l‘)

Check for
updates

Simplified and Improved Separations
Between Regular and General Resolution
by Lifting

Marc Vinyals!(®) | Jan Elffers®>*, Jan Johannsen®, and Jakob Nordstrom?4

L Technion, Haifa, Israel
marcviny@cs.technion.ac.il
2 Lund University, Lund, Sweden
jan.elffers@cs.lth.se
3 Ludwig-Maximilians-Universitat Miinchen, Munich, Germany
jan.johannsen@ifi.lmu.de
4 University of Copenhagen, Copenhagen, Denmark
jnedi.ku.dk

Abstract. We give a significantly simplified proof of the exponential
separation between regular and general resolution of Alekhnovich et al.
(2007) as a consequence of a general theorem lifting proof depth to regular
proof length in resolution. This simpler proof then allows us to strengthen
the separation further, and to construct families of theoretically very easy
benchmarks that are surprisingly hard for SAT solvers in practice.

1 Introduction

In the resolution proof system [17] the unsatisfiability of a formula in conjunctive
normal form (CNF) is shown by iteratively deriving new disjunctive clauses until
contradiction is reached (in the form of the empty clause). A resolution proof is
said to be regular [59] if along the path of derivation steps from any input clause
to contradiction every variable is eliminated, or resolved, at most once. This con-
dition appears quite natural, since it essentially means that intermediate results
should not be proven in a form stronger than what will later be used in the deriva-
tion, and indeed DPLL-style algorithms [26,27] can be seen to search for regular
proofs. In view of this, it is natural to ask whether regularity can be assumed
without loss of proof power, but this was ruled out in [40]. General resolution
was shown to be superpolynomially stronger than regular resolution in [31], a
separation that was improved to exponential in [2,61]. Regular resolution is in
turn known to be exponentially stronger than tree-like resolution [11,19], where
no intermediate clause can be used for further derivations more than once.
There is an interesting connection here to the quest for a better under-
standing of state-of-the-art SAT solvers based on conflict-driven clause learning
(CDCL) [47,48].! Tree-like resolution corresponds to solvers without any clause

! A similar idea in the context of CSPs was independently developed in [5].

© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 182-200, 2020.
https://doi.org/10.1007/978-3-030-51825-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_14

Simplified and Improved Separations 183

learning, whereas CDCL solvers have the potential to be as strong as general res-
olution [3,51]. The proofs of the latter result crucially use, among other assump-
tions, that solvers make frequent restarts, but it has remained open whether this
is strictly needed, or whether “smarter” CDCL solvers without restarts could be
equally powerful. To model CDCL without restarts, proof systems such as pool
resolution [62] and different variants of resolution trees with lemmas (RTL) [20]
have been introduced, which sit between regular and general resolution. There-
fore, if one wants to prove that restarts increase the reasoning power of CDCL
solvers, then formulas that could show this would, in particular, have to separate
regular from general resolution. However, all known formulas witnessing this sep-
aration [2,61] have also been shown to have short pool resolution proofs [18,21].
It is therefore interesting to develop methods to find new formula families sepa-
rating regular and general resolution. This brings us to our next topic of lifting.

In one sentence, a lifting theorem takes a weak complexity lower bound
and amplifies it to a much stronger lower bound by simple syntactic manip-
ulations. Focusing for concreteness on Boolean functions, one can take some
moderately hard function f : {0,1}" — {0,1} and compose it with a gadget
g:{0,1}™ — {0,1} to obtain the new lifted function fog¢g™: {0,1}™" — {0,1}
defined as f(g(y1),9(y2),-..,9(yn)), where y; € {0,1}"™ for j € [n]. If the gad-
get g is carefully chosen, one can show that there is essentially no better way of
evaluating f o ¢" than first computing g(y;) for all j € [n] and then applying f
to the outputs. From this it follows that f o ¢g" is a much harder function than
f or g in isolation.

A seminal early paper implementing this paradigm is [54], and the redis-
covery and strengthening of this work has led to dramatic progress on many
long-standing open problems in communication complexity [33-35,37,38]. Other
successful examples of the lifting paradigm include lower bounds in monotone
complexity [52,53,58], extension complexity [32,43,45], and data structures [24].
Lifting has also been a very productive approach in proof complexity. Interest-
ingly, many of the relevant papers [6,8,9,12,13,19,41,49,50] predate the “lifting
revolution” and were not thought of as lifting papers at the time, but in later
works such as [29,36,57] the connection is more explicit.

As described above, in the lifting construction different copies of the gadget g
are evaluated on disjoint sets of variables. In [55] it was instead proposed to let
the variable domains for different gadgets overlap as specified by well-connected
so-called expander graphs. This idea of recycling variables between gadgets has
turned out to be very powerful, and an ingredient in a number of strong trade-off
results between different complexity measures [15,16,56].

Our Contributions. The starting point of our work is the simple but crucial
observation that the stone formulas in [2] can be viewed as lifted versions of
pebbling formulas [14] with maximal overlap, namely as specified by complete
bipartite graphs. This raises the question whether there is a lifting theorem
waiting to be discovered here, and indeed we prove that the separation in [2] can
be proven more cleanly as the statement that strong enough lower bounds on
proof depth can be lifted to exponential lower bounds on proof length in regular

184 M. Vinyals et al.

resolution. This in turn implies that if one can find formulas that have short
resolution proofs with only small clauses, but that require large depth, then
lifting with overlap yields formulas that separate regular and general resolution.

This simpler, more modular proof of [2] is the main conceptual contribution
of our paper, but this simplicity also opens up a path to further improvements.
Originally, lifting with overlap was defined in [55] for low-degree expander graphs,
and we show that our new lifting theorem can be extended to this setting also.
Intuitively, this yields “sparse” versions of stone formulas that are essentially as
hard as the original ones but much smaller. We use this finding for two purposes.

Firstly, we slightly improve the separation between regular and general reso-
lution. It was known that there are formulas having general resolution proofs of
length L that require regular proofs of length exp(2(L/((log L)"loglog L))) [61].
We improve the lower bound to exp(£2(L/((log L)*(loglog L)?))).

Secondly, and perhaps more interestingly from an applied perspective, sparse
stone formulas provide the first benchmarks separating regular and general res-
olution that are sufficiently small to allow meaningful experiments with CDCL
solvers. Original stone formulas have the problem that they grow very big very
fast. The so-called guarded formulas in [2,61] do not suffer from this problem,
but the guarding literals ensuring the hardness in regular resolution are immedi-
ately removed during standard preprocessing, making these formulas very easy
in practice. In contrast, sparse stone formulas exhibit quite interesting phenom-
ena. Depending on the exact parameter settings they are either very dependent
on frequent restarts, or very hard even with frequent restarts. This is so even
though short proofs without restarts exist, which also seem to be possible to find
algorithmically if the decision heuristic of the solver is carefully hand-coded.

Outline of This Paper. After reviewing some preliminaries in Sect.2, we
present our proof of [2] as a lifting result in Sect. 3. We extend the lower bound
to sparse stone formulas in Sect.4. We conclude with brief discussions of some
experimental results in Sect.5 and directions for future research in Sect. 6.

2 Preliminaries

Resolution. Throughout this paper 0 denotes false and 1 denotes true. A lit-
eral a is either a variable x or its negation T. A clause C is a disjunction
a1 V -+ V ay of literals; the width of C is k. A CNF formula F =Ci A---ANC,,
is a conjunction of clauses, the size (or length) of which is m. We view clauses
and CNF formulas as sets, so order is irrelevant and there are no repetitions.

A resolution proof for (the unsatisfiability of) F, also referred to as a reso-
lution refutation of F, is a sequence of clauses, ending with the empty clause L
containing no literals, such that each clause either belongs to F or is obtained by
applying the resolution rule CVz, DV T F CV D to two previous clauses. If we
lay out the proof as a graph the result is a directed acyclic graph (DAG) where
each node is labelled with a clause, where without loss of generality there is a
single source labelled L, where each sink is a clause in F', and each intermediate
node can be written on the form C VvV D with edges to the children C' V x and

Simplified and Improved Separations 185

D V7. The length of a refutation is the number of clauses, its width is the max-
imal width of a clause in it, and its depth is the longest path in the refutation
DAG. The resolution length, width and depth of a formula are the minimum
over all resolution refutations of it.

A restriction p is a partial assignment of truth values to variables. We write
p(x) = * to denote that variable x is unassigned. We obtain the restricted
clause CT, from C' by removing literals falsified by p, and the restricted for-
mula F'[, from F' by removing clauses satisfied by p and replacing other clauses C
by CT,.

If a formula F has a resolution refutation m, then for every restriction p the
restricted formula F'[, has a refutation 7’—denoted by m[,—the length, width
and depth of which are bounded by the length, width and depth of 7, respectively.
If 7 is regular, then so is 7[,. We will need the following straightforward property
of resolution depth.

Lemma 1 ([60]). If F requires resolution depth D, then for every variable x
in F it holds for some b € {0,1} that F{g.=py requires resolution depth D — 1.

Branching Programs. In the falsified clause search problem for an unsatisfiable
CNF formula F, the input is some (total) assignment « and a valid output is
any clause of F' that « falsifies.

From a resolution refutation of F' we can build a branching program for the
falsified clause search problem with the same underlying graph, where every
non-source node queries a variable x and has outgoing edges 0 and 1, and where
any assignment « leads to a sink labelled by a clause that is a valid solution
to the search problem for F'. We maintain the invariant that an assignment «
can reach a node labelled by C' if and only if « falsifies C—in what follows, we
will be slightly sloppy and identify a node and the clause labelling it. In order
to maintain the invariant, if a node C'V D has children C' V z and D V T, we
query variable z at that node, move to the child with the new literal falsified
by the assignment to z, and forget the value of any variable not in this child. A
proof is regular if and only if it yields a read-once branching program, where any
variable is queried at most once along any path, and it is tree-like if it yields a
search tree.

Pebbling Formulas. Given a DAG H of indegree 2 with a single sink, the
pebbling formula over H [14], denoted Peb g, has one variable per vertex, a clause
u for each source u, a clause @ V ¥ V w for each non-source w with predecessors
u and v, and a clause Z for the sink z.

Pebbling formulas over n-vertex DAGs H have short, small-width refutations,
of length O(n) and width 3, but may require large depth. More precisely, the
required depth coincides with the so-called reversible pebbling number of H [22],
and there exist graphs with pebbling number @(n/logn) [30]. We will also need
that so-called pyramid graphs have pebbling number ©(y/n) [23,25].

Lifting. We proceed to define lifting with overlap inspired by [55]. Let F be a
formula with n original variables ;. We have m new main variables r;, which

186 M. Vinyals et al.

we often refer to as stone variables. Let G be a bipartite graph of left degree d
and right degree d’ with original variables on the left side and main variables
on the right side. We have dn new selector variables s; ;, one for each edge (i, j)
in G.

For convenience, let us write y' =y and y° = 7 for the positive and negative
literals over a variable y. Then the lifting of 2% for b € {0,1} is the conjunction
of d clauses £L9(2}) = Ajcn() 5ig V - The lifting of a clause C of width w
is the expression £&(C) = abec LY (x?), expanded into a CNF formula of
width 2w and size d¥. The lifting of a CNF formula F is the formula £%(F) =
Acer LE(C) A Niepm) Vjen) Sig of size at most d*|F| + n. We will omit the
graph G from the notation when it is clear from context.

If G is a disjoint union of stars, then we obtain the usual lifting defined in [7],
and if G is a complete bipartite graph with m > 2n and F is a pebbling formula,
then we obtain a stone formula [2]. We will need the fact, implicit in [13], that
formulas with short, small-width refutations remain easy after lifting.

Lemma 2. Let w be a resolution refutation of F' of length L and width w, and
let G be a bipartite graph of left degree d. Then there is a resolution refutation
of LE(F) of length O(d“*+1L).

For the particular case of pebbling formulas, where there is a refutation where
each derived clause is of width at most 2 even if some axioms are of width 3, the
upper bound can be improved to O(d3L).

Graphs. In Sect.3, we use complete bipartite graphs to reprove the known
lower bounds on stone formulas. In Sect. 4, we consider bipartite random graphs
sampled from the G(n, m, d) distribution, where the left and right sides U and V'
have n and m vertices respectively, and d right neighbours are chosen at random
for each left vertex.

A bipartite graph is an (r, k)-ezpander if every left subset of vertices U’ C U
of size |U’| < r has at least x|U’| neighbours. It is well-known (see for instance
[39]) that random graphs are good expanders.

Lemma 3. With high probability a graph G ~ G(n,m,d) with d = ©(log(n/m))
is an (r, k)-ezpander with Kk = O(d), r = O(m/k), and right degree d' < 2dn/m.

The following lemma, as well as its proof, is essentially the same as Lemmas 5
and 6 in [1] but adapted to vertex expansion.

Lemma 4. If G is an (r,k)-expander, then for every set V! C V of size at
most kr/4 there exists a set U C U of size at most r/2 such that the graph
G\ (U UNU")UV') obtained from G by removing U', N(U"), and V' is an
(r/2,k/2)-expander.

Matchings and the Matching Game. A matching p in a bipartite graph is
a set of vertex-disjoint edges. We write p(u) = v if the edge (u,v) is in p. The
matching game [10] on a bipartite graph is played between two players Prover
and Disprover, with r fingers each numbered 1,...,r. In each round:

Simplified and Improved Separations 187

— either Prover places an unused finger ¢ on a free vertex u € U, in which case
Disprover has to place his i-th finger on a vertex v € N(u) not currently
occupied by other fingers;

— or Prover removes one finger i from a vertex, in which case Disprover removes
his 4-th finger.

Prover wins if at some point Disprover cannot answer one of his moves, and
Disprover wins if the game can continue forever.

Theorem 5 ([10, Theorem 4.2]). If a graph is an (r,140)-bipartite expander,
then Prover needs at least or/(2 + §) fingers to win the matching game.

3 Lower Bound for Stone Formulas as a Lifting Theorem

We reprove the result in [2] by reinterpreting it as a lifting theorem.

Theorem 6. If F' has resolution depth D and m > 2D, then LE(F) for G the
complete bipartite graph K, ,, has regular resolution length exp(£2(D?/n)).

When we choose as F' the pebbling formula of a graph of pebbling number
£2(n/logn) [30] we reprove the result in [2], slightly improving the lower bound
from exp(£2(n/log®n)) to exp(£2(n/log®n)).

Corollary 7. There are formulas that have general resolution refutations of
length O(n*) but require regqular resolution length exp(£2(n/log®n)).

We start with an overview and a few definitions common to this and the next
section. The proof at a high level follows a common pattern in proof complexity:
given some complexity measure on clauses, we apply a restriction to the resolu-
tion refutation that removes all complex clauses from a short enough proof. In a
separate argument, we show that the restricted formula always requires complex
clauses, contradicting our assumption of a short refutation.

To build a restriction we use the following concepts. Let p: I — J be a partial
matching from original to stone variables. A matching p induces an assignment
p to selector variables as follows.

L if p(i) = g,
p(sij) =140 ifiedom(u)or e im(u) but u(i) # j,
* otherwise.

We say that an assignment p whose restriction to selector variables is of this
form respects the lifting because LS (F)[, = L% (F|,), where G’ is the induced
subgraph G[(I \ dom p) U (J \ im)] and o is the induced assignment to original
variables o(z;) = p(r,(;)) if i € dom(u), and o(x;) = * otherwise. An assignment
that respects the lifting is uninformative if it induces an empty assignment to
original variables, that is p(r;) = * whenever j € im p. Given an uninformative
assignment p and an assignment to original variables o, we can extend the former
to agree with the latter as p(r;) = o(x,-1(;)) if j € im p and p(r;) = * otherwise.

188 M. Vinyals et al.

The size of an assignment is the maximum of the size of the matching and the
number of assigned stone variables.

A helpful complexity measure is the width of a clause; we use a complexity
measure from [2] that enforces an additional structure with respect to the lifting.

Definition 8. A clause C is (¢, z)-complex if either

1. C contains at least ¢ stone variables,
2. there is a matching 1 of size ¢ such that C contains the literal s; ; for each
(i,7) € u, or
3. there is a set W of size ¢ where C' contains at least z literals s; ; for each
1€ W.
In this section we only use (¢, c¢)-complex clauses, which we refer to as c¢-
complex. Note that ¢ can range from 1 to m. We also need the following lemma,
which can be established by a straightforward calculation.

Lemma 9. Consider a set of s clauses C and a set of n possibly dependent
literals L such that after setting ln(s)n/p literals in L (plus any dependencies),
for each clause C' € C there is a subset Lo C L of at least p literals, each of
which satisfies C. Then there is a set of In(s)n/p literals that satisfies C.

From now on we assume that G is the complete bipartite graph K, ,,. The
first step is to show that we can remove all complex clauses from a short proof.

Lemma 10. There exists € > 0 such that if m is a resolution refutation of L(F)
of size s = exp(ec®/mn), then there exists an uninformative restriction p of
size ¢/2 such that @[, has no c-complex clauses.

Proof. We build a restriction greedily. First we choose a matching p so that
after setting the corresponding selector variables with the restriction p induced
by p we satisfy all c-complex clauses of type 2 and 3 in Definition 8. There are
mn positive selector literals s;;. A clause of type 2 is satisfied if we set one of ¢
variables s; ; = 0, and that happens if we assign a literal s;;; = 1 with j' # j,
for a total of ¢(m — 1) > c? choices. A clause of type 3 is satisfied if we set one
of ¢? literals s; ; = 1. After picking k pairs to be matched there are still at least
(¢ —k)(m —k —1) > (c — k)? literals available to satisfy clauses of type 2, and
(c — k)? literals available to satisfy clauses of type 3, so we can apply Lemma 9
and obtain that setting ¢ < In(s) mn/(c?/4) literals is enough to satisfy all such
clauses. Note that we used that k < In(s) mn/(c?/4) < ¢/2.

Next we extend p to p’ by setting some stone variables that are untouched
by @ so that we satisfy all clauses of type 1. There are m — ¢ such variables,
hence at most 2m literals, and a clause is satisfied when one of ¢ variables is
picked with the appropriate polarity. After picking k literals there are at least
¢—q—k > c¢/2—k choices left for each clause, so we can apply Lemma9 and
get that setting ¢’ = log sm/(c/8) variables is enough to satisfy all clauses of
type 1. Note that we used that k < In(s)m/(¢/8) < ¢/4, which follows from
In(s) < ¢?/16m < ¢*/16mn.

The size of the restriction p’ is then at most ¢/2. O

Next we show that regular resolution proofs always contain a complex clause.

Simplified and Improved Separations 189

Lemma 11. If F requires depth D, then any regular resolution refutation of
L(F) with m < D has an m/4-complez clause.

Proof. We build a path through the read-once branching program corresponding
to the proof, using a decision tree 1" for F' of depth D to give the answers to
some queries. We also keep a matching p, with the invariant that there is an
edge (4, 7) in the matching if and only if s;; = 1 or there are m/4 stones j' # j
such that s;;» = 0. We can do so using the following strategy as long as at most
m/4 stones are assigned and at most m/4 stones are matched.

— If the adversary queries s;; then if neither ¢ nor j are matched we answer 1
and add (¢,7) to the matching, if p(i) = j we answer 1, and otherwise we
answer 0. If more than m/4 variables s;;» are 0 (for ¢ fixed and j' € [m]) we
choose one of the m/4 stones j” that are not assigned, nor matched, nor have
sij# = 0 and add (7,7") to the matching.

— If the adversary queries r; and j is matched to ¢, we answer b so that the
depth of T only shrinks by 1 when original variable x; is set to b, as given
by Lemma 1. Otherwise we answer arbitrarily.

— If the adversary forgets a variable and there is an edge in the matching that
does not respect the invariant, we remove it.

Assume for the sake of contradiction that we never reach an m/4-complex
clause. Then we can maintain the invariant until we reach a leaf of the branching
program, and that leaf never falsifies a clause of the form \/ jem] Sivg- It follows
that the path ends at a clause from £(D), at which point the depth of T' reduced
to 0. Observe that the depth of T only decreases by 1 when a stone variable is
queried and that, since the branching program is read-once, these queries must
be to D different stones, but only m < D stones are available. O

We use these lemmas to complete the plan outlined at the beginning of this
section and prove our lifting theorem.

Proof (of Theorem 6). Assume for the sake of contradiction that 7 is a refutation
of L(F) of length less than exp(§D?/n), where § = ¢/1024 for the € of Lemma 10.

We invoke Lemma 10 with ¢ = D/8 to obtain that there is an uninformative
restriction p of size D /16 such that [, has no D/8-complex clauses. By Lemma, 1
we can assign values to the matched stones in a way that the induced assignment
to original variables o yields a formula of depth 15D /16. We additionally assign
all but the first 15D/16 — 1 stones arbitrarily and set all selector variables that
point to an assigned stone to 0. Let p’ be the new restriction.

The formula F' = L(F)|, is the lifted version of a formula F'[, of depth
D’ = 15D/16 with m’ = D’ — 1 stones, hence by Lemma 11 any refutation of
F’ has an m'/4-complex clause. But since m’/4 > 15D/64 — 1 > D/8, this
contradicts the fact that the refutation 7|, has no D/8-complex clauses. O

190 M. Vinyals et al.

4 Lower Bound for Sparsely Lifted Formulas

We now generalize the lifting to sparse graphs. The first step is again to show
that we can remove all complex clauses from a short proof, but this becomes a
harder task so let us begin with an informal overview. Say that we start with a
lifted formula whose selector variable graph is an expander and, as in Lemma 10,
we want to make a few stones be assigned and a few stones be matched. After we
remove these stone vertices from the graph, it will likely stop being an expander
(e.g. because we will likely remove all the neighbours of some vertex).

Fortunately by Lemma4 given a subset V' of right vertices to remove there
is a subset U’ of left vertices such that removing V', U’, and N(U’) from the
graph yields an expander, but this is still not enough because removing U’ forces
us to a matching that may interfere with our plans. Maybe there is some vertex
1 € U’ corresponding to an original variable that we want to assign to 0 but
all of its neighbours are assigned to 1, or maybe there is some original variable
1 € U’ all of whose neighbours are already matched to other original variables.

Our solution is to add one backup vertex for each stone vertex j, so that we
can delay the expansion restoring step. Of course we cannot decide beforehand
which vertices are primary and which are backup, otherwise it might be that
all complex clauses would talk only about backup vertices and our assignment
would not affect them, so we have to treat primary and backup vertices equally.
But still we make sure that if a vertex j is assigned 1, then its backup is assigned
0 and viceversa, taking care of the first problem; and that if a stone vertex j is
matched to some original variable ¢ then its backup is still free and viceversa,
taking care of the second problem.

To make the concept of backup vertices formal, we say that a bipartite graph
G of the form UU(VoUV;) is a mirror if the subgraphs Go(UUV;) and G1(UUV)
are isomorphic, which we also refer to as the two halves of G.

We can state our sparse lifting theorem using the concept of mirror graphs.

Theorem 12. If F' has resolution depth D, and G is a mirror graph with Go ~
G(n,D/2,d), where d = O(log(n/D)), then with high probability L%(F) has
regqular resolution length exp(£2(D3/d*n?)).

As before, if we choose for F' the pebbling formula of a graph of pebbling
number ©(n/logn), then we get the following improved separation of regular
and general resolution.

Corollary 13. There are formulas that have general resolution refutations of
length O(nloglog®n) but require reqular resolution length exp(£2(n/log® nlog
log” n)).

Let us establish some notation. After fixing an isomorphism ¥: Go — G
we name the vertices in pairs jO and j1 so that j1 = ¥(50). If jb € V} and
a € {0,1}, we let jb+ a denote the vertex j(a +b mod 2) € Voip mod 2- Let
m = |Vp| so there are 2m right vertices in G. In this section c-complex stands
for (¢, 1)-complex and we assume that d = O(log(n/m)).

Simplified and Improved Separations 191

Lemma 14. If G is a mirror (r, k)-ezpander with k > 2, where kr = @(m), and
7 is a resolution proof of LE(F) of size s = exp(O(c*m/d*n?)), where ¢ = O(m),
then there is a restriction p such that w[, is a proof of £ (F") that has no c-
complex clauses, where F' has resolution depth at least D — r/2 — kr/8 and G’
is an (r/2, k/2)-expander.

Proof. We show that such a restriction exists using a hybrid between a random
and a greedy restriction. We randomly partition the stone vertices in V} into free,
assigned, and matched stones, and mirror the partition in V7. Of the assigned
stones, a set Ay of kr/16 stones are set to 0, and a set AJ of k7 /16 stones are set
to 1, while the stones in the corresponding sets A7 = ¥(Ay) and AT = ¥ (A])
are set to 1 and 0 respectively. We plan to use the sets My and M; = (M) of
kr/8 matched stones each to greedily build a matching. The remaining 2(m —
kr/4) stone vertices are tentatively left untouched.

First we claim that, with high probability, all clauses of type 1 are satisfied.
To show this we note that a clause C of type 1 contains at least ¢/4 literals of
the same polarity and referring to the same half of the graph. Assume without
loss of generality that C' contains ¢/4 positive literals referring to stones in Vj
and let Cj” = {j0 € Vj : rjo € C} be these stones.

The probability that no positive stone literal is satisfied is

Vo\Cf
(")

()

and since Ins = O(c*m/d*n?) = O(m(c?/d*n?)) = o(m) the claim follows from
a union bound over all clauses of type 1.

Next we greedily build a matching p with the goal of satisfying all clauses of
types 2 and 3. We ensure that overlaying both halves of the matching would also
result in a matching; in other words if a vertex jb is matched then we ensure
that jb + 1 is not. For each edge (4, jb) in the matching we set s; j» = 1, we set
sirgs = 0 and s; 5 = 0 for all i # 4, j° # j, and V' € {0,1}, and we leave
8;.5b+1 tentatively unset for all i. Before we actually build the matching we need
to prove that, with high probability, each of these clauses can be satisfied by
choosing one of ckr/32m edges (i, jb) with j € M, to be in the matching.

For a clause C of type 3 we assume without loss of generality that ¢/2 literals
refer to stones in V;). We can express the number of edges that satisfy C as
the random variable x¢ = Zjoevo xc,jo where zc jo takes the value tc ;o =
{(7,50) € E : s; 50 € C}| if jO € My and 0 otherwise. We have that

Pr[CinAf = 0] < < (1—c¢/4m)" /16 = exp(—02(kr)) = exp(—12(m))

Ec = E[l‘c] = Z E[.IC’]'()} = Z tC,jO . PI"[]O S Mo]
7oeV, 710eVy

| Mo| KT ¢ CKT
m Z €0 = 8qm 2 16m (c)
7J0eVy

192 M. Vinyals et al.

and each of z¢ ; is bounded by the right degree d’ < 2dn/m, therefore by
Hoeffding’s inequality for sampling without replacement we obtain that

(Ec —Ec/2)?

Prizc < Ec¢/2] < exp (—2
2 joevo tj0

) = exp(—02(c®/d'¢)) = exp(—2(cm/dn))
and the claim follows from a union bound over all clauses of type 3.

For clauses of type 2, for each literal 5; jo € C' it is enough to choose as an
edge one of the (d — 1) edges (4,5'0) with j’ # j. Hence the number of available
choices is the random variable z¢ defined as before except that tc ;o = |[{(4, jO) €
Ey: 35" € Vo\{j},5i;» € C}|. We have Ec = E[z¢| > (d—1)ckr/16m therefore
Prlzc < E¢] = exp(—£2(cm/n)) and the claim follows from a union bound.

Let us finish this step of the proof by building the matching. Observe that
choosing an edge makes up to d + d’ incident edges ineligible, as well as up to
d + d' edges in the other half, for a total of 2(d + d') < 5d’, hence after making
¢ choices there are still e(¢) = ckr/32 — 5¢d' choices available for each clause.
By averaging, there is an edge that satisfies at least an e(¢)/dn fraction of the
clauses of types 2 and 3. Hence after picking

ckr/64m CcKT

—e ! Am) =
k = e "(ckr/64m) 7 = 50dn

edges the remaining fraction of clauses is at most

b e(l) e(k) b ckr O\ #20in c2m
E(l dn) = (1 dn > B (1 64mdn) N exp(Q(d2n2>)'

The last step is to ensure that after removing Vj = Ao U My from G we still
have a good expander. By Lemma4 there is a set U’ of size r/2 such that G \
U'UNU) UV isan (r/2,k/2)-expander. Let U” = U'\dom p. Let v: U” — V}
be an injective mapping from indices to stones, which exists by Hall’s theorem,
and let o: U” — {0,1} be an assignment to U” such that the depth of F|[,
reduces by at most |o].

We match each vertex ¢ € U” to a stone as follows. If v(i) € A, then
Tv(i)4o@) = O'(Z) so we set Siv(i)+o(i) = 1, while if I/(Z) S Aa_ then Tv(@)+o(i) =
1 —0o(i) so we set s ,(i)+o(i)+1 = 1. If (i) € My then note that by construction
of the matching p at least one of v(i) and v(i) 4+ 1 is not matched; we let jb be
that stone and set s; 5 = 1 and r;, = 0(7). Otherwise we add v(i) to My and
v(i) + 1 to My, and do as in the previous case.

We also assign values to matched stones. Let dom p be the matched original
variables and let 7: domy — {0,1} be an assignment to dom p such that the
depth of F[,ur reduces by at most |7|. For each vertex i € dom p we set 7,;) =
7(4). To obtain our final graph we set to 0 any variable s; ; with ¢ € U’ U dom p
or j € Vg UN(U')UV; that remains unassigned.

Let us recap and show that £G(F)[, = £& (F') where G’ is an expander
and F’ has large depth as we claimed. G’ is the subgraph of G induced by
U\ (U Udomp) and Vp \ (Vy UN(U")), since we did not assign any selector

Simplified and Improved Separations 193

variable corresponding to an edge between these two sets, but we did assign
every other selector variable. The graph induced by U\ U’ and V; \ (Vj UN(U"))
is an (r/2, k/2)-expander by Lemma 4, and since removing left vertices does not
affect expansion, so is G’. Regarding F”, for every variable s; ; = 1 we have that
rj = (o UT)(i), so F' = F|,yu, which has depth at least D —r/2 — kr/8. O

To prove an equivalent of Lemmall we use the extended matching game,
where we allow the following additional move:

— Prover places an unused finger ¢ on a free vertex v € V, in which case Dis-
prover places his i-th finger on v and optionally moves Prover’s finger to a
free vertex u € N(v).

Lemma 15. If Prover needs p fingers to win the matching game on a graph of
right degree d', then it needs p — d’' fingers to win the extended matching game.

The proof can be found in the forthcoming full version.
Finally we are ready to prove our last lemma and complete the proof.

Lemma 16. If F has resolution depth D, and G is a bipartite graph whose
right hand side is of size m < D, duch that G requires v fingers in the extended
matching game, then any regular resolution refutation of L%(F) has an r/3-
complex clause.

Proof. At a high level we proceed as in the proof of Lemma 11, except that now
keeping a matching is a more delicate task, and hence we use the extended match-
ing game for it. We want to match any index 4 for which we have information
about, this is the value of a variable s; ; is remembered.

— If the adversary queries r; and p(i) = j for some 4, then we answer so that
the depth of the decision tree only shrinks by 1.

— If the adversary queries r; where j is not in the matching, then we play j in
the matching game. If we receive an answer ¢ we add (4,j) to the matching
and answer so that the depth of the decision tree only shrinks by 1. If instead
we receive the answer j, we answer arbitrarily.

— If the adversary queries s; ; where either ¢ or j are in the matching then we
answer 1 if (¢,7) is in the matching and 0 otherwise.

— If the adversary queries s; ; where neither ¢ nor j are in the matching then
we play i in the matching game and receive an answer j'. We add (4,5") to
the matching and answer 1 if j = j’ and 0 otherwise.

— If after the adversary forgets a variable there is an index ¢ such that p(i) = j
but none of s; j» and r; are assigned, we forget ¢ in the matching game.

Assume for the sake of contradiction that Prover does not win the matching
game. It follows that the branching program ends at a clause in £(D) for D € F,
at which point the depth of T reduced to 0. Observe that the depth of T only
decreases by 1 when a stone variable is queried and that, since the branching

194 M. Vinyals et al.

program is read-once, these queries must be to D different stones. However, only
m < D stones are available.

It follows that Prover eventually uses r fingers in the matching game, at
which point we claim that we are at an r/3-complex clause. Let us see why. For
each finger 7 in the matching game we remember either a selector literal s; ; = 1,
a selector literal s; ; = 0, or a stone variable 7;, hence we remember at least
r/3 variables of either type. In the first case we are at a clause of type 2, in the
second at a clause of type 3, and in the third at a clause of type 1. g

Proof (of Theorem 12). By Lemma3, with high probability Gp is an (r, k)-
expander for r = ©(m/d) and k = ©(d), and has right degree at most 2dn/m.
Assume for the sake of contradiction that 7 is a refutation of L& (F) of length
less than exp(eD3/d*n?).

Let p be the restriction given by Lemma 14 so that 7, is a regular resolution
proof with no c-complex clauses with ¢ = k7 /75 = ©(m). The formula L(F)[, is
the lifted version £& (F') of a formula F’ of depth at least D —r/2 — kr/8, and
the graph G’ is an (r/2, k/2)-expander with m’ < m — xr/8 < D —r/2 — kr/8.
Since for each set U of size at most xr/8 and subset U’ C U of size |U|-4/k < r/2
it holds that |[N(U)| > [N(U")| > k/2|U’| = 2|U|, G' is also a (kr /8, 2)-expander,
hence by Theorem 5 and Lemma 15 G’ requires kr/24—d' > xr/25 fingers in the
extended matching game. By Lemma 11 any regular resolution proof of £& (F)
has a kr/75-complex clause. But this contradicts that the proof 7[, has no
kr/T5-complex clauses. O

It would also be interesting to prove a lower bound with plain random graphs,
not relying on the additional mirror structure. Unfortunately, without backup
vertices, the expansion restoring step would make r/2 right vertices ineligible
to be matched, and that can prevent us from satisfying clauses of type 3 of
complexity up to d'r/2 > m.

5 Experiments

We have run some experiments to investigate how hard sparse stone formulas are
in practice and how restarts influence solvers running on this particular family.
As base formulas we use pebbling formulas over Gilbert—Tarjan graphs with
butterflies [30,42], which require depth ©(n/ log?n), and over pyramid graphs,
which require depth @(y/n). Note that lifting the first type of formulas yields
benchmarks that are provably hard for regular resolution, whereas for the second
type of formulas we are not able to give any theoretical guarantees. Our experi-
mental results are very similar, however, and so below we only discuss formulas
obtained from pyramids, for which more benchmarks can be generated.

We used an instrumented version [28] of the solver Glucose [4] to make it
possible to experiment with different heuristics. The results reported here are
for the settings that worked best, namely VSIDS decision heuristic and prepro-
cessing switched on. To vary the restart frequency we used Luby restarts with
factors 1, 10, 100, and 1000 plus a setting with no restarts. The time-out limit

Simplified and Improved Separations 195

was 24 h. For the record, we also ran some preliminary experiments for standard
Glucose (with adaptive restarts) and Lingeling [46], but since the results were
similar to those for Luby restarts with a factor 100 we did not run full-scale
experiments with these configurations.

We illustrate our findings in Fig. 1 by plotting results from experiments using
the pebbling formula over a pyramid graph of height 12 as the base formula and
varying the number of stones. We used random graphs of left degree 6 as selector
variable graphs. Note that once the pebbling DAG for the base formula has been
fixed, changing the number of stones does not change the size of the formula too
much. For the particular pebbling DAG in Fig. 1, the number of variables is in
the interval from 550 to 650.

Empirically, the formulas are hardest when the number of stones is close
to the proof depth for the base formula, which is also the scenario where the
calculations in Sect.4 yield the strongest bound. We expect the hardness to
increase as the number of stones approaches from below the proof depth of the
base formula, but as the number of stones grow further the formulas should get
easier again. This is so since the fact that the selector graph left degree is kept
constant means that the overlap decreases and ultimately vanishes, and pebbling
formulas lifted without overlap are easy for regular resolution.

TN 107 L luby
10luby
10° £ N 100luby
50 1 @06 1000luby
é 107 | \/\ \ —<§
: W .
g b W e
2100/ 2
100 / 210" Al
il Z /M”\/V
o vsids, luby & MAIA A |
* 104 vsids, 100luby S0 ‘v‘/‘b VA
E vsids, no restarts
custom 1, no restarts
custom 2, no restarts i
103 L L L L L I I 102 I I I I L I

1020 30 40 5 60 70 8 90 1020 30 40 50 60
Stones Stones
(a) # Conflicts (b) # Restarts

Fig. 1. Solving stone formulas over a pyramid of height 12.

Interestingly, the solver behaviour is very different on either side of this hard-
ness peak. As we can see on the left in Fig.la, in the beginning the number
of conflicts (and hence the running time) grows exponentially in the number
of stones, independently of the number of restarts. With more stones, how-
ever, restarts become critical. The number of restarts used to solve a particular
instance remains similar among all solver configurations, as shown on the right
in Fig. 1b. Therefore, if the solver restarts more frequently it reaches this number
of restarts faster and solves the formula faster, as shown by the conflict counts
on the right in Fig. la.

196 M. Vinyals et al.

To make CDCL solvers run as fast as possible, we crafted a custom deci-
sion order tailored to stone formulas over pyramids. With this decision order,
no restarts, and very limited clause erasures, the solver decided dense stone
formulas over pyramids of height h with A stones in a number of conflicts pro-
portional to h”® (where we note that these formulas have O(h?) variables and
O (h5) clauses). For sparse stone formulas, we found one decision order (custom 1
in Fig. 1a) that worked reasonably well for small pyramids but failed for larger
ones. A second attempt (custom 2) performed well for all pyramid sizes as long
as the number of stones was below the hardness peak, but failed for more stones
(when the formulas become easy for VSIDS with frequent restarts).

Summing up, even though stone formulas always possess short resolution
refutations, and even though CDCL solvers can sometimes be guided to decide
the formulas quickly even without restarts, these formulas can be surprisingly
hard in practice for state-of-the-art solvers with default heuristics. The frequency
of restarts seems to play a crucial role—which is an interesting empirical par-
allel of the theoretical results in [3,51]—but for some settings of stone formula
parameters even frequent restarts cannot help the solver to perform well.

6 Concluding Remarks

In this work we employ lifting, a technique that has led to numerous break-
throughs in computational complexity theory in the last few years, to give a
significantly simplified proof of the result in [2] that general resolution is expo-
nentially more powerful than regular resolution. We obtain this separation as a
corollary of a generic lifting theorem amplifying lower bounds on proof depth
to lower bounds on regular proof length in resolution. Thanks to this new per-
spective we are also able to extend the result further, so that we obtain smaller
benchmark formulas that slightly strengthen the parameters of the previously
strongest separation between regular and general resolution in [61].
Furthermore, these new formulas are also small enough to make it possible
to run experiments with CDCL solvers to see how the running time scales as
the formula size grows. Our results show that although these formulas are the-
oretically very easy, and have resolution proofs that seem possible to find for
CDCL solvers without restarts if they are given guidance about which variable
decisions to make, in practice the performance depends heavily on settings such
as frequent restarts, and is sometimes very poor even for very frequent restarts.
Our main result implies that if we can find CNF formulas that have resolution
proofs in small width but require sufficiently large depth, then lifted versions of
such formulas separate regular and general resolution. (This is so since proof
width can only increase by a constant factor after lifting, and small-width proofs
have to be short in general resolution by a simple counting argument.) Unfortu-
nately, the only such formulas that are currently known are pebbling formulas.
It would be very interesting to find other formulas with the same property.
Also, it would be desirable to improve the parameters of our lifting theorem.
A popular family of pebbling graphs are pyramids, but the proof depth for

Simplified and Improved Separations 197

pebbling formulas based on such graphs is right below the threshold where the
lower bound amplification kicks in. Could the analysis in the proof of the lifting
theorem be tightened to work also for, e.g., pebbling formulas over pyramids?
On the applied side, it is intriguing that sparse stone formulas can be so hard
in practice. One natural question is whether one could find some tailor-made
decision heuristic that always makes CDCL solvers run fast on such formulas,
with or even without restarts. An even more relevant question is whether some
improvement in standard CDCL heuristics could make state-of-the-art solvers
run fast on these formulas (while maintaining performance on other formulas).

Acknowledgements. We are most grateful to Robert Robere for the interesting dis-
cussions that served as the starting point for this project. We also acknowledge the
important role played by the Dagstuhl seminar 18051 “Proof Complexity,” where some
of this work was performed. Our computational experiments were run on resources pro-
vided by the Swedish National Infrastructure for Computing (SNIC). Our benchmarks
were generated using the tool CNFgen [44].

The first author was supported by the Prof. R Narasimhan post-doctoral award.
The second and fourth authors were funded by the Swedish Research Council (VR)
grant 2016-00782. The fourth author was also supported by the Independent Research
Fund Denmark (DFF) grant 9040-00389B.

References

1. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. J. Autom. Reason. 35(1—
3), 51-72 (2005). Preliminary version in ICALP 2004

2. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and general resolution. Theory Comput. 3(5), 81-102 (2007).
Preliminary version in STOC 2002

3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353-373 (2011).
Preliminary version in SAT 2009

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAT 2009), pp. 399-404, July 2009

5. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI 1997), pp. 203-208, July 1997

6. Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: super-
polynomial lower bounds for superlinear space. SIAM J. Comput. 45(4), 1612-1645
(2016). Preliminary version in STOC 2012

7. Beame, P., Huynh, T., Pitassi, T.: Hardness amplification in proof complexity. In:
Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC
2010), pp. 87-96, June 2010

8. Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for Lovasz-Schrijver systems
and beyond follow from multiparty communication complexity. SIAM J. Comput.
37(3), 845-869 (2007). Preliminary version in ICALP 2005

198

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Vinyals et al.

. Beck, C., Nordstréom, J., Tang, B.: Some trade-off results for polynomial calculus.

In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC 2013), pp. 813-822, May 2013

Ben-Sasson, E., Galesi, N.: Space complexity of random formulae in resolution.
Random Struct. Algorithms 23(1), 92-109 (2003). Preliminary version in CCC
2001

Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-
like and general resolution. Combinatorica 24(4), 585-603 (2004)

Ben-Sasson, E., Nordstrom, J.: Short proofs may be spacious: an optimal separa-
tion of space and length in resolution. In: Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2008), pp. 709-718, Octo-
ber 2008

Ben-Sasson, E., Nordstréom, J.: Understanding space in proof complexity: separa-
tions and trade-offs via substitutions. In: Proceedings of the 2nd Symposium on
Innovations in Computer Science (ICS 2011), pp. 401-416, January 2011
Ben-Sasson, E., Wigderson, A.: Short proofs are narrow-resolution made simple. J.
ACM 48(2), 149-169 (2001). Preliminary version in STOC 1999

Berkholz, C., Nordstrém, J.: Near-optimal lower bounds on quantifier depth and
Weisfeiler-Leman refinement steps. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2016), pp. 267-276, July 2016
Berkholz, C., Nordstrom, J.: Supercritical space-width trade-offs for resolution.
SIAM J. Comput. 49(1), 98-118 (2020). Preliminary version in ICALP 2016
Blake, A.: Canonical Expressions in Boolean Algebra. Ph.D. thesis, University of
Chicago (1937)

Bonet, M.L., Buss, S., Johannsen, J.: Improved separations of regular resolution
from clause learning proof systems. J. Artif. Intell. Res. 49, 669-703 (2014)
Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: On the relative complexity of
resolution refinements and cutting planes proof systems. SIAM J. Comput. 30(5),
1462-1484 (2000). Preliminary version in FOCS 1998

Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: resolution
refinements that characterize DLL-algorithms with clause learning. Logical Meth-
ods Comput. Sci. 4(4:13) (2008)

Buss, S.R., Kolodziejczyk, L.: Small stone in pool. Logical Methods Comput. Sci.
10(2), 16:1-16:22 (2014)

Chan, S.M.: Just a pebble game. In: Proceedings of the 28th Annual IEEE Con-
ference on Computational Complexity (CCC 2013), pp. 133-143, June 2013
Chan, S.M., Lauria, M., Nordstrom, J., Vinyals, M.: Hardness of approximation in
PSPACE and separation results for pebble games (Extended abstract). In: Proceed-
ings of the 56th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2015), pp. 466-485, October 2015

Chattopadhyay, A., Koucky, M., Loff, B., Mukhopadhyay, S.: Simulation beats
richness: new data-structure lower bounds. In: Proceedings of the 50th Annual
ACM Symposium on Theory of Computing (STOC 2018), pp. 1013-1020, June
2018

Cook, S.A.: An observation on time-storage trade off. J. Comput. Syst. Sci. 9(3),
308-316 (1974). Preliminary version in STOC 1973

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5(7), 394-397 (1962)

Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201215 (1960)

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Simplified and Improved Separations 199

Elffers, J., Girdldez-Cru, J., Gocht, S., Nordstrom, J., Simon, L.: Seeking practical
CDCL insights from theoretical SAT benchmarks. In: Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 1300—
1308, July 2018

Garg, A., Goos, M., Kamath, P., Sokolov, D.: Monotone circuit lower bounds from
resolution. In: Proceedings of the 50th Annual ACM Symposium on Theory of
Computing (STOC 2018), pp. 902-911, June 2018

Gilbert, J.R., Tarjan, R.E.: Variations of a pebble game on graphs. Technical
Report STAN-CS-78-661, Stanford University (1978). http://infolab.stanford.edu/
TR/CS-TR-78-661.html

Goerdt, A.: Regular resolution versus unrestricted resolution. STAM J. Comput.
22(4), 661-683 (1993)

G606s, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes.
SIAM J. Comput. 47(1), 241-269 (2018)

Go6o6s, M., Jayram, T.S., Pitassi, T., Watson, T.: Randomized communication
vs. partition number. In: Proceedings of the 44th International Colloquium on
Automata, Languages and Programming (ICALP 2017). Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 80, pp. 52:1-52:15, July 2017

Go66s, M., Kamath, P., Pitassi, T., Watson, T.: Query-to-communication lifting for
PNP. In: Proceedings of the 32nd Annual Computational Complexity Conference
(CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 79, pp.
12:1-12:16, July 2017

Goos, M., Lovett, S., Meka, R., Watson, T., Zuckerman, D.: Rectangles are non-
negative juntas. In: Proceedings of the 47th Annual ACM Symposium on Theory
of Computing (STOC 2015), pp. 257-266, June 2015

Go6os, M., Pitassi, T.: Communication lower bounds via critical block sensitivity.
SIAM J. Comput. 47(5), 1778-1806 (2018). Preliminary version in STOC 2014
Goos, M., Pitassi, T., Watson, T.: Deterministic communication vs. partition num-
ber. In: Proceedings of the 56th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2015), pp. 1077-1088, October 2015

Go6o6s, M., Pitassi, T., Watson, T.: The landscape of communication complexity
classes. Comput. Complex. 27(2), 245-304 (2018). Preliminary version in ICALP
2016

Hoory, S., Linial, N.; Wigderson, A.: Expander graphs and their applications. Bull.
Am. Math. Soc. 43(4), 439-561 (2006)

Huang, W., Yu, X.: A DNF without regular shortest consensus path. SIAM J.
Comput. 16(5), 836-840 (1987)

Huynh, T., Nordstrém, J.: On the virtue of succinct proofs: amplifying communica-
tion complexity hardness to time-space trade-offs in proof complexity (Extended
abstract). In: Proceedings of the 44th Annual ACM Symposium on Theory of
Computing (STOC 2012), pp. 233—-248, May 2012

Jarvisalo, M., Matsliah, A., Nordstrém, J., Zivny, S.: Relating proof complexity
measures and practical hardness of SAT. In: Milano, M. (ed.) CP 2012. LNCS, pp.
316-331. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-
725

Kothari, P.K., Meka, R., Raghavendra, P.: Approximating rectangles by juntas
and weakly-exponential lower bounds for LP relaxations of CSPs. In: Proceedings
of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017), pp.
590-603, June 2017

http://infolab.stanford.edu/TR/CS-TR-78-661.html
http://infolab.stanford.edu/TR/CS-TR-78-661.html
https://doi.org/10.1007/978-3-642-33558-7_25
https://doi.org/10.1007/978-3-642-33558-7_25

200

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

M. Vinyals et al.

Lauria, M., Elffers, J., Nordstrom, J., Vinyals, M.: CNFgen: a generator of crafted
benchmarks. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
464-473. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_30
Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite
programming relaxations. In: Proceedings of the 47th Annual ACM Symposium
on Theory of Computing (STOC 2015), pp. 567-576, June 2015

Lingeling, Plingeling and Treengeling. http://fmv.jku.at/lingeling/
Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506-521 (1999). Preliminary version in
ICCAD 1996

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001), pp. 530-535, June 2001

Nordstréom, J.: Narrow proofs may be spacious: separating space and width in
resolution. STAM J. Comput. 39(1), 59-121 (2009). Preliminary version in STOC
2006

Nordstrém, J., Hastad, J.: Towards an optimal separation of space and length in
resolution. Theory Comput. 9, 471-557 (2013). Preliminary version in STOC 2008
Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512-525 (2011). Preliminary version in CP
2009

Pitassi, T., Robere, R.: Strongly exponential lower bounds for monotone computa-
tion. In: Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC 2017), pp. 1246-1255, June 2017

Pitassi, T., Robere, R.: Lifting Nullstellensatz to monotone span programs over
any field. In: Proceedings of the 50th Annual ACM Symposium on Theory of
Computing (STOC 2018), pp. 1207-1219, June 2018

Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. Combinatorica
19(3), 403—435 (1999). Preliminary version in FOCS 1997

Razborov, A.A.: A new kind of tradeoffs in propositional proof complexity. J. ACM
63(2), 16:1-16:14 (2016)

Razborov, A.A.: On space and depth in resolution. Comput. Complex. 27(3), 511—
559 (2018)

de Rezende, S.F., Nordstrém, J., Vinyals, M.: How limited interaction hinders real
communication (and what it means for proof and circuit complexity). In: Proceed-
ings of the 57th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2016), pp. 295-304, October 2016

Robere, R., Pitassi, T., Rossman, B., Cook, S.A.: Exponential lower bounds for
monotone span programs. In: Proceedings of the 57th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2016), pp. 406-415, October 2016
Tseitin, G.: On the complexity of derivation in propositional calculus. In: Silenko,
A.O. (ed.) Structures in Constructive Mathematics and Mathematical Logic, Part
11, pp. 115-125. Consultants Bureau, New York-London (1968)

Urquhart, A.: The depth of resolution proofs. Stud. Logica. 99(1-3), 349-364
(2011)

Urquhart, A.: A near-optimal separation of regular and general resolution. STAM
J. Comput. 40(1), 107-121 (2011). Preliminary version in SAT 2008

Van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL
with clause learning. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS
(LNAI), vol. 3835, pp. 580-594. Springer, Heidelberg (2005). https://doi.org/10.
1007/11591191_40

https://doi.org/10.1007/978-3-319-66263-3_30
http://fmv.jku.at/lingeling/
https://doi.org/10.1007/11591191_40
https://doi.org/10.1007/11591191_40

	Simplified and Improved Separations Between Regular and General Resolution by Lifting
	1 Introduction
	2 Preliminaries
	3 Lower Bound for Stone Formulas as a Lifting Theorem
	4 Lower Bound for Sparsely Lifted Formulas
	5 Experiments
	6 Concluding Remarks
	References

