for all non-sources v with incoming edges from the vertex set pred(v) of immediate

predecessors of v, the clause
∨
u∈pred(v) u ∨ v (pebbling axioms),

– for the (unique) sink z of G, the unit clause z (sink axiom).

If G has n vertices and max fan-in `, then PebG is an unsatisfiable (1+`)-CNF formula
with n+ 1 clauses over n variables. For all graphs used in this paper we have ` = 2.

Pebbling formulas are not of much use to us as such—they are very easy with re-
spect to all proof complexity measure we have discussed, and are easily seen to be
solvable simply by unit propagation. However, they can be transformed into much more
interesting formulas by substituting Boolean functions for the variables as follows.

Given any CNF formula F , we can fix a Boolean function f : {0, 1}d 7→ {0, 1} and
substitute every variable x in F by f(x1, . . . , xd), where x1, . . . , xd are new variables
that do not appear anywhere else. Then we expand this out to get an equivalent CNF
formula over this new set of variables. For a small example, if we let ⊕ denote binary
exclusive or, then the clause x ∨ y after substitution becomes ¬(x1 ⊕ x2) ∨ (y1 ⊕ y2)
which is expanded out to the set of clauses

{x1 ∨ x2 ∨ y1 ∨ y2, x1 ∨ x2 ∨ y1 ∨ y2, x1 ∨ x2 ∨ y1 ∨ y2, x1 ∨ x2 ∨ y1 ∨ y2} . (2)

(For general f there might be some choices in exactly how to do this expansion, but such
implementation details do not affect this discussion so we ignore them for brevity.)

The pebbling price of a DAG G measures how much space is needed to pebble G.
As shown in [13, 25], making substitutions in pebbling formulas using robust func-
tions f , meaning that the truth value of f can never be fixed by just assigning to one
variable, yields substituted CNF formulas for which the space complexity of the formula
coincides with the pebbling price of G.5 The canonical example of a robust function is
exclusive or. A non-robust function is ordinary or, but [26, 27] show that even for this
function the same connection holds at least for certain fairly general families of graphs.
This means that if we pick the right graphs, we can generate CNF formulas with known

5 Actually, this is an oversimplification and formally speaking not correct—the space will be
somewhere in between the deterministic black and the (smaller) non-deterministic black-white
pebbling price, but these two measures are within a small constant factor for all graphs consid-
ered in this paper so this is immaterial. We emphasize that all constants involved are explicitly
known and are very small, with the single exception of the gtb graphs discussed below.

6

Table 1. DAG families and properties of the resulting CNF formula families

Name Description Space cplx
pyr〈h〉seq Sequence of pyramid graphs of (constant) height h Θ(h)

width〈w〉chain Chain graph of (constant) width w Θ(w)

bintree Complete binary tree Θ(logn)

pyrofpyr Pyramid of height 4
√
n with each node expanded to pyramid Θ(4

√
n)

pyrseqsqrt Sequence of pyramids of (growing) height 4
√
n Θ(4

√
n)

pyramid Pyramid graph of (growing) height
√
n Θ(

√
n)

gtb DAGs from [28] with butterfly graphs as superconcentrators Θ(n/ log2 n)

space complexity. In addition, it is easy to show that any pebbling formula, even after
substitution, can be refuted in (small) constant width and (small) linear length.6 Thus,
in this way we can get formulas that are uniformly very easy with respect to length and
width, but for which the space complexity varies.

Such formulas would seem like excellent benchmarks for testing the correlation
between theoretical complexity measures and hardness in practice, and in particular
for investigating at which level of granularity theoretical hardness should be measured
given the hierarchy in (1). If the minimum width, or length, of a proof for a formula F
were good indicators of whether F is hard or easy, then we would expect to get simi-
lar running times for pebbling formulas over all graphs of the same size (when fixing
the substitution function). If the more fine-grained measure of space is a more precise
indicator, however, we would expect running time to correlate with space complexity.
Carrying out large-scale experiments along these lines and analyzing the results is the
main practical contribution of this paper. When designing such experiments, one needs
to choose (a) graphs from which to generate the benchmarks, and (b) substitution func-
tions to apply. We discuss this next.

An overview of our choice of graph families and their space complexities is given
in Table 1. Let us first explain two important building blocks. A pyramid of height h
is a layered DAG with h+ 1 layers, where there is one vertex in the highest layer, two
vertices in the next layer, et cetera, down to h+1 vertices in the lowest layer, and where
the ith vertex at layer L has incoming edges from the ith and (i+ 1)st vertices at layer
L − 1. A chain of width w is a layered graph with w vertices at each layer, and with
vertices i and i− 1 at layer L− 1 having edges to vertex i in layer L (modw).

To obtain two different types of graphs of constant space complexity, we consider
sequences of pyramids of constant height h with the sink of each pyramid connected
to the leftmost source of next pyramid (pyr〈h〉seq) and chains of constant width w
(width〈w〉chain). Another graph family that should yield easy formulas are complete
binary trees (bintree), the space complexity of which is equal to the height of the tree.

To get “medium-hard” DAGs, we use pyramids in two different ways. In pyramid-
of-pyramids graphs (pyrofpyr) we take a pyramid of height h and expand each of its

6 We will not elaborate on exact constants due to space constraints, but all k-CNF formulas
considered have 4 ≤ k ≤ 9 and the refutation width coincides with the formula width. As to
length, a pebbling formula generated with binary XOR substitution and having L clauses is
refutable in length 2.25 · L, and the blow-up for other substitution functions is similar.

7

Table 2. Substitution functions

Name Description Output CNF encoding (for d = 3 variables)
or d OR of d vars x1 ∨ · · · ∨ xd x1 ∨ x2 ∨ x3

xor d parity of d vars x1 ⊕ · · · ⊕ xd x1 ∨ x2 ∨ x3, xi
W
j 6=i xj , i = 1, 2, 3

maj d majority of d vars 2(x1+· · ·+xd) > d x1 ∨ x2, x1 ∨ x3, x2 ∨ x3

eq d all d vars equal x1 = · · · = xd x1 ∨ x2, x1 ∨ x2, x1 ∨ x3, x1 ∨ x3

e1 d exactly one of d x1 + · · ·+ xd = 1 x1 ∨ x2 ∨ x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3

s id if-then-else x1?x2 : x3 x1 ∨ x2, x1 ∨ x3

vertices v to pyramid of same height h with sink zv . Every incoming edge to v is drawn
to all sources of the pyramid, and all outgoing vertices from v are drawn from zv . It is
an easy argument that the space complexity is roughly 2h and the size of the graph is
roughly h4, so the space complexity grows like 4

√
n for graphs of size n. Another way

of getting graphs of the same space complexity is to use the same construction as in
pyr〈h〉seq above but employ graphs of height 4

√
n. These are our pyrseqsqrt graphs.

Finally to get “really hard” graphs we consider two well-known graph families. The
first one is simply pyramids of height (and hence space complexity)

√
n. The second is

based on DAGs with maximal space complexityΘ(n/ log n) [28]. These graphs cannot
be used as-is, however. The bound in [28] is asymptotic, with the smallest instances of
huge size (due to the need for so-called superconcentrators of linear size). Therefore,
we modify the construction to use much simpler, but asymptotically worse, supercon-
centrators made from butterfly graphs. It is not hard to verify that the proofs in [28] still
go through, and we get much smaller graphs (gtb) that we can actually use to generate
CNF formulas, at the price of paying a log factor in the space complexity.

When choosing the substitution functions to apply for pebbling formulas generated
from graphs in these families, we want to achieve two objectives. On the one hand, we
would like the functions to be robust (as explained above). On the other hand, how-
ever, we do not want too large a blow-up in formula size when substituting functions
for variables. Again due to space constraints, we cannot go into too much details, but
Table 2 presents our choice of substitution functions, which seem to provide a good
trade-off between the two goals, and describes their CNF encodings. Note that we also
use the (non-robust) standard non-exclusive or functions, which nevertheless provably
preserves the space complexity (albeit with worse guarantees for the hidden constants)
for all graph families considered here except the gtb family.

4 Improved Separation of General and Tree-like Resolution Space

Before reporting on the empirical part of this work, we return to the question motivated
by [14] of whether tree-like space or general space is likely to be the most relevant
space measure when it comes to hardness. We already explained in the introduction the
reasons for our skepticism regarding tree-like space as a good hardness measure for
CDCL. In this section, we complement this with a more theoretical argument, showing
that the tree-like and general resolution space measures are different. Our logarithmic

8

separation, stated next, improves on the constant-factor separation in [16] which is all
that was known previously.

Theorem 1. There are families of 4-CNF formulas {Fn}∞n=1 of size Θ(n) such that
their space complexity in general resolution is O(1) whereas the tree-like space com-
plexity grows like Θ(log n).

Proof. To prove Theorem 1, we apply the equivalence of the tree-like space of a CNF
formula F and Prover-Delayer game on F as described in [16]. The Prover asks about
variable assignments, and the delayer answers true, false or ∗ to each query. If the
answer is ∗, Prover picks an assignment adversarially but Delayer scores a point. The
game ends when Prover has forced a partial truth value assignment that falsifies some
clause of F . If Delayer can score exactly p points with an optimal strategy, then the
tree-like space complexity is p+ 2, and the opposite also holds.

Consider a graph that is just a line (v1, v2, . . . , vn) of length nwith edges from each
vertex vi to the next vertex vi+1 on the right. Let Fn be the pebbling formula over this
graph with substitution by (binary) XOR ⊕ as described in Section 3.

It is immediate that the general resolution space complexity is constant. Just start
with the leftmost node v1, for which the XOR of the two associated variables holds
in view of the source axioms. Then derive step by step, using pebbling axioms, that if
the XOR holds at one vertex vi, then this implies it also holds at the next vertex vi+1.
Finally we reach the rightmost vertex vn, where the sink axioms say that XOR does not
hold. Contradiction.

Now we give a Delayer strategy that scores log2 n points. For every vertex, the
first time Prover asks about any of the two variables associated to the vertex Delayer
answers ∗ and scores. The first time Prover asks about a second variable, Delayer looks
whether the vertex vi is in the leftmost or rightmost half of (the remaining part of) the
graph. In the former case, Delayer answers so that the XOR of the two variables is
satisfied, which gives a problem instance of the same type of at least half the size over
(vi+1, . . . , vn). In the latter case, Delayer makes sure the XOR is false. Then Prover
has to continue playing in (v1, . . . , vi−1) to falsify the formula since the rest is now
satisfiable. Since Prover can only halve the size of the graph for each second question,
and Delayer scores a point for each first question, the tree-like space complexity is
Ω(log n), and since Prover can use precisely this strategy, the space bound is tight. �

As a final remark, let us note that this proof works equally well for CNF formulas
generated from the pyr〈h〉seq and width〈w〉chain graphs in Section 3.

5 Experimental Evaluation

This section summarizes results of our experiments running state-of-the-art CDCL SAT
solvers on pebbling formulas with varying resolution space.7 As benchmarks, we used

7 The only experiments previously reported for CDCL solvers on pebbling formulas we are
aware of were on “grid formulas”, i.e., formulas over pyramids with or 2 using zChaff, with a
somewhat different motivation [29].

9

CNF formulas that we generated for all combinations of the graphs mentioned in Ta-
ble 1 (we used pyr〈h〉seq with h ∈ {1, 3, 5, 10} and width〈w〉chain with h ∈ {2, 5, 10};
overall 12 graph families) and the substitution functions mentioned in Table 2 (we
used e1 3, maj 3, or 2, or 3, or 4, s id, xor 2, eq 3; overall 8 functions) yielding a
total of 96 families of CNF formulas. Due to the massive amount of data produced,
here we only provide a snapshot of the results. Complete data for all experiments
as well as a more detailed description of the formula instances used can be found at
http://www.csc.kth.se/˜jakobn/publications/cp12/.

5.1 Experiment Setup

For the experiments, we used the CDCL solvers Minisat 2.2.0 [30] and Lingeling8 [31].
We ran the solvers on all CNF families in two modes: ”as-is”, and with all preprocessing
(and all inprocessing for Lingeling) disabled. The experiments were run under Linux
on a Intel Core i5-2500 3.3-GHz quad-core CPU with 8 GB of memory. We limited the
run-time of each solver to 1 hour per instance.

5.2 Results

First recall that the only parameter that varies among the different formula families is
their resolution space complexity. Namely, for each of the 96 families, every formula
with n variables has O(1) resolution width and O(n) resolution length, with small
hidden constants depending on the substitution function only; only the resolution space
varies from O(1) to Ω(n/ log2 n) as explained in Section 3.

Overall, the results show a notable difference in running times between different
families. In particular, we observed that the hardest families with respect to space com-
plexity are also hardest in practice. In other words, for these families we observed a
clear correlation between space complexity and practical hardness. While there are
some observed exceptions (mainly in the lower-end spectrum of the space complexity),
there is a positive correlation between run-times and resolution space for almost all of
the families.

An example of the results for both of the solvers with preprocessing turned off
is given in Figure 1. For clarity, we only include the following 5 families in each plot
(listed in non-increasing order of space complexity, cf. Table 1): pyr1seq, bintree, pyrse-
qsqrt, pyramid, and gtb.

One reason to run experiments over all combinations of graphs and substitution
function is to distill the dependence on space and filter out other factors if possible. For
instance, different substitution function can (and will) have different properties in prac-
tice although their theoretical guarantees are the same. By aggregating results over all
substitution functions instead of just considering one or two functions, we get an over-
all picture. This is summarised in Table 3, which gives average run-times per instance,
normalized by the number of variables and calculated over all considered substitution
functions with and without preprocessing. In particular, for each family, we take run-
times/size (where size is the number of variables in the formula) for each instance, and

8 Version 774, with an option to disable pre- and inprocessing, was provided by Armin Biere.

10

http://www.csc.kth.se/~jakobn/publications/cp12/

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

Ti
m

e
[s

]

Number of variables

Minisat (no prepro.), or_3

gtb
pyramid

pyrseqsqrt
bintree

pyr1seq
 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

Ti
m

e
[s

]

Number of variables

Lingeling (no prepro.), eq_3

gtb
pyramid

pyrseqsqrt
bintree

pyr1seq

Fig. 1. Results without preprocessing

sum all these numbers for the chosen family and then take an arithmetic mean; that is,
(run-time1/size1 + . . .+ run-timek/sizek)/k. The families in Table 3 are listed in non-
increasing order of space complexity (cf. Table 1). The numbers, which are multiplied
by 104, show that the average run-times (without preprocessing, first column) correlate
strongly with space complexity, the bintree family being the only significant exception.
However, bintree graphs have an exceptionally large number (half) of source nodes,
which get translated into simpler clauses compared to clauses from non-source nodes.
(For a majority of the substitution functions, namely or 2, xor 2, maj 3, e1 d, and s id,
most or all of the resulting clauses are binary.)

Table 3. Average run-times for all families

Time [seconds] × 10e4
formula family no preprocessing with preprocessing
gtb 637.65 9.36
pyramid 569.13 1.14
pyrofpyr 234.17 9.45
pyrseqsqrt 122.77 1.64
bintree 12.27 0.27
width10chain 59.87 5.79
pyr10seq 44.12 2.70
width5chain 56.77 5.97
pyr5seq 31.60 2.09
pyr3seq 33.35 1.24
width2chain 45.24 3.25
pyr1seq 39.43 0.36

11

 0.01

 0.1

 1

 10

 100

 10000 100000 1e+06

Ti
m

e
[s

]

Number of variables

Minisat, or_3

gtb
pyramid

pyrseqsqrt
bintree

pyr1seq

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06

Ti
m

e
[s

]

Number of variables

Lingeling, eq_3

gtb
pyramid

pyrseqsqrt
bintree

pyr1seq

Fig. 2. Results with preprocessing

5.3 Effects of Preprocessing

While a clear correlation between space complexity and solver running times was ob-
served on a variety (but not all) of the formula families, we observed that preprocessing
and inprocessing resulted in rather different results. In particular, as exemplified in Fig-
ure 2, although smaller correlations can still be observed (especially for Lingeling),
preprocessing appears to even out many of the observed differences in the data for
the solvers without preprocessing. While this is an observation that clearly sets apart
the preprocessing techniques from the behavior of the core CDCL techniques, we do
not find it too surprising. Simply, the theoretical space measure that we study can be
expected to correlate more or less well with what is going on during clause learning.
When preprocessing is applied to a formula F , however, what is fed to the clause learn-
ing solver is another formula F ′ for which we have no theoretical guarantees as to the
space complexity (it can a priori be both lower and higher). Furthermore, the fact that
our benchmarks have been chosen specifically to be very easy with respect to length and
width also means that they are likely to be amenable to the kind of heuristics used in
preprocessing. We see much scope for future work here, including ideas how to modify
formulas so that they have the same theoretical guarantees but so that these guarantees
are more likely to “survive” the preprocessing stage.

5.4 Considerations

We remark that one reasonable objection is that since our benchmarks are pebbling
formulas generated from graph it is not clear that we are measuring space complexity
per se—maybe we are measuring some other, unrelated graph property. And indeed,
some graph properties, such as the number of source nodes, translate into properties of
the formulas (many small clauses) that are not captured by the space complexity.

12

This problem is hard to get around, however. Resolution space complexity seems
likely to be PSPACE-complete, and it is an easy argument that is is NP-hard to approx-
imate in any meaningful way, so we cannot expect to be able to determine the space
complexity of arbitrary formulas. Instead, we have to pick special instances where we
know the space complexity for other reasons, which is the case for the pebbling formula
families considered in our experiments.

6 Relating Resolution Space and Backdoors

Compared to the proof complexity hardness measures of resolution length, width, and
space, a more practically motivated well-known hardness measure is the size of (strong)
backdoor sets. Backdoors sets were first studied in [17], and this and subsequent works
have shown that real-world SAT instances often have small backdoors, which might
offer an explanation why modern SAT solvers perform notably well on such instances.

The definition of backdoor sets is made with respect to a polynomial-time sub-
solver A. Given a subsolver A and a unsatisfiable formula F , a (strong) backdoor set S
is a subset of the variables in F such that for every truth assignment ρ over S, the sub-
solver A determines unsatisfiability of F�ρ.9 The algorithm A might be, for instance,
unit propagation, polynomial-time restricted DPLL, or a 2-SAT algorithm.

In [14], it was shown that given a subsolver that only accepts formulas with tree-like
resolution space k, a CNF formula F , and a strong backdoor set S of F , the tree-like
resolution space of F is bounded from above by |S| + k. In fact, when restricting to
such abstract subsolvers that only accept formulas with tree-like resolution space k,
the minimum backdoor set size is a proper upper bound for tree-like resolution space.
However, [14] does not seem to elaborate too much on what such abstract subsolvers
might be. Our following theorem states the relationship between resolution space and
backdoor sets in a more concrete way.

Theorem 2. The following claims hold for any CNF formula F over n variables.

1. If F has a backdoor setB of size b with respect to 2-CNF, then the space complexity
of F is at most b+ O(1).

2. If F has a backdoor set B of size b with respect to unit propagation, then the space
complexity of F is at most b+ O(1).

3. If F has a backdoor set B of size b with respect to DPLL running in time poly(n),
then the space complexity of F is at most b+ O(log n).

Proof. Suppose that ρ is a (partial) truth value assignment to the b variables in the back-
door set B, and that Cρ is the unique minimal clause falsified by ρ. Then if πρ is a reso-
lution refutation of F�ρ in clause space s, by plugging in F instead of F�ρ we get from
πρ a resolution derivation of the clause Cρ in the same space s. Also, it is easy to show
that the set of clauses {Cρ | ρ all total assignments to B} can be refuted by a (tree-like)
resolution refutation πB in simultaneous space b+ O(1) and length 2b+1. Thus, if each
clause Cρ is derivable in clause space at most s, then we can combine these derivations

9 F�ρ denotes F restricted by ρ, i.e., with variables set according to ρ after which the formula
is simplified by removing satisfied clauses and unsatisfied literals from clauses.

13

πρ with the refutation πB of the set of clauses {Cρ | ρ all total assignments to B} to get
a refutation of F in space b+ s+ O(1), simply by running πB , and whenever a clause
Cρ is needed (which will only be once per clause) call on πρ as a subroutine.

What remains is to upper bound the space complexity of F�ρ.

1. Any 2-CNF formula can be refuted by resolution in clause space at most 4 [15].
2. Unit propagation can be seen as a resolution proof DAG that is a long chain with

every chain vertex having a unique predecessor except for its predecessor on the
chain. Such a proof is in (tree-like) clause space 3.

3. If DPLL runs in time nc, then it produces a tree-like resolution proof in size nc.
According to [15], tree-like resolution length L implies that one can do length L
and space logL+ O(1) simultaneously. Hence we have space b+ O(log n). �

Recently, the concept of learning-sensitive backdoors [32] was proposed as a con-
cept more tightly connected with CDCL solvers than the original definition of back-
doors. It was shown that strong learning-sensitive backdoors can be exponentially smaller
than traditional backdoors [32]. It remains an interesting open question whether general
resolution space is bounded from above by the size of learning-sensitive backdoors, i.e.,
whether small learning-sensitive backdoors imply low (general) resolution space com-
plexity.

7 Concluding Remarks

This paper advances and expands on the program outlined first in [14], namely, to shed
light on possible connections between theoretical complexity measures and practical
hardness of SAT, and in particular on whether space complexity is a good indicator
of hardness. We provide an extensive empirical evaluation on the correlation between
resolution space and practical hardness, running state-of-the-art CDCL SAT solvers
on benchmark formulas with theoretically proven properties based on recent results in
proof complexity. To the best of our knowledge, no such experiments have previously
been done, and we consider this a conceptually important step towards the more gen-
eral goal of relating complexity of SAT solving in theory and practice. Furthermore,
complementing the empirical evaluation, we prove new theoretical results related to
resolution space, in particular separating general and tree-like resolution space and thus
showing that the two measures are indeed different. We also address the relation be-
tween resolution space and backdoor sets.

Regarding the empirical work, while the results presented here do not provide con-
clusive evidence for resolution space being the ”ultimate right measure” of practical
hardness (it may be safe to assume that theory and practice most often do not behave
exactly identically), the important observation is that we do see nontrivial correlations.
We therefore argue that our results are consistent with the hypothesis that resolution
space complexity should be a relevant measure of hardness in practice for CNF for-
mulas. In particular, space might be a more precise indicator of practical hardness than
length or width, in the sense that the latter two measures give too optimistic estimates
for formulas which have very low length or width complexity but which might never-
theless be hard for state-of-the-art CDCL SAT solvers to solve in practice.

14

We have already discussed at the end of Section 5 why the experiments by ne-
cessity had to be run on designed combinatorial benchmark formulas rather than on
real-world instances. Another possible issue is that to truly understand the relation be-
tween practical hardness on one hand, and length, width and space complexity on the
other, one would need experiments that vary all three parameters. However, while this
a priori seems like a very reasonable request, the hierarchy between these measures in
(1) means that such experiments unfortunately are provably impossible to perform. As
soon as the length or width complexity increases, the space complexity will increase as
well. Thus, all we can hope to study is whether space provides a more precise indication
of hardness than is given by width or length.

We view our work as only a first step in an interesting line of research, and see many
important questions to investigate further. One such question closely related to the cur-
rent paper would be to study the recent theoretical results on trade-offs between proof
length and proof space for resolution in [25, 33], and perform experiments on whether
these results translate into trade-offs between running time and memory consumption
for CDCL solvers in practice.

Acknowledgements

We thank Armin Biere for providing a modified version of Lingeling with pre- and
inprocessing switched off, and Niklas Eén and Niklas Sörensson for useful discussions
and advice regarding MiniSAT. We also thankfully acknowledge technical assistance
at KTH Royal Institute of Technology from Torbjörn Granlund and Mikael Goldmann.
The 3rd author gratefully acknowledges the discussions with Noga Zewi that led to the
separation of tree-like and general resolution.

The 1st author was supported by the Academy of Finland (grants 132812 and 251170).
The 3rd author was supported by Swedish Research Council grant 621-2010-4797 and
by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007–2013) / ERC grant agreement no 279611. The 4th author was
supported by a Junior Research Fellowship at University College, Oxford. Part of this
work was done during the visits of the 1st, 2nd and 4th authors to KTH supported in
part by the foundations Johan och Jakob Söderbergs stiftelse, Magnus Bergvalls Stif-
telse, Stiftelsen Längmanska kulturfonden, and Helge Ax:son Johnsons stiftelse.

References

[1] Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
Volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)

[2] Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfia-
bility. IEEE Trans. Computers 48(5) (1999) 506–521

[3] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proc. DAC, ACM (2001) 530–535

[4] Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. [1] 131–153
[5] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Com-

munications of the ACM 5(7) (1962) 394–397

15

[6] Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7(3) (1960) 201–215

[7] Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolution refine-
ments that characterize DLL-algorithms with clause learning. Logical Methods in Com-
puter Science 4(4:13) (2008)

[8] Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution
engines. Artificial Intelligence 175 (2011) 512–525

[9] Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and
bounded-width resolution. Journal of Artificial Intelligence Research 40 (2011) 353–373

[10] Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable.
In: Proc. FOCS, IEEE (2001) 210–219

[11] Bonet, M.L., Galesi, N.: Optimality of size-width tradeoffs for resolution. Computational
Complexity 10(4) (2001) 261–276

[12] Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. Journal of
Computer and System Sciences 74(3) (2008) 323–334

[13] Ben-Sasson, E., Nordström, J.: Short proofs may be spacious: An optimal separation of
space and length in resolution. In: Proc. FOCS, IEEE (2008) 709–718

[14] Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Measuring the hardness of SAT instances.
In: Proc. AAAI, AAAI Press (2008) 222–228

[15] Esteban, J.L., Torán, J.: Space bounds for resolution. Inf. Comput. 171(1) (2001) 84–97
[16] Esteban, J.L., Torán, J.: A combinatorial characterization of treelike resolution space. In-

formation Processing Letters 87(6) (2003) 295–300
[17] Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proc. IJ-

CAI, Morgan Kaufmann (2003) 1173–1178
[18] Nordström, J.: Pebble games, proof complexity and time-space trade-offs. LMCS (2012)

to appear. Available at http://www.csc.kth.se/˜jakobn/research.
[19] Haken, A.: The intractability of resolution. Theoret. Comp. Sci. 39(2-3) (1985) 297–308
[20] Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1) (1987) 209–219
[21] Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple. Journal

of the ACM 48(2) (2001) 149–169
[22] Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complexity in

propositional calculus. SIAM Journal on Computing 31(4) (2002) 1184–1211
[23] Ben-Sasson, E., Galesi, N.: Space complexity of random formulae in resolution. Random

Structures and Algorithms 23(1) (2003) 92–109
[24] Nordström, J.: New wine into old wineskins: A survey of some pebbling classics with sup-

plemental results. Foundations and Trends in Theoretical Computer Science (2012) to ap-
pear. Draft version available at http://www.csc.kth.se/˜jakobn/research/.

[25] Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separations and
trade-offs via substitutions. In: Proc. ICS. (2011) 401–416

[26] Nordström, J.: Narrow proofs may be spacious: Separating space and width in resolution.
SIAM Journal on Computing 39(1) (2009) 59–121

[27] Nordström, J., Håstad, J.: Towards an optimal separation of space and length in resolution
(Extended abstract). In: Proc. STOC. (2008) 701–710

[28] Gilbert, J.R., Tarjan, R.E.: Variations of a pebble game on graphs. Technical Report STAN-
CS-78-661, Stanford University (1978)

[29] Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential
of clause learning. Journal of Artificial Intelligence Research 22 (2004) 319–351

[30] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. SAT. Volume 2919 of LNCS.,
Springer (2004) 502–518

[31] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Tech
Report 10/1, Johannes Kepler University (2010)

16

http://www.csc.kth.se/~jakobn/research
http://www.csc.kth.se/~jakobn/research/

[32] Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Backdoors in the context of learning. In:
Proc. SAT. Volume 5584 of LNCS., Springer (2009) 73–79

[33] Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: Superpolynomial
lower bounds for superlinear space. In: Proc. STOC, ACM (2012) 213–232

17

	Relating Proof Complexity Measures and Practical Hardness of SAT

