
Tinted, Detached, and Lazy CNF-XOR
Solving and Its Applications to Counting

and Sampling

Mate Soos1, Stephan Gocht2, and Kuldeep S. Meel1(B)

1 School of Computing, National University of Singapore, Singapore, Singapore
meel@comp.nus.edu.sg

2 Lund University, Lund, Sweden

Abstract. Given a Boolean formula, the problem of counting seeks to
estimate the number of solutions of F while the problem of uniform
sampling seeks to sample solutions uniformly at random. Counting and
uniform sampling are fundamental problems in computer science with a
wide range of applications ranging from constrained random simulation,
probabilistic inference to network reliability and beyond. The past few
years have witnessed the rise of hashing-based approaches that use XOR-
based hashing and employ SAT solvers to solve the resulting CNF for-
mulas conjuncted with XOR constraints. Since over 99% of the runtime
of hashing-based techniques is spent inside the SAT queries, improving
CNF-XOR solvers has emerged as a key challenge.

In this paper, we identify the key performance bottlenecks in the
recently proposed BIRD architecture, and we focus on overcoming these
bottlenecks by accelerating the XOR handling within the SAT solver
and on improving the solver integration through a smarter use of (par-
tial) solutions. We integrate the resulting system, called BIRD2, with the
state of the art approximate model counter, ApproxMC3, and the state
of the art almost-uniform model sampler UniGen2. Through an extensive
evaluation over a large benchmark set of over 1896 instances, we observe
that BIRD2 leads to consistent speed up for both counting and sampling,
and in particular, we solve 77 and 51 more instances for counting and
sampling respectively.

1 Introduction

A CNF-XOR formula ϕ is represented as conjunction of two Boolean formulas
ϕCNF ∧ϕXOR wherein ϕCNF is represented in Conjunctive Normal Form (CNF)
and ϕXOR is represented as conjunction of XOR constraints. While owing to
the NP-completeness of CNF, every CNF-XOR formula can be represented as
a CNF formula with only a linear increase in the size of the resulting formula,
such a transformation may not be ideal in several scenarios. In particular, it is

The resulting tools ApproxMC4 and UniGen3 are available open source at https://
github.com/meelgroup/approxmc and https://github.com/meelgroup/unigen.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 463–484, 2020.
https://doi.org/10.1007/978-3-030-53288-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_22&domain=pdf
https://github.com/meelgroup/approxmc
https://github.com/meelgroup/approxmc
https://github.com/meelgroup/unigen
https://doi.org/10.1007/978-3-030-53288-8_22

464 M. Soos et al.

well known that modern Conflict Driven Clause Learning (CDCL) SAT solvers
perform poorly on XOR formulas represented in CNF form despite the exis-
tence of efficient polynomial time decision procedures for XOR constraints. Fur-
thermore, constraints arising from domains such as cryptanalysis and circuits
can be naturally described as CNF-XOR formulas and these domains served as
the early inspiration for design of SAT solvers with native support for XORs
through the usage of Gaussian Elimination. These efforts lead to the develop-
ment of CryptoMiniSat, a SAT solver that sought to perform Conflict Driven
Clause Learning and Gaussian Elimination in tandem. The architecture of the
early verisons of CryptoMiniSat sought to employ disjoint storage of CNF and
XOR clauses – reminiscent to the architecture of SMT solvers.

While CryptoMiniSat was originally designed for cryptanalysis, its ability to
handle XORs natively has led it to be a fundamental building block of the
hashing-based techniques for approximate model counting and sampling. Model
counting, also known as #SAT, and uniform sampling of solutions for Boolean
formulas are two fundamental problems in computer science with a wide variety
of applications [1,11,18]. The core idea of hashing-based techniques for approx-
imate counting and almost-uniform sampling is to employ XOR-based 3-wise
independent hash functions1 to partition the solution space of F into roughly
equal small cells of solutions. The usage of XOR-based hash functions allows us
to represent a cell as conjunction of a Boolean formula in conjunctive normal
form (CNF) and XOR constraints, and a SAT solver is invoked to enumerate
solutions inside a randomly chosen cell. The corresponding counting and sam-
pling algorithms typically employ the underlying solver in an incremental fashion
and invoke the solver thousands of times, thereby necessitating the need for run-
time efficiency. In this context, Soos and Meel [19] observed that the original
architecture of CryptoMiniSat did not allow a straightforward integration of pre-
and in-processing which of late has emerged to be key techniques in SAT solving.
Accordingly, Soos and Meel [19] proposed a new architecture, called BIRD, that
relied on the key idea of keeping the XOR constraints in both CNF form and
XOR form. Soos and Meel integrated BIRD into CryptoMiniSat, and showed that
state of the art approximate model counter, ApproxMC, when integrated with
the new version of CryptoMiniSat achieves significant runtime improvements. The
resulting version of ApproxMC was called ApproxMC3.

Motivated by the success of BIRD in achieving significant runtime perfor-
mance improvements, we sought to investigate the key bottlenecks in the run-
time performance of CryptoMiniSat when handling CNF+XOR formulas. Given
the prominent usage of CNF-XOR formulas by the hashing based techniques,
we study the runtime behavior of CryptoMiniSat for the the queries issued by
the hashing-based approximate counters and samplers, ApproxMC3 and UniGen2
respectively. Our investigation leads us to make five core technical contributions.
The first four contributions contribute towards architectural advances in han-

1 While approximate counting techniques [10] only require 2-wise independent hash
functions, hashing-based sampling techniques [6,9] require 3-wise independent hash
functions.

Tinted, Detached, and Lazy CNF-XOR Solving 465

dling of CNF-XOR formulas while the fifth contribution focuses on algorithmic
improvements in the hashing-based techniques for counting and sampling:

1. Matrix row handling improvements for efficient propagation and conflict
checking of XOR constraints

2. XOR constraint detaching from the standard unit propagation system for
higher unit propagation speed

3. Lazy reason clause generation to reduce reason generation overhead for
unused reasons generated from XOR constraints

4. Allowing partial solution extraction by the SAT solver
5. Intelligent reuse of solutions by hashing-based techniques to reduce the

number of SAT calls

We integrate these improvements into the BIRD framework, the resulting
framework is called BIRD2. The BIRD2 framework is applied to state of the
art approximate model counter, ApproxMC3, and to the almost-uniform sam-
pler UniGen2 [6,9]. The resulting counter and sampler are called ApproxMC4
and UniGen3 respectively. We conducted an extensive empirical evaluation
with over 1800 benchmarks arising from diverse domains with computational
effort totalling 50,000 CPU hours. With a timeout of 5000 s, ApproxMC3
and UniGen2+BIRD were able to solve only 1148 and 1012 benchmarks, while
ApproxMC4 and UniGen3 solved 1225 and 1063 benchmarks respectively. Further-
more, we observe a consistent speedup for most of the benchmarks that could
be solved by ApproxMC3 and UniGen2+BIRD. In particular, the PAR-22 score
improved from 4146 with ApproxMC3 to 3701 with ApproxMC4. Similarly, the
corresponding PAR-2 scores for UniGen3 and UniGen2+BIRD improved to 4574
from 4878.

2 Notations and Preliminaries

Let F be a Boolean formula in conjunctive normal form (CNF) and Vars(F) the
set of variables in F . Unless otherwise stated, we use n to denote the number of
variables in F i.e., n = |Vars(F)|. An assignment of truth values to the variables
in Vars(F) is called a satisfying assignment or witness of F if it makes F eval-
uate to true. We denote the set of all witnesses of F by sol(F). If we are only
interested in a subset of variables S ⊆ Vars(F) we will use sol(F)↓S to indicate
the projection of sol(F) on S.

The problem of propositional model counting is to compute |sol(F)| for a
given CNF formula F . A probably approximately correct (or PAC) counter is a
probabilistic algorithm ApproxCount(·, ·, ·) that takes as inputs a formula F , a
tolerance ε > 0, and a confidence 1−δ ∈ (0, 1], and returns a count c with (ε, δ)-
guarantees, i.e., Pr

[
|sol(F)|/(1 + ε) ≤ c ≤ (1 + ε)|sol(F)|

]
≥ 1 − δ. Projected

2 PAR-2 score, that is, penalized average runtime, assigns a runtime of two times the
time limit (instead of a “not solved” status) for each benchmark not solved by a
tool.

466 M. Soos et al.

model counting is defined analogously using sol(F)↓S instead of sol(F), for a
given sampling set S ⊆ Vars(F).

A uniform sampler outputs a solution y ∈ sol(F) such that Pr[y is output] =
1

|sol(F)| . An almost-uniform sampler relaxes the guarantee of uniformity and in
particular, ensures that 1

(1+ε)|sol(F)| ≤ Pr[y is output] ≤ 1+ε
|sol(F)| .

Universal Hash Functions. Let n,m ∈ N and H(n,m) � {h : {0, 1}n →
{0, 1}m} be a family of hash functions mapping {0, 1}n to {0, 1}m. We use
h

R←− H(n,m) to denote the probability space obtained by choosing a func-
tion h uniformly at random from H(n,m). To measure the quality of a hash
function we are interested in the set of elements of S mapped to α by h, denoted
Cell〈S,h,α〉 and its cardinality, i.e., |Cell〈S,h,α〉|. To avoid cumbersome terminology,
we abuse notation slightly and we use Cell〈F,m〉 (resp. Cnt〈F,m〉) as shorthand for
Cell〈sol(F),h,α〉 (resp. |Cell〈sol(F),h,α〉|).
Definition 1. A family of hash functions H(n,m) is k-wise independent3 if
∀α1, α2, . . . αk ∈ {0, 1}m and for distinct y1,y2, . . .yk ∈ {0, 1}n, h

R←− H(n,m),

Pr [(h(y1) = α1) ∧ (h(y2) = α2) . . . ∧ (h(yk) = αk)] =
(

1
2m

)k

(1)

Note that every k-wise independent hash family is also k−1 wise independent.

Prefix Slicing. While universal hash families have nice concentration bounds,
they are not adaptive, in the sense that one cannot build on previous queries. In
several applications of hashing, the dependence between different queries can be
exploited to extract improvements in theoretical complexity and runtime perfor-
mance. Thus, we are typically interested in prefix slices of hash functions [10] as
follows.

Definition 2. For every m ∈ {1, . . . n}, the mth prefix-slice of h, denoted h(m),
is a map from {0, 1}n to {0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈
{0, 1}n and for all i ∈ {1, . . . m}. Similarly, the mth prefix-slice of α, denoted
α(m), is an element of {0, 1}m such that α(m)[i] = α[i] for all i ∈ {1, . . . m}.

Explicit Hash Functions. The most common explicit hash family used in
state of the art sampling and counting techniques is based on random XOR
constraints. Viewing Vars(F) as a vector x of dimension n × 1, we can represent
the hash family as follows: Let Hxor(n,m) � {h : {0, 1}n → {0, 1}m} be the
family of functions of the form h(x) = Mx + b with M ∈ F

m×n
2 and b ∈ F

m×1
2

where the entries of M and b are independently generated according to the
3 The phrase strongly 2-universal is also used to refer to 2-wise independent as noted

by Vadhan in [23], although the concept of 2-universal hashing proposed by Carter
and Wegman [4] only required that Pr[h(x) = h(y)] ≤ 1

2m
.

Tinted, Detached, and Lazy CNF-XOR Solving 467

Bernoulli distribution with probability 1/2. Observe that h(m)(x) can be written
as h(m)(x) = M (m)x +b(m), where M (m) denotes the submatrix formed by the
first m rows and n columns of M and b(m) is the first m entries of the vector
b. It is well known that Hxor is 3-wise independent [9].

3 Background

The general idea of hashing-based model counting and sampling is to use a hash
function from a suitable family, e.g. Hxor, to divide the solution space into cells
that are sufficiently small such that all solutions within a cell can be enumerated
efficiently. Given such a cell, its size can then be used to estimate the total count
of solutions or we can return a random element of this small cell to produce a
sample. Hence, hashing-based sampling and counting are closely related.

3.1 Hashing-Based Model Counting

The seminal work of Valiant [24] established that #SAT is #P-complete.
Toda [22] showed that the entire polynomial hierarchy is contained inside the
complexity class defined by a polynomial time Turing machine equipped with
#P oracle. Building on Carter and Wegman’s [4] seminal work of universal hash
functions, Stockmeyer [21] proposed a probabilistic polynomial time procedure
relative to an NP oracle to obtain an (ε, δ)-approximation of F .

The core theoretical idea of the hashing-based approximate solution count-
ing framework proposed in ApproxMC [8], building on Stockmeyer [21], is to
employ 2-universal hash functions to partition the solution space, denoted by
sol(F) for a formula F , into roughly equal small cells, wherein a cell is called
small if it has solutions less than or equal to a pre-computed threshold, thresh.
An NP oracle is employed to check if a cell is small by enumerating solutions
one-by-one until either there are no more solutions or we have already enumer-
ated thresh + 1 solutions. In practice, a SAT solver is used to realize the NP
oracle. To ensure polynomially many calls to the oracle, thresh is set to be poly-
nomial in the input parameter ε. To determine the right number of cells, i.e., the
value of m for H(n,m), a search procedure is invoked. Finally, the subroutine,
called ApproxMCCore, computes the estimate as the number of solutions in the
randomly chosen cell scaled by the number of cells (i.e, 2m). To achieve prob-
abilistic amplification of the confidence, multiple invocations of the underlying
subroutine, ApproxMCCore, are performed with the final count computed as the
median of estimates returned by ApproxMCCore.

Two key algorithmic improvements proposed in ApproxMC2 [10] are signifi-
cant to practical performance: (1) the search for the right number of cells can be
performed via galloping search, and (2) one can first perform linear search over a
small enough interval (chosen to be of size 7) around the value of m found in the
previous iteration of ApproxMCCore. The practical profiling of ApproxMC2 reveals
that linear search is sufficient after the first invocation of ApproxMCCore. Note
that the linear search seeks to identify a value of m such that Cnt〈F,m−1〉 ≥ thresh

468 M. Soos et al.

and Cnt〈F,m〉 < thresh for an appropriately chosen thresh. ApproxMC is currently
in its third generation: ApproxMC3.

3.2 Hashing-Based Sampling

Jerrum, Valiant, and Vazirani [14] showed that the approximate counting and
almost-uniform counting are polynomially inter-reducible. Building on Jerrum
et al.’s result, Bellare, Goldreich, and Petrank [2] proposed a probabilistic uni-
form generator that makes polynomially many calls to an NP oracle where
each NP query is the input formula F conjuncted with constraints encoding
a degree n polynomially representing n-wise independent hash functions where
n is the number of variables in F . The practical implementation of Bellare
et al.’s technique did not scale beyond few tens of variables. Chakraborty, Meel,
and Vardi [7,9], sought to combine the inter-reducibility and the usage of inde-
pendent hashing, and proposed a hashing-based framework, called UniGen, that
employs 3-wise independent hashing and makes polynomially many calls to an
NP oracle.

The core theoretical idea of the hashing-based sampling framework, proposed
in UniGen, exploits the close relationship between counting and sampling. UniGen
first invokes ApproxMC to compute an estimate of the number of solutions of the
given formula F . It then uses the count to determine the number of cells that the
solution space should be partitioned into using 3-wise independent hash func-
tions. At this point, it is worth mentioning that the state of the art hashing-based
sampling employ 3-wise independent hash functions. Fortunately, the family of
hash functions, Hxor, is also known to be 3-wise independent. There after, sim-
ilar to ApproxMC, a linear search over a small enough interval (chosen to be of
size 4) is invoked to find the right value of m where a randomly chosen cell’s
size is within the desired bounds. For such a cell, all its solutions are enumer-
ated and one of the solutions is randomly chosen. Again, similar to ApproxMC2
(and ApproxMC3), the linear search seeks to identify a value of m such that
Cnt〈F,m−1〉 ≥ thresh and Cnt〈F,m〉 < thresh for an appropriately chosen thresh.
UniGen is currently in its second generation: UniGen2 [6].

3.3 The Underlying SAT Solver

The underlying SAT solver is invoked through subroutine BoundedSAT, which
is implemented using CryptoMiniSat. Formally, BoundedSAT takes as inputs a
formula F , a threshold thresh, and a sampling set S, and returns a subset Y
of sol(F)↓S , such that |Y | = min(thresh, |sol(F)↓S |). The formula F consists of
the original formula, which we want to count or sample, conjuncted with a set
of XOR constraints defined through a hash function sampled from the family
Hxor. We henceforth denote such formulas as CNF-XOR formulas. Note that
the efficient encoding of XOR constraints into CNF requires the introduction of
new variables and hence the sampling set S usually does not contain all variables
in F .

Tinted, Detached, and Lazy CNF-XOR Solving 469

As is consistent with prior studies, profiling of ApproxMC3 and UniGen2
reveal that over 99% of the time is spent in the runtime of BoundedSAT.
Therefore recent efforts have focused on improving BoundedSAT. Soos and
Meel [19] sought to address the performance of the underlying SAT solver by
proposing a new architecture, called BIRD, that allows the usage of in- and
pre-processing techniques for a Gauss Jordan Elimination (GJE)-augmented
SAT solver. ApproxMC2, integrated with BIRD, called ApproxMC3, gave up to
three orders of magnitude runtime performance improvement. Such significant
improvements are rare in the SAT community. Encouraged by Soos and Meel’s
observations, we seek to build on top of BIRD to achieve an even tighter inte-
gration of the underlying SAT solver and ApproxMC3/UniGen2.

BIRD: Blast, Inprocess, Recover, and Destroy. Pre- and inprocessing tech-
niques are known to have a large impact on the runtime performance of SAT
solvers. However, earlier Guassian elimination architectures were unable to per-
form these techniques. Motivated by this inability, Soos and Meel [19] proposed
a new framework, called BIRD, that allows usage of inprocessing techniques for
GJE-augmented CDCL solvers. The key idea of BIRD is to blast XOR clauses
into CNF clauses so that any technique working solely on CNF clauses does not
violate soundness of the solver. To perform Gauss-Jordan elimination, one needs
efficient algorithms and data structures to extract XORs from CNF. The entire
framework is presented as follows:

BIRD: Blast, In-process, Recover, and Destroy

Step 1 Blast XOR clauses into normal CNF clauses
Step 2 Inprocess (and pre-process) over CNF clauses
Step 3 Recover simplified XOR clauses
Step 4 Perform CDCL on CNF clauses with on-the-fly Gauss-Jordan Elimi-

nation (GJE) on XOR clauses until inprocessing is scheduled
Step 5 Destroy XOR clauses and goto Step 2

The above loop terminates as soon as a satisfying assignment is found or the
formula is proven UNSAT. The BIRD architecture separates inprocessing from
CDCL solving and therefore every sound inprocessing step can be employed.

4 Technical Contributions to CNF-XOR Solving

Inspired by the success of BIRD, we seek to further improve the underlying SAT
solver’s architecture based on the queries generated by the hashing-based tech-
niques. To this end, we relied on extensive profiling of CryptoMiniSat augmented
with BIRD to identify the key performance bottlenecks, and propose solutions
to overcome some of the challenges.

470 M. Soos et al.

4.1 Detaching XOR Clauses from Watch-Lists

Given a formula F in CNF, the recovery phase of BIRD attempts to construct
a set of XORs, H such that F → H. As detailed in [19], the core tech-
nique for recovery of an XOR of size k is to establish whether the required
2k−1 combinations of clauses are implied by the existing CNF clauses. For
example, the XOR x1 ⊕ x2 ⊕ x3 = 0 (where k = 3) can be recovered
if the existing set of CNF clauses implies the following 4(= 23−1) clauses:
(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3). To
this end, the first stage of the recovery phase of BIRD iterates over the CNF
clauses and for a given clause, called base cl of size k, searches whether the
remaining 2k−1 − 1 clauses are implied as well, in which case the resulting XOR
is added. It is worth noting that a clause can imply multiple clauses over the the
set of variables of base cl; For example if the base cl = (x1 ∨ ¬x2 ∨ x3), then the
clause (¬x1) would imply the two clauses (¬x1 ∨¬x2 ∨¬x3) and (¬x1 ∨x2 ∨x3).
Note that given a base cl, we are only interested in clauses over the variables in
base cl.

During blasting of XORs into CNF, XORs are first cut into smaller XORs
by introducing auxiliary variables. Hence, the first stage of recovery phase must
recover these smaller XORs and the second phase reconstructs the larger XORs
by XOR-ing two XORs together if they differ only on one variable, referred to
as a clash variable. For example, x1 ⊕ x2 ⊕ x3 = 0 and x3 ⊕ x4 ⊕ x5 = 1 can be
XOR-ed together over clash variable x3 to obtain x1 ⊕ x2 ⊕ x4 ⊕ x5 = 1.

Since BIRD performs CDCL in tandem with Gauss-Jordan elimination, it is
worth noting that the Gauss-Jordan elimination (GJE)-based decision procedure
is sound and complete, i.e., all unit propagations and conflicts implied by the
given set of XORs would be discovered by a GJE-based decision procedure.
For the initial formula (in CNF) F and the recovered set of XORs, H, if a
set of CNF clauses G is implied by H, then presence or absence of G does
not affect soundness and completeness of GJE-augmented CDCL engine. Our
extensive profiling of the BIRD framework integrated in CryptoMiniSat revealed
a significant time spent in examination of clauses in G during unit propagation.
To this end, we sought to ask how to design an efficient technique to find all the
CNF clauses implied by the recovered XORs. These clauses could be detached
from unit propagation without any negative effect on correctness of execution.

A straightforward approach would be to mark all the clauses during the
blasting phase of XORs into CNF. However, the incompleteness of the recovery
phase of BIRD does not guarantee that all such marked clauses are indeed implied
by the recovered set of XORs. Another challenge in the search for detachable
clauses arises due to construction of larger XORs by combining smaller XORs.
For example, while x1 ⊕ x2 ⊕ x3 = 0 and x3 ⊕ x4 ⊕ x5 = 1 imply (x1 ∨ x2 ∨ ¬x3)
and (x3 ∨ x4 ∨ x5), the combined XOR x1 ⊕ x2 ⊕ x4 ⊕ x5 = 1 does not imply
(x1 ∨ x2 ∨ ¬x3) and (x3 ∨ x4 ∨ x5).

Two core insights inform our design of the modification of the recovery phase
and search for detachable clauses. Firstly, given a base clause base cl, if a clause
cl participates in the recovery of XORs over the variables in base cl, then cl is

Tinted, Detached, and Lazy CNF-XOR Solving 471

implied by the recovered XOR if the number of variables in cl is the same as
that of base cl. We call such a clause cl a fully participating clause. Secondly, let
G1 and G2 be the set of CNF clauses implied by two XORs q1 and q2 that share
exactly one variable, say xi. Let U = (Vars(q1)∪Vars(q2))\xi. Let q3 be the XOR
obtained by XORing together q1 and q2, then, sol(q3)↓U ⊆ sol(G1 ∧ G2)↓U if xi

does not appear in the remaining clauses, i.e., xi /∈ Var [F \ (G1 ∪ G2)].
The above two insights lead us to design a modified recovery and detachment

phase as follows. During recovery, we add every fully participating clause to the
set of detachable clauses D. Let U = S ∪ (Vars(D) ∩ Vars(F\D)). Then, the
recovery of longer XORs is only performed over clash variables that do not
belong to U . We then detach the clauses in D from watch-lists during GJE-
augmented CDCL phase, mark the clash variables as non-decision variables,
perform CDCL, and only reattach the clauses and re-set the clash variables to
be decision variables after the Destroy phase of BIRD.

If the formula is satisfiable, the design of the solver is such that the solution
is always found during the GJE-augmented CDCL solving phase. Since clauses
in D are detached and the clash variables are set to be not decided on during
this phase, the clash variables are always left unassigned. As discussed below,
however, we only need to extract solutions over the sampling set S, therefore
the solution found is adequate as-is, without the clash variables, which are by
definition not over S as they are only introduced for having short encodings of
XORs into CNF.

Conceptually, this approach reconciles the overhead introduced by BIRD, i.e.,
that XOR constraints are also present as regular clauses, with the neatness of
the original CryptoMiniSat that stored XOR and regular constraints in different
data structures. This reconciliation takes the best of both worlds.

4.2 Fast Propagation/Conflict Detection and Reason Generation

We identified two key bottlenecks in the the current GJE component of BIRD
framework integrated in CryptoMiniSat, which we sought to improve upon. To
put our contributions in the context, we first describe the technical details of
the core data structures and algorithms.

Han-Jiang’s GJE. To perform Gaussian elimination on a set of XORs, the
XORs are represented as a matrix where each row represents an XOR and each
column represents a variable. The framework proposed by Soos et al. updates
the matrix whenever a variable is assigned and removes the assigned variable
from all XORs by zeroing out the corresponding column. However, using the
matrix in such a way involves significant memory copying during backtracking
due to having to revert the matrix to a previous version.

To avoid the overhead, Han and Jiang proposed a new framework [13] build-
ing on Simplex-like techniques that performs Gauss-Jordan elimination, i.e.,
using reduced row echelon form instead of row echelon form. The key data struc-
ture innovation was to employ a two-watched variable scheme for each row of the

472 M. Soos et al.

matrix wherein the watched variables are called basic and non-basic variables.
Essentially, the basic variables are the variables on the diagonal of a matrix in
reduced row echelon form and hence every row has exactly one basic variable
and the basic variable only occurs in one row. Similar to standard CDCL solv-
ing, when a matrix row’s watch is assigned, the GJE component must determine
whether the row (1) propagates, (2) needs to assign a new watch, (3) is satisfied,
or (4) is conflicted. It is worth recalling that a row would propagate if all except
one variable has been assigned and would conflict or be satisfied if all the vari-
ables in a row have been assigned. Furthermore, we need to find a new watch if
a watched variable was assigned and there is more than one unassigned variable
left. If a basic variable is replaced by a new watch then the two corresponding
columns are swapped and the reduced row echelon form is recomputed. In prac-
tice swapping columns is avoided by keeping track of which column is a basic
variable.

For propagation, checking for conflict, and conflict clause generation Han-
Jiang proposed a sequential walk through a row that eagerly computes the reason
clause and stops when it encounters a new watch variable or reaches until the
end of the row. At that point, the system (1) knows whether the row is satisfied,
propagating, or conflicted, and (2) if not satisfied, has eagerly computed the
reason clause for the propagation or the conflict.

For general benchmarks where XOR constraints do not play an influential
role in determining satisfiability of the underlying problem, the GJE component
can be as small as 10% of the entire solving time. However, for formulas generated
generated by hashing-based techniques, our profiling demonstrated several cases
where the Gaussian elimination component could be very time consuming, taking
up to 90% of solving time.

While the choice of GJE combined with clever data structure maintenance led
to significant improvements of the runtime of Gaussian Elimination component,
our profiling identified two processes as key bottlenecks: propagation checking
and reason generation. We next discuss our proposed algorithmic improvements
that achieve significant runtime improvement by addressing these bottlenecks.

Tinted Fast Unit Propagation. The core idea to achieve faster propagation
is based on bit-level parallelism via the different native operations supported
by modern CPUs. In particular, modern CPUs provide native support for basic
bitwise operations on bit fields such as AND, INVERT, hamming weight com-
putation (i.e., the number of non-zero entries), and find first set (i.e., finding
the index of first non-zero bit). Given the widespread support of SIMD exten-
sions, the above operations can be performed at the rate of 128. . . 512 bits per
instruction. Therefore, the core data structure represents every 0-1 vector as a
bit field.

A set of XORs over n variables x1, . . . , xn is represented as Mx = b for a
0-1 matrix M of size m × n, 0-1 vector b of length m and x = (x1, . . . , xn)T .
Consider the i−th row of M , denoted by M [i]. Let a be a 0-1 vector of size
n such that a [j]=1 if the variable xj is assigned True or False, and 0 in case

Tinted, Detached, and Lazy CNF-XOR Solving 473

xj is unassigned. Let v be a 0-1 vector of size n such that v [j] = 1 if xj is
set to True and 0 otherwise. Let z be the bitwise inverse of a 0-1 vector z
and & be the bitwise AND operation. Let Wunass = hamming weight(a&M [i])
the number of unassigned variables in the XOR represented by row i, and
Wval = hamming weight(v&M [i]) the number of satisfied variables. We view
the computation of Wunass and Wval as viewing the world of M through the
tinted lens of v and a . Now, the following holds:

1. Row i is satisfied if and only if Wunass = 0 and (Wval mod 2) ⊕ b[i] = 0.
2. Row i causes a conflict if and only if Wunass = 0 and (Wval mod 2)⊕b[i] = 1.
3. Row i propagates if and only if Wunass = 1. Propagated variable is the one

that corresponds to the column with the only bit set in a&M [i]. The value
propagated is (Wval mod 2) ⊕ b[i].

4. A new watch needs to be found for row i if and only if Wunass ≥ 2. The new
watch is any one of the variables corresponding to columns with the bits set
to 1 in a&M [i], except for the already existing watch variable.

Reason Generation. For propagation and conflict we generate the reason clauses
for row i as follows. We forward-scan M [i] for all set bits and insert the corre-
sponding variable into the reason clause as a literal that evaluates to false under
the current assignment. In the case of propagation, the literal added for the
propagated variable, say xj , is added as literal ¬xj if (Wval mod 2) ⊕ b[i] = 0
and xj otherwise.

Example. For example, let b[i] = 1 and M [i] = 10011 corresponding to vari-
ables x1, x2, . . . x5 and assignments 1?11? respectively, where “?” indicates an
unassigned variable. Then a = 10110,a&M [i] = 00001,Wunass = 1, v =
10110, v&M [i] = 10010,Wval = 2 and (Wval mod 2) ⊕ b[i] = 1. Therefore, this
row propagates (case 3 above), and the reason generated is (¬x1 ∨ ¬x4 ∨ x5). If
the assignements were 11110, then Wunass = 0 and (Wval mod 2) ⊕ b[i] = 1 so
this row conflicts (case 2 above), with conflict clause (¬x1 ∨ ¬x4 ∨ x5).

Performance. Notice that all cases only require bitwise and, inverse, hamming
weight and find first set operations. To find a new watch in case 4 we first find the
first bit that is set to 1 in ā&M by invoking find first set. In case the obtained
index is the same as the existing watch variable, we remove the first 1-bit by
left shifting and run find first set again to find the second 1-bit. Bitwise and and
inverse are trivially single-assembly instructions. We use compiler intrinsics to
execute find first set and hamming weight functions, which compile down to BSF
and POPCNT in x86 assembly, respectively. It is worth pointing out that we
keep the bit field representations of a and v synchronized when variables are
assigned. During backtracking we reset these to zero and refill them as needed.
For better cache efficiency, we use sequential set of bit-packed 64-bit integers to
represent all bit-fields, rows, and matrices.

Although bit-packing is not a novel concept in the context of CNF-XOR solv-
ing, let us elaborate why we believe that our contribution is conceptually inter-
esting. Soos et al. [20] used bit-packed pre- and post-evaluated matrices. Since

474 M. Soos et al.

post-evaluated matrices lose information, they have to be saved and reloaded
on backtracking. Han and Jiang’s code [13] changed this to using pre-evaluated
matrices only, which free the system from having to save and reload. But it
was slow, because bit-by-bit evaluation had to happen on every matrix row read
(thanks to the missing post-evaluation matrix). Our improved approach is essen-
tially merging the best of both worlds: fast evaluation, without having to save
and reload.

4.3 Lazy Reason Clause Generation

As discussed earlier, the current BIRD performs eager reason clause generation
in a spirit similar to the original proposal by Han and Jiang. At the time of
proposal of eager clause generation by Han and Jiang, the state of the art SAT
solver at that time could solve problems with XOR clauses of sizes in few tens
to few hundreds. The improved scalability, however, highlights the overhead due
to eager reason clause generation. During our profiling, we observed that for
several problems, the independent support of the underlying formula ranges in
thousands, and therefore, leading to generation of reason clauses involving thou-
sands of variables. The generation of such long reason clauses is time consum-
ing and tedious. Furthermore, a significant fraction of reason clauses are never
required during conflict analysis phase as we are, often, focused only on finding
a 1UIP clause. Therefore, we seek to explore lazy reason clause generation.

Let the state of a clause c indicate whether c is satisfied, conflicted or unde-
termined (i.e., the clause is neither satisfied nor conflicted). The core design of
our lazy generation technique is based on the following invariant satisfied by
CDCL-based techniques: Once a (CNF/XOR) clause is satisfied or conflicted,
the assignment to the variables in the clause does not change as long the state of
the clause does not change. Observe that when a clause propagates, the propa-
gated literal changes the state of the clause to satisfied. Furthermore, as long as
all variables are assigned, the row will not participate in GJE because none of
the contained variables can become a basic watch. Therefore, whenever an XOR
clause propagates, we keep an index of the row and the propagating literal but
do not compute the reason clause. Now, whenever a reason clause is requested,
we compute the reason clause as detailed above and return a pointer to the
computed reason clause, and index the computed clause by the corresponding
row. To ensure correctness, whenever a row causes a propagation, we delete the
existing reason clause but we do not eagerly compute the new corresponding
reason clause. On the other hand, if a row is conflicting, the conflict analysis
requires the reason clause immediately and as such the reason clause is eagerly
computed.

Lazy reason clause generation allows us to skip the majority of reason clauses
to be generated. Furthermore, given that a row cannot lead to more than one
reason clause, it allows us to statically allocate memory for them. This is in
stark contrast to the original implementation that not only eagerly computed
all reason clauses, but also dynamically allocated memory for them, freeing the
memory up during backtracking.

Tinted, Detached, and Lazy CNF-XOR Solving 475

4.4 Skipping Solution Extension of Eliminated Variables

SAT solvers aim to present a clean and uncomplicated API interface with inter-
nal behavior typically hidden to enable fast pacing development of heuristics
without necessitating change in the interface for the end users. While such a
design philosophy allows easier integration, it may be an hindrance to achiev-
ing efficiency for the use cases that may not be seeking a simple off-the-shelf
behavior. Given the surge of projected counting and sampling as the desired
formulation, BoundedSAT is invoked with a sampling set and we are interested
only in the assignment to variables in the sampling set. A naive solution would
be to obtain a complete assignment over the entire set of variables and then
extract an assignment over the desired sampling set. In this context, we wonder
if we can terminate early after the variables in the sampling set are assigned. In
modern SAT solvers, once the solver has determined that the formula is satis-
fied, the solution extension subroutine is invoked that extends the current partial
assignment to a complete assignment. Upon profiling, we observed that, during
solution extension, a significant time is spent in computing an assignment to the
variables eliminated due to Bounded Variable Elimination (BVE) [12] during
pre- and inprocessing. When a solution is found, the eliminated clauses must be
re-examined in reverse, linear, order to make sure the eliminated variables in the
model are correctly assigned. This examination process can be time-consuming
on large instances with large portions of the CNF eliminated.

BVE is widely used in modern SAT solvers owing to its ability to elimi-
nate a large subset of the input formula and thereby allowing compact data
structures. While disabling BVE would eliminate the overhead during solution
extension phase, it would also significantly degrade performance during solving
phase. Since we are interested in solutions only over the sampling set, we disable
the invocation of bounded variable elimination for variables in the sampling set.
Therefore, whenever the SAT solver determines that the current partial assign-
ment satisfies the formula, all the variables in the sampling set are assigned and
we do not invoke solution extension. The disabling of solution extension can save
significant (over 20%) time on certain instances.

4.5 Putting It All Together: BIRD2

We combine improvements proposed above into our new framework, called
BIRD2, a namesake to capture the primary architecture of Blast, In-process,
Recover, Detach, and Destroy. For completeness, we present the core skeleton of
BIRD2 in Algorithm 1. BIRD2 terminates as soon as a satisfying assignment is
found or the formula is proven UNSAT. Similar to BIRD, BIRD2 architecture sep-
arates inprocessing from CDCL solving and therefore every sound inprocessing
step can be employed.

476 M. Soos et al.

Algorithm 1. BIRD2(ϕ) � ϕ has a mix of CNF and XOR clauses
1: Blast XOR clauses into normal CNF clauses
2: In-process (and pre-process) over CNF clauses
3: Recover XOR clauses
4: Detach CNF clauses implied by recovered XOR clauses
5: Perform CDCL on CNF clauses with on-the-fly improved GJE on XOR clauses

until: (a) in-processing is scheduled, (b) a satisfying assignment is found, or (c)
formula is found to be unsatisfiable

6: Destroy XOR clauses and reattach detached CNF clauses. Goto line 2 if conditions
(b) or (c) above don’t hold. Otherwise, return satisfying assignment or report
unsatisfiable.

5 Technical Contribution to Counting and Sampling

In this section, we discuss our primary technical contribution to hashing-based
sampling and counting techniques.

5.1 Reuse of Previously Found Solutions

The usage of a prefix-slicing ensures monotonicity of the random variable,
Cnt〈F,i〉, since from the definition of prefix-slicing, we have that for all i,
h(i+1)(x) = α(i+1) =⇒ h(i)(x) = α(i). Formally,

Proposition 1. For all 1 ≤ i < m, Cell〈F,i+1〉 ⊆ Cell〈F,i〉
Furthermore as is evident from the analysis of ApproxMC3 [10], the pairwise
independence of the family Hxor implies E[Cnt〈F,i〉]

E[Cnt〈F,j〉]
= 2j−i. Therefore, once we

obtain the set of solutions from invocation of BoundedSAT for F ∧(hi)−1(0) (i.e.,
after putting i XORs), we can potentially reuse the returned solutions when we
are interested in enumerating solutions for F ∧ (hj)−1(0). In particular, note
that if i > j, then Proposition 1 implies that all the solutions F ∧ (hi)−1(0)
are indeed solutions for F ∧ (hj)−1(0) and we can invoke BoundedSAT with
adjusted threshold. On the other hand, for i < j, we can check if the solutions
of F ∧ (hi)−1(0) also satisfy F ∧ (hi+1)−1(0).

On closer observation, we find that the latter case may not be always helpful
when i and j differ by more than a small constant since the ratio of their expected
number of solutions decreases exponentially with j−i. Interestingly, as discussed
in Sect. 3, both ApproxMC3 and UniGen2 employ linear search over intervals of
sizes 4 to 7. for the right values of m. In particular, for both ApproxMC3 and
UniGen2, the linear search seeks to identify a value of m∗ such that Cnt〈F,m∗−1〉 ≥
thresh and Cnt〈F,m∗〉 < thresh for an appropriately chosen thresh. Therefore,
when invoking BoundedSAT for i = k after determining that for i = k + 1,
Cnt〈F,k+1〉 < thresh, we can replace thresh with thresh − Cnt〈F,k+1〉. Similarly,
when invoking BoundedSAT for i = k after determining that for i = k − 1,
Cnt〈F,k−1〉 ≥ thresh, we first check how many solutions of F ∧(hk−1)−1(0) satisfy
F ∧ (hk)−1(0). As noted above, in expectation, thresh/2 out of thresh solutions
of F ∧ (hk−1)−1(0) would satisfy F ∧ (hk)−1(0).

Tinted, Detached, and Lazy CNF-XOR Solving 477

5.2 ApproxMC4 and UniGen3

That said, we turn our focus to hashing-based sampling and counting techniques
to showcase the impact of BIRD2. To this end, we integrate BIRD2 along with the
proposed technique in Sect. 5.1 into the state of the art hashing-based counting
and sampling tools: ApproxMC3 and UniGen2 respectively. We call our improved
counting tool ApproxMC4 and our improved sampling tool UniGen3.

Assurance of Correctness. We believe it to be imperative to strongly verify
correctness and quality of results provided by our tools, as it is not only pos-
sible but indeed easy to accidentally generate incorrect or low quality results,
as demonstrated by Chakraborty and Meel [5]. To ensure the quality and cor-
rectness of our sampler and counter, we used three methods: (1) fuzzed the
system as first demonstrated in SAT by Brummayer et al. [3], (2) compared
the approximate counts returned by ApproxMC4 with the counts computed by
a known good exact model counter as previously performed by Soos and Meel
[19], and (3) compared the distribution of samples generated by UniGen4 on an
example problem against that of a known good uniform sampler as previously
performed by Chakraborty et al. [9]. We focus on (1), i.e. fuzzing, here and defer
the discussion about (2) and (3) to the next section.

Fuzzing is a technique [17] used to find bugs in code by generating random
inputs and observing crashes, invariant check fails, and other errors from the
output of the system under test. CryptoMiniSat has such a built-in fuzzer gen-
erating random CNFs and verifying the output of the solver. To account for
XOR constraints, we improved the built-in fuzzer of CryptoMiniSat by adding
a counting- and sampling-specific XOR-CNF generator. This inserts randomly
generated XORs that form distinct matrices inside the generated CNFs and adds
a randomly generated sampling set over some of these matrices. We also added
hundreds of lines of invariant checks to our improved Gauss-Jordan elimination
algorithm, running throughout our fuzzing tests. Running this improved fuzzer
for many hundreds of CPU hours has greatly helped debugging and gaining
confidence in our implementation.

6 Evaluation

To evaluate the performance and quality of approximations and samples com-
puted by ApproxMC4 and UniGen3, we conducted a comprehensive study involv-
ing 1896 benchmarks as released by Soos and Meel [16] comprising a wide range
of application areas including probabilistic reasoning, plan recognition, DQMR
networks, ISCAS89 combinatorial circuits, quantified information flow, program
synthesis, functional synthesis, logistics, and the like.

In the context of counting, we focused on a comparison of the performance of
ApproxMC4 vis-a-vis ApproxMC3. In the context of sampling, a simple method-
ology would have been a comparison of UniGen3 vis-a-vis the state of the art
sampler, UniGen2. Such a comparison, in our view, would be unfair to UniGen2

478 M. Soos et al.

as while ApproxMC3 builds on BIRD framework, such is not the case for UniGen2.
It is worth noting that the BIRD framework, proposed by Soos and Meel [19], can
work as a drop-in replacement for the SAT solver in UniGen2, as it only changes
the underlying SAT solver. Therefore, we used UniGen2 augmented with BIRD,
called UniGen2+BIRD henceforth, as baseline for performance comparisons in
the rest of this paper, as it is significantly faster than UniGen2, and therefore,
will lead to a fair comparison and showcase improvements solely due to BIRD2.

To keep in line with prior studies, we set ε = 0.8 and δ = 0.8 for ApproxMC3
and ApproxMC4 respectively. Similarly, we set ε = 16 for both UniGen3 and
UniGen2+BIRD respectively. The experiments were conducted on a high perfor-
mance computer cluster, each node consisting of 2xE5-2690v3 CPUs with 2 × 12
real cores and 96 GB of RAM. We use a timeout of 5000 s for each experiment,
which consisted of running a tool on a particular benchmark.

6.1 Performance

1

10

100

1000

5000

1 10 100 1000 5000
ApproxMC3 − Time (s)

A
pp

ro
xM

C
4
−

Ti
m

e
(s

)

Fig. 1. Comparison of ApproxMC4 and ApproxMC3. ApproxMC4 is faster below the
diagonal. Time outs are plotted behind the 5000 s mark.

ApproxMC4 vis-a-vis ApproxMC3. Figure 1 shows a scatter plot comparing
ApproxMC4 and ApproxMC3. Although, there are some benchmarks that are
solved faster with ApproxMC3 there is a clear trend demonstrating the speed
up achieved through our improvements: ApproxMC4 can solve many benchmarks
more than 10 times faster and in total solves 77 more instances than ApproxMC3.
In particular, ApproxMC3 and ApproxMC4 solved 1148 and 1225 instances respec-
tively, while achieving PAR-2 scores of 4146 and 3701 respectively.

Tinted, Detached, and Lazy CNF-XOR Solving 479

 0

 1000

 2000

 3000

 4000

 5000

 800 900 1000 1100 1200 1300

T
im

e
(s

)

Solved

ApproxMC4
ApproxMC3

Fig. 2. Cactus plot showing behavior of ApproxMC4 and ApproxMC3

Figure 2 shows the cactus plot for ApproxMC3 and ApproxMC4. We present
the number of benchmarks on the x-axis and the time taken on the y-axis. A
point (x, y) implies that x benchmarks took less than or equal to y seconds to
solve for the corresponding tool.

To present a detailed picture of performance gain achieved by ApproxMC4
over ApproxMC3, we present a runtime comparison of ApproxMC4 vis-a-vis
ApproxMC3 in Table 1 on a subset of benchmarks. Column 1 of the table
presents benchmarks names, while columns 2 and 3 list the number of vari-
ables and clauses. Column 4 and 5 list the runtime (in seconds) of ApproxMC4
and ApproxMC3, respectively.

While investigating the large improvements in performance, we observed that
when both the sampling set and the number of solutions is large for a problem,
the new system can be up to an order of magnitude faster. In these cases the
Gauss-Jordan elimination (GJE) component of the SAT solver dominated the
runtime of ApproxMC3 due to the large matrices involved in such problems. The
improvements of BIRD2 has led to significant improvement in efficiency of GJE
component and we observe that the runtime, in such instance, is now often
dominated by the CDCL solver’s propagation and conflict clause generation
routines.

UniGen3 vis-a-vis UniGen2+BIRD. Similar to Fig. 2, Fig. 3 shows the cac-
tus plot for UniGen3, UniGen2+BIRD, and UniGen2. We present the number
of benchmarks on the x-axis and the time taken on the y-axis. UniGen3 and
UniGen2+BIRD were able to solve 1012 and 1063 instances, respectively while
achieving PAR-2 scores of 4574 and 4878, respectively. UniGen2 could solve only
360 benchmarks, thereby justifying our choice of implementing UniGen2+BIRD
as a baseline for fair comparison to showcase strengths of BIRD2. We would like
to highlight that the cactus plot shows that given a 2600 s timeout, UniGen can
sample as many benchmarks as UniGen2+BIRD would do for a 5000 s timeout.

To present a clear picture of performance gain by UniGen3 over
UniGen2+BIRD, we present runtime comparison for UniGen3 vis-a-vis
UniGen2+BIRD in Table 1, where in addition to data on ApproxMC3 and

480 M. Soos et al.

Table 1. Performance comparison of ApproxMC3 vis-a-vis ApproxMC4 and
UniGen2+BIRD vis-a-vis UniGen3. TO indicates timeout after 5000 s or out of memory.
Notice that on many problems that used to time out even for counting, we can now
confidently sample.

Benchmark Vars Cls ApproxMC3 ApproxMC4 UniGen2+BIRD UniGen3

time (s) time (s) 500 samples
time (s)

500 samples
time (s)

or-70-5-1-UC-20 140 350 6.03 2.07 14.21 6.08

prod-4 7497 37358 56.65 7.09 171.57 36.54

min-8 1545 4230 152.53 5.58 471.47 35.04

parity.sk 11 11 13116 47506 389.26 436.32 705.85 809

leader sync4 11 205198 129149 346.4 20.55 1019.09 106.93

blasted TR b12 2 2426 8373 308.08 20.46 1218.01 546.62

hash-8-6 377545 1517574 462.28 266.59 1321.91 633.84

s15850a 15 7 10995 24836 1206.17 31.69 2782.96 230.17

ConcreteRole 395951 1520924 1694.19 309.07 3083.99 923.69

tire-3 577 2004 3059.19 233.28 3876.03 797.42

04B-2 19510 86961 1860.97 625.81 TO 2236.31

blasted case138 849 2253 TO 3691.9 TO TO

hash-11-4 518449 2082039 4602.95 4043.4 TO TO

karatsuba.sk 7 41 19594 82417 3192.85 3410.36 TO TO

log-3 1413 29487 TO 123.15 TO 408.25

modexp8-8-6 167793 633614 4439.21 TO TO TO

or-100-5-6-UC-20 200 500 TO 1689.47 TO 4898.43

prod-28 52233 261422 TO 235.02 TO 1053.9

s38417 15 7 25615 57946 TO 187.71 TO TO

signedAvg 30335 91854 TO 114.15 TO 582.01

ApproxMC4, columns 5 and 6 lists the runtime for UniGen3 and UniGen2+BIRD
respectively. Similar to the observation above, we note that UniGen3 is able to
sample for instances that timed out even for ApproxMC3. It is worth to recall
that UniGen3 (and UniGen2) first makes a call to an approximate counter during
its parameter search phase.

Remark 1. Since the runtime improvements of ApproxMC4 and UniGen3 are pri-
marily due to improvements in the underlying SAT solver, it is worth pointing
out, to put our contribution in context, that the difference between average
PAR-2 scores of the top two solvers in a SAT competition is usually less than
100.

Tinted, Detached, and Lazy CNF-XOR Solving 481

6.2 Quality and Correctness

Quality of Counting. To evaluate the quality of approximation we follow
the same approach as Soos and Meel [19] and compare the approximate counts
returned by ApproxMC4 with the counts computed by an exact model counter,
namely DSharp4. The approximate counts and the exact counts are used to
compute the observed tolerance εobs, which is defined as max(|sol(F)↓S |

AprxCount −
1, AprxCount

|sol(F)↓S | − 1), where AprxCount is the estimate computed by ApproxMC4

for a formula F and a sampling set S, which are both given for each bench-
mark. Note that, using εobs, we can rewrite the theoretical (ε, δ)-guarantee to
Pr[εobs ≤ ε] ≥ 1 − δ and hence we expect that εobs is mostly below ε = 0.8.
The observed tolerance εobs over all benchmarks is shown in Fig. 4. We observe
a maximal value for εobs of 0.3333 and the the arithmetic mean of εobs across
all benchmarks is 0.0411. Hence, the approximate counts are much closer to the
exact counts than is theoretically guaranteed.

 0

 1000

 2000

 3000

 4000

 5000

 200 300 400 500 600 700 800 900 1000 1100

T
im

e
(s

)

Solved

UniGen4
UniGen2+BIRD

UniGen2

Fig. 3. Sampling performance of UniGen2 and UniGen2+BIRD versus UniGen3.

0

100

200

300

0 0.1 0.2 0.3 0.35
observed tolerance εobs

fre
qu

en
cy

Fig. 4. The histogram of the observed tolerance εobs shows that the approximate counts
are very close to the exact counts.

4 DSharp is used because of its ability to handle sampling sets.

482 M. Soos et al.

Quality of Sampling. To evaluate the quality of sampling, we employed the
uniformity tester, Barbarik, proposed by Chakraborty and Meel [5]. To this
end, we selected 35 benchmarks from the pool of benchmarks employed by
Chakraborty and Meel in their work and we tested UniGen3 for all the 35
benchmarks. We observed that Barbarik accepts UniGen3 for all the 35 instances,
thereby providing a certificate for uniformity. We refer the reader to [5] for
detailed discussion of the guarantees provided by Barbarik. Keeping in line with
past work on sampling that tries to demonstrate the quality of sampling on a rep-
resentative benchmark where exact uniform sampling is feasible via enumeration-
based techniques, we chose the CNF instance blasted case110 (287 variables and
16384 solutions), which has been chosen in the previous studies as well. To this
end, we implemented a simple ideal uniform sampler, denoted by US henceforth,
by enumerating all the solutions and then picking a solution uniformly at ran-
dom. We then generate 4, 039, 266 samples from both UniGen3 and US. In each
case, the number of times various witnesses were generated was recorded, yield-
ing a distribution of the counts. Fig. 5 shows the distributions of counts generated
versus # of solutions. The x-axis represents counts and the y-axis represents the
number of witnesses appearing the specified number of times. Thus, the point
(230,212) represents the fact that each of 212 distinct witnesses were generated
230 times among the 4, 039, 266 samples. While UniGen3 provides guarantees of
almost-uniformity only, the two distributions are statistically indistinguishable.
In particular, the KL divergence [15] of the distribution by UniGen from that of
US is 0.003989.

 0

 100

 200

 300

 400

 500

 180 200 220 240 260 280 300 320N
o.

 ti
m

es
 a

ny
 s

ol
ut

io
n

se
en

 w
/ f

re
q

No. times solution seen

UniGen4
US

Fig. 5. Distribution of solution recurrence as generated by UniGen3 and US for the
CNF blasted case110.cnf.

7 Conclusions

We investigated the bottlenecks of CNF-XOR solving in the context of hashing-
based approximate model counting and almost uniform sampling as implemented

Tinted, Detached, and Lazy CNF-XOR Solving 483

in ApproxMC3 and UniGen2 respectively. In this paper, we proposed five techni-
cal improvements, as follows: (1) detaching the clausal representation of XOR
constraints from unit propagation, (2) lazy reason generation for XOR con-
straints, (3) bit-level parallelism for XOR constraint propagation, (4) partial
solution extraction only covering the sampling set and (5) solution reuse. These
improvements were incorporated into the new framework BIRD2, which led to
the construction of improved approximate model counter ApproxMC4 and almost
uniform sampler UniGen3. Experiments over a large set of benchmarks from vari-
ous domains clearly show an improvement in running time and 77 more problems
could be solved for counting and 51 more for sampling.

Acknowledgments. We are grateful to Yash Pote for the early discussions of solution
reuse. Work done in part while the second author visited NUS.

This work was supported in part by National Research Foundation Singapore under
its NRF Fellowship Programme[NRF-NRFFAI1-2019-0004] and AI Singapore Pro-
gramme [AISG-RP-2018-005], and NUS ODPRT Grant [R-252-000-685-13]. The sec-
ond author was funded by the Swedish Research Council (VR) grant 2016-00782. The
computational work for this article was performed on resources of the National Super-
computing Centre, Singapore https://www.nscc.sg.

References

1. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, pp.
1249–1264 (2019)

2. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using
an NP-oracle. Inform. Comput. 163(2), 510–526 (2000)

3. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-
7 6

4. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: ACM Sym-
posium on Theory of Computing, pp. 106–112. ACM (1977)

5. Chakraborty, S., Meel, K.S.: On testing of uniform samplers. In: Proceedings of
AAAI Conference on Artificial Intelligence (AAAI), January 2019

6. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform sat witness generation. In: Proceedings of TACAS, pp. 304–319
(2015)

7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator
of SAT witnesses. In: Proceedings of CAV, pp. 608–623 (2013)

8. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Proceedings of CP, pp. 200–216 (2013)

9. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
SAT witness generator. In: Proceedings of DAC, pp. 1–6 (2014)

10. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
Proceedings of IJCAI (2016)

https://www.nscc.sg
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6

484 M. Soos et al.

11. Duenas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: Proceedings of AAAI (2017)

12. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) Proceedings of SAT, pp. 61–75 (2005)

13. Han, C.-S., Jiang, J.-H.R.: When boolean satisfiability meets Gaussian elimination
in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 410–426. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31424-7 31

14. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinato-
rial structures from a uniform distribution. Theor. Comput. Sci. 43(2–3), 169–188
(1986)

15. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

16. Meel, K.S.: Model counting and uniform sampling instances (May 2020). https://
doi.org/10.5281/zenodo.3793090

17. Miller, B.P., et al.: Fuzz revisited: a re-examination of the reliability of UNIX
utilities and services. Tech. rep. University of Wisconsin-Madison Department of
Computer Sciences (1995)

18. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1), 273–302
(1996)

19. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In: AAAI Conference on Artificial
Intelligence, AAAI, pp. 1592–1599. AAAI Press (2019)

20. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Proceedings of SAT (2009)

21. Stockmeyer, L.: The complexity of approximate counting. In: Proceedings of
STOC, pp. 118–126 (1983)

22. Toda, S.: On the computational power of PP and (+)P. In: Proceedings of FOCS,
pp. 514–519. IEEE (1989)

23. Vadhan, S.P., et al.: Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(1–
3), 1–336 (2012)

24. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.5281/zenodo.3793090
https://doi.org/10.5281/zenodo.3793090
http://creativecommons.org/licenses/by/4.0/

	Tinted, Detached, and Lazy CNF-XOR Solving and Its Applications to Counting and Sampling
	1 Introduction
	2 Notations and Preliminaries
	3 Background
	3.1 Hashing-Based Model Counting
	3.2 Hashing-Based Sampling
	3.3 The Underlying SAT Solver

	4 Technical Contributions to CNF-XOR Solving
	4.1 Detaching XOR Clauses from Watch-Lists
	4.2 Fast Propagation/Conflict Detection and Reason Generation
	4.3 Lazy Reason Clause Generation
	4.4 Skipping Solution Extension of Eliminated Variables
	4.5 Putting It All Together: BIRD2

	5 Technical Contribution to Counting and Sampling
	5.1 Reuse of Previously Found Solutions
	5.2 ApproxMC4 and UniGen3

	6 Evaluation
	6.1 Performance
	6.2 Quality and Correctness

	7 Conclusions
	References

