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TIGHT SIZE-DEGREE BOUNDS
FOR SUMS-OF-SQUARES PROOFS

MASSIMO LAURIA AND JAKOB NORDSTROM

Abstract. We exhibit families of 4-CNF formulas over n variables
that have sums-of-squares (SOS) proofs of unsatisfiability of degree
(a.k.a. rank) d but require SOS proofs of size n*@ for values of
d = d(n) from constant all the way up to n° for some universal
constant 8. This shows that the n®@ running time obtained by us-
ing the Lasserre semidefinite programming relaxations to find degree-d
SOS proofs is optimal up to constant factors in the exponent. We
establish this result by combining NP-reductions expressible as low-
degree SOS derivations with the idea of relativizing CNF formulas in
Krajicek (Arch Math Log 43(4):427-441, 2004) and Dantchev & Riis
(Proceedings of the 17th international workshop on computer science
logic (CSL ’03), 2003) and then applying a restriction argument as in
Atserias et al. (J Symb Log 80(2):450-476, 2015; ACM Trans Comput
Log 17:19:1-19:30, 2016). This yields a generic method of amplifying
SOS degree lower bounds to size lower bounds and also generalizes the
approach used in Atserias et al. (2016) to obtain size lower bounds for
the proof systems resolution, polynomial calculus, and Sherali~Adams
from lower bounds on width, degree, and rank, respectively.
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1. Introduction

Let fi,...,fs € Rlzy,...,z,] be real, multivariate poly-
nomials. Then the Positivstellensatz proven in Krivine (1964) and
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Stengle (1973) says that the system of equations and inequalities
(1.1) fi=0,...,fs=0 h >0,....h >0

has no solution over R™ if and only if there exist polynomials g;,
qse € Rlzy,. .., z,] such that

TEID SIURIES 91 (1 D o7 R
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That there cannot exist any solution to (1.1) given an expression
of the form (1.2) is clear, but what is more interesting is that
there always exists such an expression to certify unsatisfiability. In

this paper, we will study certificates which are restricted variants
of (1.2) of the form

s t
(1.3) Zgjszl‘i‘zqg,ﬁ"‘zhqu?l'
=1 ¢ =1 ¢

In the literature, equation (1.3) is referred as a Sums-of-squares
(SOS) proof of unsatisfiability or as an SOS refutation® of the
equations in (1.1). The degree? of an SOS refutation is the maximal
degree among all polynomials g; f;, 43, and h;q7,.

The search for proofs of constant degree d is automatizable as
shown in a sequence of works by Shor (1987), Nesterov (2000),
Lasserre (2001), and Parrilo (2000). What this means is that if
there exists a degree-d SOS refutation for a system of polynomial
equalities (and inequalities) over n variables, then such a refu-

L All proofs for systems of polynomial equations or for formulas in conjunc-
tive normal form (CNF) in this paper will be proofs of unsatisfiability, and we
will therefore use the two terms “proof” and “refutation” interchangeably.

2 This is sometimes also referred to as the “rank,” but we will stick to the
term “degree” in this paper.
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tation can be found in polynomial time n°@ 3 Briefly, one can
view (1.3) as linear system of equations in the coefficients of g,
and u; = Y, ¢;, with the added constraint that each u; is a sum-
of-squares, and such a system can be solved by semidefinite pro-
gramming in d/2 rounds of the Lasserre SDP hierarchy. Since the
search for a refutation on the form (1.3) boils down to a semidefi-
nite programme with one variable for each monomial occurring in
the refutation, it is customary to measure the size of the refutation
as the number of monomials in it, a number that is within a linear
factor of the actual size of the formula (1.3).

In the last few years, there has been renewed interest in sums-
of-squares in the context of constraint satisfaction problems (CSPs)
and hardness of approximation, as witnessed by, for instance,
Barak et al. (2012), O'Donnell & Zhou (2013), and Tulsiani (2009).
These works have highlighted the importance of SOS degree upper
bounds for CSP approximability, and this is currently a very active
area of study.

Our focus in this paper is not on algorithmic questions, how-
ever, but more on sums-of-squares viewed as a proof system (also
referred to in the literature as Lasserre). Grigoriev & Vorobjov
(2001) introduced a proof system based on the stronger Positivstel-
lensatz certificates of the form (1.2) as an extension of the Nullstel-
lensatz proof system studied by Beame et al. (1994), and Grigoriev
(2001a,b) established degree lower bound for the knapsack prob-
lem and for unsatisfiable Fao-linear equations (also referred to as the
3-XOR problem when each equation involves at most 3 variables).
These results apply immediately to SOS degree as well.

Given the connections to semidefinite programming and the
Lasserre SDP hierarchy, it is perhaps not surprising that most
works on SOS lower bounds have focused on the degree measure.
However, from a proof complexity point of view it is also nat-
ural to ask about the minimal size of SOS proofs, measured as
the number of monomials when all polynomials in each term in

3 This is a standard claim, often repeated in the literature, but as pointed
out in the recent paper by O’Donnell (2016) it does not seem to give a fully
accurate picture. For the results in this paper, this is not so relevant, however,
since our upper bounds are proven in the much weaker resolution proof system,
for which the claim clearly holds.
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(1.3) are expanded out as linear combinations of monomials. Such
SOS size lower bounds were proven for knapsack in
Grigoriev et al. (2002) and Fa-linear systems of equations in
Kojevnikov & Ttsykson (2006), and tree-like size lower bounds for
other formulas were also obtained in Pitassi & Segerlind (2012).

A wider interest in this area of research was awakened when
Schoenebeck (2008) essentially rediscovered the main result of
Grigoriev  (2001b), which together with further work by
Tulsiani (2009) led to integrality gaps for a number of constraint
satisfaction problems. There have also been papers such as
Beame et al. (2007) and Goos & Pitassi (2014) focusing on se-
mantic versions of the proof system, with less attention to the
actual syntactic derivation rules used. We refer the reader to, for
instance the introductory section of O’Donnell & Zhou (2013) for
more background on sums-of-squares and connections to hardness
of approximation, and to the survey Barak & Steurer (2014) for an
in-depth discussion of SOS as an approximation algorithm and the
intriguing connections to the so-called Unique Games Conjecture
introduced by Khot (2002).

1.1. Our contribution. As discussed above, if a system of poly-
nomial equalities and inqualities over n variables can be shown
to be inconsistent by SOS in degree d, then by using semidefi-
nite programming one can find an SOS refutation of the system in
time n°@_ It is natural to ask whether this is optimal, or whether
there might exist shortcuts that could lead to SOS refutations more
quickly.

We prove that there are no such shortcuts in general, but that
the running time obtained by using the Lasserre semidefinite pro-
gramming relaxations to find SOS proofs is optimal up to the con-
stant in the exponent, even when the input is the translation of a
formula in conjunctive normal form (CNF). We show this by con-
structing 4-CNF formulas on n variables (which can be translated
to systems of polynomial equalities in a canonical way) that have

4 Tt might be worth pointing out that definitions and terminology in
this area have suffered from a certain lack of standardization, and so what
Kojevnikov & Ttsykson (2006) refers to as “static Lovasz-Schrijver calculus” is
closer to what we mean by SOS/Lasserre.
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SOS refutations of degree d but require refutations of size n®.

Our lower bound proof works for d from constant all the way up
to n® for some constant 4.

THEOREM 1.4 (informal). Let d = d(n) < n® where § > 0 is
a universal constant. Then there is a family of 4-CNF formulas
{F,.}nen+ with O(n?) clauses over O(n) variables such that F, is
refutable in sums-of-squares in degree ©(d) but any SOS refutation
of F, requires size n**¥.

This theorem extends an analogous result in Atserias et al.
(2016) about the proof systems resolution, polynomial calculus,
and Sherali-Adams,” where upper bounds on refutation size in
terms of width, degree, and rank, respectively, were shown to be
tight up to the multiplicative constant in the exponent. Theo-
rem 1.4 works for all of these proof systems, since the upper bound
is in fact on resolution width (i.e., the size of a largest clause in
a resolution refutation), not just SOS degree, and in this sense,
the theorem subsumes the results in Atserias et al. (2016). The
concrete bound we obtain for the exponent inside the asymptotic
notation in the n®® size lower bound is very much worse, how-
ever, and therefore, the gap between upper and lower bounds is
very much larger than in Atserias et al. (2016).

We want to emphasize that the size lower bound in Theorem 1.4
holds for SOS proofs of arbitrary degree. Thus, going to higher
degree (i.e., higher levels of the Lasserre SDP hierarchy) does not
help, since even arbitrarily large degree cannot yield shorter proofs.
This is an interesting parallel to the paper Lee et al. (2014) exhibit-
ing problems for which a (symmetric) SDP relaxation of arbitrary
degree but bounded size n¢ does not do much better than the sys-
tematic relaxation of degree d.

1.2. Techniques. We obtain the result stated in Theorem 1.4
as a special case of a more general method of amplifying lower
bounds on width (in resolution), degree (in polynomial calculus),

> The exact details of these proof systems are not important for this dis-
cussion, and so we choose not to elaborate further here, instead referring the
interested reader to Atserias et al. (2016).
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and rank/degree (in Sherali-Adams and Lasserre/SOS) to size
lower bounds in the corresponding proof systems. This method
is already implicit in Atserias et al. (2016), which in turn relies
heavily on an earlier paper by Atserias et al. (2015), but it turns
out that extracting the essential ingredients and making them ex-
plicit is helpful for extending the results in Atserias et al. (2016)
to an analogue for sums-of-squares. We give a brief, informal de-
scription of the three main ingredients of the method below.

(i) Find base CNF formulas which are hard with respect
to width/degree/rank To start, we need to find a base prob-
lem, encoded as an unsatisfiable CNF formula, that is “moderately
hard” for the proof system at hand. What this means is that we
should be able to prove asymptotically tight bounds on width if
we are dealing with resolution, on degree for polynomial calculus,
and on degree/rank for Sherali-Adams and sums-of-squares. It
then follows by a generic argument (as discussed briefly above for
SOS) that a bound O(d) on width/degree/rank implies an upper
bound n°® on proof size.

In Atserias et al. (2015, 2016), the pigeonhole principle served
as the base problem. This principle, which has been extensively
studied in proof complexity, is encoded in CNF as pigeonhole prin-
ciple (PHP) formulas, saying that there is a one-to-one mapping of
m pigeons into n pigeonholes for m > n. For sums-of-squares, we
cannot use PHP formulas, however, since they are not hard with
respect to SOS degree. Instead we construct an SOS reduction in
low degree from inconsistent systems of Fy-linear equations to the
clique problem and then appeal to the SOS degree lower bound that
we briefly discussed above (Grigoriev 2001b; Schoenebeck 2008), to
obtain the following degree lower bound.

THEOREM 1.5 (informal). Given k € NT, there are a graph G
and a 3-CNF formula k-Clique(G) of size polynomial in k with the
following properties:

(i) The graph G does not contain a k-clique, but the formula
k-Clique(G) claims that it does.

(ii) Resolution can refute k-Clique(G) in width k.
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(iii) Any sums-of-squares refutation of k-Clique(G) requires de-
gree QU (k).

(ii) Relativize the CNF formulas The second step is to take
the formulas for which we have established width/degree/rank
lower bounds and relativize them. Relativization is an idea that
seems to have been considered for the first time in the context of
proof complexity by Krajicek (2004) and that was further devel-
oped by Dantchev & Riis (2003). Very loosely, it can be described
as follows.

Suppose that we have a CNF formula encoding (the negation
of) a combinatorial principle saying that some set S has a property.
For instance, the CNF formula could encode the pigeonhole prin-
ciple discussed above, or it could claim the existence of a totally
ordered set of n elements where no element in the set is minimal
with respect to the ordering (these latter CNF formulas are known
as ordering principle formulas, least number principle formulas, or
graph tautologies in the literature).

The formula at hand is then relativized by constructing another
formula encoding that there is a (potentially much larger) set T’
containing a subset S C T for which the same combinatorial prin-
ciple holds. For the ordering principle, we can encode that there
exists a non-empty ordered subset S C T of arbitrary size such
that it is possible for all elements in .S to find a smaller element in-
side S. This relativization step transforms the previously very easy
ordering principle formulas into relativized versions that are expo-
nentially hard for resolution (Dantchev 2006; Dantchev & Martin
2014). For the PHP formulas, we can specify that we have a set of
M > m pigeons mapped into n < m holes such that there exists
a subset of m pigeons that are mapped in a one-to-one fashion.

In our setting, it will be important that the relativization does
not make the formulas too hard. We do not want the hardness
to blow up exponentially but instead would like the upper bound
obtained in the first step of our method described above to scale
nicely with the size of the relativization. For our general approach
to work, we therefore need formulas talking about some domain
being mapped to some range, where we can enlarge the domain
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while keeping the range fixed, and where in addition the mapping
is symmetric in the sense that permuting the domain does not
change the formula.

For this reason, relativizing the ordering principle formulas does
not work for our purposes. Pigeonhole principle formulas have
this structure of encoding a mapping from a domain to a range,
however, which is exactly why the proofs in Atserias et al. (2016)
go through. As already mentioned, PHP formulas will not work as
“base CNF formulas” for the proof system sums-of-squares, but we
can relativize the formulas in Theorem 1.5 by saying that there is
a large subset of vertices such that there is a k-clique hiding inside
such a subset.

(iii) Apply random restrictions to show proof size lower
bounds In the final step, we use random restrictions to estab-
lish lower bounds on proof size for the relativized CNF formulas
obtained in the second step. This part of the proof is relatively
standard, except for a crucial twist in the restriction argument
introduced in Atserias et al. (2015).

Assume that there is a small refutation in sums-of-squares (or
whatever proof system we are studying) of the relativized formula
claiming the existence of a subset of size m < M with the given
combinatorial property. Now hit the formula (and the refutation)
with a random restriction that in effect chooses a subset of size m,
and hence gives us back the original, non-relativized formula. This
restriction will be fairly aggressive in terms of the number of vari-
ables set to fixed truth values, and hence, it will hold with high
probability that the restricted refutation has no monomials of high
degree (or, for resolution, no clauses of high width), since all such
monomials will very likely either have been killed by the restric-
tion or else have shrunk significantly. (We remark that making use
of this shrinking in the analysis is the crucial extra feature added
in Atserias et al. 2015.) But this means that we have a refutation
of the original formula in degree smaller than the lower bound es-
tablished in the first step. Hence, no small refutation can exist,
and the lower bound on proof size follows.

This concludes the overview of our method to amplify lower
bounds on width/degree/rank to size lower bounds. It is our hope
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that developing such a systematic approach for deriving this kind
of lower bound, and making explicit what conditions are needed
for this approach to work, can also be useful in other contexts.

1.3. Organization of this paper. The rest of this paper is
organized as follows. We start in Section 2 by reviewing the def-
initions and notation used, and also stating some basic facts that
we will need. In Section 3, we prove a degree lower bound for
CNF formulas encoding a version of the clique problem. We then
present in Section 4 a general method for obtaining SOS size lower
bounds from degree lower bounds (or from width, degree, and rank,
respectively, for proof systems such as resolution, polynomial cal-
culus, and Sherali-Adams). We conclude with a brief discussion of
some possible directions for future research in Section 5.

2. Preliminaries

We use the standard notation [n] = {1,2,...,n} for positive in-
tegers n. All logarithms in this paper are to base 2. A CNF
formula F' is a conjunction of clauses, denoted F = A ; C;, where
each clause C' is a disjunction of literals, denoted C' =/, a,;. Each
literal is either a propositional variable x (a positive literal) or its
negation T (a negative literal). We think of formulas and clauses as
sets, so that there is no repetition and order does not matter. We
consider polynomials on the same propositional variables, with the
convention that, as an algebraic variable, x evaluates to 1 when it
is true and to 0 when it is false. All polynomials in this paper are
evaluated on 0/1-assignments and live in the ring of real multilinear
polynomials, which is the ring of real polynomials modulo the ideal
generated by polynomials 22 —z; for all variables z;. In other words,
all variables in all monomials have degree at most one, and mono-
mial multiplication is defined by ([T;c4 @) (IL;cp 7i) = [Licaup i-

Since sums-of-squares derivations operate with polynomial
equations and inequalities, in order to reason about CNF for-
mulas we need to encode them in this language. For a clause
C = C*tVv(C~, where we write C* and C~ to denote the subsets of
positive and negative literals, respectively, we define the additive
translation as
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(2.1) AC)=> x4+ > (1-ux)

zeC+ zeC—

and encode C' as the inequality

(2.2) AC) > 1.

Clearly, a clause C' is satisfied by a 0/1-assignment if and only
if the same assignment satisfies the inequality A(C') > 1. For a
variable z and a bit § € {0,1}, we define

1— if =
(2.3) Sy = v i5=0,
x if 6=1;

and for a sequence of variables & = (x;,,...z;,) and a binary string
B = (P,...0Puw), we define the indicator polynomial

w

(24> 655:,3 = H(smij:/Bj

j=1

expanded out as a linear combination of monomials. That is,
dz—p is the polynomial that evaluates to 1 for 0/1-assignments sat-
isfying the equalities x;;, = 3 for j = 1,...,w and to 0 for all other
0/1-assignments. We have the following useful fact.

FacT 2.5. For every sequence of variables & of length w, the syn-
tactic equality (256{071}10 5f:g) = 1 holds (after cancellation of
terms).

Let F' be a CNF formula over some set of variables denoted
as Vars(F), and let p be a partial assignment on Vars(F'). We
write F' [, to denote the formula F' restricted by p, where all
clauses C' € F satisfied by p are removed and all literals falsi-
fied by p in other clauses are removed. For a polynomial p over
variables Vars(F') (written, as always, as a linear combination of
distinct monomials), we let p[, denote the polynomial obtained by
substituting values for assigned variables and removing monomials
that evaluate to 0. We extend this definition to sets of formulas or
polynomials in the obvious way by taking unions.
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DEFINITION 2.6 (Sums-of-squares). A sums-of-squares derivation,
or SOS derivation for short, of the polynomial inequality p > 0
from the system of polynomial constraints

(2.7) fi=0,...,fi=0 h >0,... k>0

(where all polynomials live in a ring of multilinear polynomials) is
a sum

s t
(2.8) p=>>_gifi+Y_ uh;+uo,
i=1 j=1
where g1, ..., g, are arbitrary polynomials and each u; is express-

ible as a sums-of-squares ), qig. A derivation of the equation
p = 0 is a pair of derivations of p > 0 and —p > 0. A sums-of-
squares refutation of (2.7) is a derivation of the inequality —1 > 0
from (2.7).

The degree of an SOS derivation is the maximum degree among
all the polynomials g;f;, ujh;, and vy in (2.8). The size of an
SOS derivation is the total number of monomials (counted with
repetition) in all polynomials g; f;, ujh;, and uy (all expanded out
as linear combinations of distinct monomials). The size and degree
of refuting an unsatisfiable system of polynomial constraints are
defined by taking the minimum over all SOS refutations of the
system with respect to the corresponding measure.

REMARK 2.9. Readers more familiar with sums-of-squares and re-
lated proof systems may be a bit puzzled by the use of multilin-
earity in Definition 2.6 and might also wonder where useful axioms
such as :z:f —x;=0,2;, >0, and 1 — x; > 0 for every variable z;
disappeared.

First, the multilinear setting only makes sense over {0,1} as-
signment to variables, and indeed, the proofs would not be sound
in a different framework. Over Boolean assignments, equations of
the form x? — z; = 0 are tautological due to multilinearity, and the
inequalities x; > 0 and 1 — x; > 0 are derivable as squares since in
the multilinear setting we have x; = 22 and 1 — x; = (1 — z;)°.

Our choice of the multilinear setting is without any loss of gen-
erality and only serves to simplify the technical arguments slightly.
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It is easy to see that applying the multilinearization operator map-
ping x¢ to x; for every { > 1 to any SOS derivation over real poly-
nomials yields a legal SOS derivation over multilinear real polyno-
mials in at most the same size and degree. Thus, working in the
multilinear setting can only make our lower bounds stronger. As
to the upper bounds in this paper, we prove them in the resolution
proof system discussed below, and the simulation of resolution by
sums-of-squares in Lemma 2.12 works also in the standard setting
without multilinearization.

Let us state some useful basic properties of multilinear polyno-
mials for later reference, providing a proof just for completeness.

PROPOSITION 2.10 (Unique multilinear representation).  Every
function f : {0,1}" — R has a unique representation as a multilin-
ear polynomial. In particular, if p is a multilinear polynomial such
that p(«) € {0,1} for all « € {0,1}", then for every positive inte-
ger { the equality p* = p holds (where this is a syntactic equality
of multlinear polynomials expanded out as linear combinations of
distinct monomials).

PrROOF.  The set of functions from {0, 1}" to R is a vector space
of dimension 2". Any function f(Z) in this space can be repre-
sented as a linear combination gc (o130 f(8) - 0z=5(Z). Since each
dz—p 1s a multilinear polynomial, the multilinear monomials on n
variables are a set of 2" generators of the vector space. By linear
independence, they also form a basis, and hence, the representa-
tion of a function as a linear combination of multilinear monomials
is unique. The second part of the proposition now follows imme-
diately since p’ and p compute the same function. 0

The upper bounds in this paper are shown in the weaker proof
system resolution, which is defined as follows. A resolution deriva-
tion of a clause D from a CNF formula F'is a sequence of clauses
(D1, Do, ..., D;)such that D, = D and for every clause D; it holds
that it is either a clause of F' (an axiom), or is obtained by weak-
ening from some D; C D; for j < i, or can be inferred from two
clauses Dy, D;, ¢ < j < 14, by the resolution rule that allows to
derive the clause AV B from two clauses AV z and B VT (where
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we say that AV x and B V T are resolved on x to yield the re-
solvent AV B). If in a resolution derivation (Dy, Ds, ..., D;) each
clause D; is only used once in a weakening or resolution step to de-
rive some D; for ¢ > j, we say that the derivation is tree-like (such
derivations may contain multiple copies of the same clause). A res-
olution refutation of I, or resolution proof for F' is a derivation
of the empty clause (the clause containing no literals) from F'.

The width of a clause is the number of literals in it, and the
width of a CNF formula or resolution derivation is the maximal
width of any clause in the formula or derivation. The size of a res-
olution derivation is the total number of clauses in it (counted with
repetitions). The size and width of refuting an unsatisfiable CNF
formula F' is defined by taking the minimum over all resolution
refutations of F' with respect to the corresponding measure.

The following standard fact is easy to establish by forward in-
duction over resolution derivations, but we provide a proof sketch
for completeness.

OBSERVATION 2.11. Consider a partial assignment p which as-
signs ¢ variables. Let B be the unique clause of width ¢ such that
B evaluates to false under p. If resolution can derive C' in width w
and size S from F'[,,, then resolution can derive BV C in width at
most w + ¢ and size at most S + 1 from F.

PrROOF SKETCH. Let (C,...,C;) be a derivation from F [,
where C;, = C. We construct a derivation (C{,...,C., BV ()
from F, where C! C BV C; for 1 <i < 7, so that BV (' is deriv-
able by a final weakening step from C.. If C; is an axiom of F'[,,
i.e., the restriction of an axiom of F', then we let C] be the corre-
sponding axiom in F', which is contained in B V C; by definition.
If C; is obtained by weakening, i.e., C; 2 C} for some j < %, then
we can set C] to be equal to B V C;, which can be obtained by
weakening since C; C BV Cj. Suppose finally that C; is obtained
by resolving two clauses C;, and C}, over the variable z. If x does
not occur in ¢, for b € {1,2}, then we can set Cj to be equal to
C’, . Otherwise, we let C; be the resolvent of C’} and Cj,, which is a
subclause of BV C; by induction. After a final postprocessing step
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to remove any consecutive duplicate copies of clauses, we obtain a
resolution derivation of B V C' from F. 0

Let us also state for the record the formal claim that SOS
is more powerful than resolution in term of degree(and for con-
stant degreealso in terms of size). The next lemma is essentially
Lemma 4.6 in Atserias et al. (2016), except that there the lemma is
stated for the Sherali—Adams proof system. Since SOS simulates
Sherali-Adams efficiently with respect to both size and degree,
however, the same bounds apply also for SOS. Referring to the
discussion in Remark 2.9, it should also be pointed out that the
lemma in Atserias et al. (2016) is proven in the more common non-
multilinear setting with explicit axioms z? — z; = 0, z; > 0, and
1 — z; > 0 for all variables z;.

LEMMA 2.12 (SOS simulation of resolution by Atserias et al. 2016).
If a CNF formula F' = /\;.:1 C; has a resolution refutation of size S
and width w, then the constraints {A(C;) > 1}i_, as defined
in (2.1) and (2.2) have an SOS refutation of size O(w2"S) and
degree at most w + 1.

ProOOF SkKETCH. The idea is to represent clauses using a multi-
plicative translation. This means that a clause C'=\/;z; V', 7;
is represented by the polynomial equation —M(C) > 0 where
M(C) = IT;z:-I1;(1—y;). To show an efficient simulation of a res-
olution refutation, it is sufficient to show that for each inequality
A(C;) > 1 we can efficiently derive —M (C;) > 0, that for each two
clauses C' C D we can efficiently derive M(C) — M (D) > 0, and
that for each application of the resolution rule to clauses C'V x and
C' VT we can efficiently derive M (C'Vz)+ M(CVZT)—M(C) > 0.
When the resolution refutation has width w, then all such inequal-
ities can be derived in degree w+ 1 and size O(w2"), and the final
proof is nothing else than an appropriate linear combination of
the inequalities corresponding to the resolution steps. We refer to
Lemma 4.6 in Atserias et al. (2016) for the details. O

The next lemma will be useful as a subroutine when we prove
upper bounds in resolution.
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LEMMA 2.13. Let k and mq, mo, ... my be positive numbers. Then
the CNF formula consisting of the clauses

(214&) Yi,0 1€ [k?],

(214b) gi,j—l V Tij V Yi.j 1€ [k], ] € [ml],

(2.14¢)  Tin, i€ [k],

(214d) 517]'1 vV 527]'2 eV Ek,jk (jl, c. ,]k) < [ml] X X [mk],

has a resolution refutation of width k + 1 and size O(Hf:1 m;).

Proor. We prove the lemma by backwards induction over k.
Consider any clause B of the form

(215) B - Tl,jl V TQJ'Q eV f(ifl)vj(i—l)

for 1 < i < k (and note that for i = 1 this is the empty clause).
We will show how to derive B in width i + 1 given clauses BV 7, i,
BV T, ..., BVTp,.

We start by resolving the axioms y;o and y; o V x;1 V 41, and
then we apply the resolution rule again on this resolvent and the
clause BVT; 1 (available by the induction hypothesis) to get BVy; ;.
We now deduce BV y; ; for increasing j. Suppose we have already
obtained B V y; j—1. Using the inductively derived clause B V T, ;
and the axiom Yij—1 V ZijVyij, we can resolve on variables y; ;1
and z;; to obtain BV y; ;. Once BV y;,, has been derived, we
resolve it with the axiom 7, ,, to get B. By backward induction,
we reach the empty clause for ¢ = 1, which concludes the resolution
refutation. Since i < k, the refutation has width k + 1. It is easy
to verify that all axioms and intermediate clauses in the refutation
are used exactly once. Thus, the refutation is tree-like and has size
exactly twice the number of axioms clauses minus one, which, in

particular, is O(Hf:1 mi). O

When we construct formulas to be relativized as described in
Section 1.2, it is convenient to denote the variables as x; 7, where we
highlight the index i that ranges over some specific domain D, while
7 is the collection of the other indices. We say that the variable
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x; 7 mentions the element ¢ € D. We define the domain-width of a
clause to be the number of distinct elements of D mentioned by its
variables. The domain-width of a CNF formula or resolution proof
is defined by taking the maximum domain-width over all its clauses,
and the domain-width of refuting a CNF formula F' is the minimal
domain-width of any resolution refutation of F. Similarly, the
domain-degree of a monomial is the number of distinct elements
in D mentioned by its variables, the domain-degree of a polynomial
or SOS proof is the maximal domain-degree of any monomial in
it, and the domain-degree of refuting an unsatisfiable system of
polynomial constraints is defined by taking the minimum over all
refutations.

3. A degree lower bound for clique formulas

In this section, we state and prove the formal version of Theo-
rem 1.5, namely a lower bound for the domain-degree needed in
SOS to prove that a graph G has no k-clique. As discussed in Sec-
tion 1.2, we are going to build a hard instance of k-clique from an
inconsistent system of Fao-linear equations that requires SOS refu-
tations of large degree. The reduction follows an approach similar
to that in Feige et al. (1996). We first split the system of equa-
tions into k parts and create a vertex for each assignment to the
variables occurring in each part. We then add edges between pairs
of compatible assignments, so that any satisfying assignment for
the system of equations corresponds to a k-clique in the graph.
To obtain the domain-degree lower bound, we show that, roughly
speaking, the reduction translates the domain-degree of refutations
of the k-clique formula to the degree of refutations for the linear
system.

Let us start by describing how we encode the k-clique problem
as a CNF formula.

DEFINITION 3.1 (k-clique formula). Suppose that k is a positive
integer, G = (V,FE) is an undirected graph on N vertices, and
(v1,v9,...,vN) Is an enumeration of V(G) = V.
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Then the formula k-Clique(G) consists of the clauses

(3.2a) Ty VTiy i,i' € k], i £, {u,v} & E(G),
(3.2b) iy V T, i € [k], u,v € V(Q), u#wv,
(3.2¢)  zip i€ [k],

(3.2d)  Zi-1y Vi, Vi, 1€k], je(N],

(3.2e)  Zin i € [k].

The formula k-Clique(G) encodes the claim that G has a clique
of size k. The intended meaning of the variable x;, for v € V(G)
is that v is the ith vertex of the clique.  The clauses in (3.2a)
enforce that any two members of the clique are distinct and are
connected by an edge. The clauses in (3.2b) enforce that at most
one vertex is chosen for each ¢ € [k]. The clauses in (3.2¢)—(3.2¢)
are simply the 3-CNF encoding (using extension variables) of the
clause \/j\[:1 Ts; enforcing that at least one vertex is chosen for
each i € [k].

The variables of the formula k-Clique(G) are indexed by i over
the domain [k] and the domain-width of the formula is 2. The
next proposition shows that the naive brute force approach to de-
cide k-Clique(G) can be carried on in resolution (and hence by
Lemma 2.12 also in SOS).

PROPOSITION 3.3. If G has no clique of size k, then k-Clique(G)
has a resolution refutation of size O(|V'|¥) and width k + 1.

ProoOF. We first use the weakening rule to derive all clauses of
the form

(34) fl,ul V f2,u2 VeV Ek)uk

for every sequence of vertices (uy, us, . .., ux). This is possible since
either the sequence contains a repetition or it includes two vertices
with no edge between them, and in both cases, this means that
the clause (3.4) is a superclause of some clause of the form (3.2a).
Then we derive the empty clause by applying Lemma 2.13 to the
clauses (3.2¢)—(3.2e) and (3.4). O
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In order to obtain suitably hard instances of k-Clique(G), we
construct a reduction from 3-XORs to k-partite graphs. It is con-
venient for us to describe the special case of k-clique on k-partite
graphs directly as an encoding as polynomial equations and in-
equalities as follows next.

DEFINITION 3.5 (Encoding of k-clique on k-partite graphs as
polynomials). For a k-partite graph G with V(G) = V; UV, U
-+ UV, we let k-Block(G) denote the following collection of poly-
nomial constraints:

(36a) > wy=1 i€lk]

veV;

(3.6b) xytwx, <1 weViveVii#d, {uv} e EG).

It is straightforward to verify that these constraints encode the
claim that G has a clique with one element in each block V;, since
exactly one element is chosen from each block by (3.6a) and all the
chosen elements have to be pairwise connected by (3.6b).

Any lower bound on degree that we establish for k-Block(G) will
hold also for k-Clique(G) as stated in the following proposition.

PROPOSITION 3.7. Consider a k-partite graph G, where V(G) is
partitioned as Vy U Vo U -+ - UV}, If the CNF formula k-Clique(G)
has an SOS refutation in domain-degree d, then the set of polyno-
mials k-Block(G) has an SOS refutation in domain-degree d.

PROOF. The proof is by transforming a refutation of k-Clique(G)
into a refutation of k-Block(G) of the same domain-degree. To give
an overview, we start with a refutation of k-Clique(G) of domain-
degree d and replace its variables with polynomials of degree at
most 1 mentioning only variables from k-Block(G). In this way,
we get an SOS refutation of domain-degree at most d from the
substituted axioms of k-Clique(G). The latter polynomials are
not necessarily axioms of k-Block(G), but we show that they have
SOS derivations of domain-degree 1 from the axioms of k-Block(G).
This concludes the proof.

The variable substitution has two steps: first we substitute
every variable z; ; with the linear form S 41 Tiwy, where {v; 37
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is the enumeration of V/(G) in Definition 3.1, and then we set x;,,
to 0 whenever v; € V;.

As mentioned above, we now need to give SOS derivations of
domain-degree 1 of all transformed axioms in k-Clique(G) from the
polynomials in k-Block(G). For the axioms (3.2¢)—(3.2¢), the SOS
encoding is

(3.8a) Zio > 1 i € [kl
(3.8b) (1= zi-1)) + @i, + 215 > 1 i € [k],j € [N],
(3.8¢) (1—zn5)>1 i € [k].

After the first step of the substitution, the inequalities in (3.8a),
(3.8b) and (3.8c) become the inequality Zjvzl Ty, > 1, and two
occurrences of tautology 1 > 1, respectively. Furthermore, after
the second step of the substitution the inequality (3.8a) becomes
> ey, Tiw > 1, which is subsumed by Equation (3.6a). Each of the
axioms (3.2a) and (3.2b) is encoded as

(39) 1-— Tiw — Ti'w Z 0

for some pair of indices 7,7’ and vertices u,v. We assume that
u € V; and v € Vj, because otherwise the variable substitution
turns the inequality either into a tautology or into 1 — x;, > 0,
where the latter follows from (1 — :UM)Q > 0 by multilinearity. If
i # 1’ then the inequality (3.9) is an axiom of k-Block(G). If that
is not the case, then we can obtain 1—z; , —x;, in domain-degree 1
using the derivation

(310) 1= ww + Y. (wiw)

weV; wé{u,v}

N

g
v ~~
from Equation (3.6a) sum-of-squares
=1- E T + E Tiw = 1— Tiuw — Tiw,
weV; we{u,v}

where the first identity holds by multilinearity. The proposition
follows. O

What we want to do now is to prove a domain-degree lower
bound for instances of k-Block(G) where the graph G is obtained
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by a reduction from (unsatisfiable) sets of Fy-linear equations. We
rely on the version of Grigoriev (2001b) degreelower bound shown
by Schoenebeck (2008), which is conveniently stated for random
3-XOR formulas as encoded next.

DEFINITION 3.11 (Polynomial encoding of random 3-XOR). A ra-
ndom 3-XOR formula ¢ represents a system of An linear equations
modulo 2 defined over n variables. Fach equation is sampled at
random among all equations of the form x & y @ z = b as follows:
x, y, z are sampled uniformly without replacement from the set of
n variables and b is sampled uniformly in {0,1}. The polynomial
encoding of any such linear equation modulo 2 is

(3.12a) (1—-2)(1—-y)z=0
(3.12b) (1-2)y(1—2)=0
(3.12¢) z(1—y)(1—2)=0
(3.12d) xyz =0
when b = 0 and

(3.12¢) 1-2)(1-y)(1—2)=0
(3.12f) zy(l—2)=0
(3.12g) x(1—y)z=0
(3.12h) (1—2)yz=0
when b = 1.

Fixing § = 1/4 and A = 8 in Schoenebeck (2008) we have the
following theorem.

THEOREM 3.13 (Schoenebeck 2008). There exists an a € (0,1)
such that for every € > 0 there exists an n. € N such that a
random 3-XOR formula ¢ in n > n. variables and 8n constraints
has the following properties with probability at least 1 — e.

(i) At most 6n parity constraints of ¢ can be simultaneously
satisfied.

(ii)) Any sums-of-squares refutation of ¢ requires degree an.
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Now we are ready to describe how to transform a 3-XOR for-
mula ¢ into a k-partite graph G’; that has a clique of size k if and
only if ¢ is satisfiable.

DEFINITION 3.14 (3-XOR graph). Given k € N and a 3-XOR for-
mula ¢ with 8n constraints over n variables, where we assume for
simplicity that k divides 8n, we construct a 3-XOR, graph G’; as
follows.

We arbitrarily split the formula ¢ into k linear systems with
8n/k constraints each, denoted as ¢y, ¢o, . .. ¢r. For each ¢;, we let
Vi be a set of at most N < 224"/k vertices labelled by all possible
assignments to the at most 24n/k variables appearing in ¢;. For
two distinct vertices u € V; and v € Vs, there is an edge between
w and v in G]; if the two assignments corresponding to u and v are
compatible, i.e., when they assign the same values to the common
variables, and also the union of the two assignments does not vio-
late any constraint in ¢. (In particular, each V; is an independent
set, since two distinct assignments to the same set of variables are
not compatible.)

The key property of the reduction in Definition 3.14 is that
it allows small domain-degree refutations of k—Block(Gg) to be
converted into small degreerefutations of ¢.

LEMMA 3.15. If k-Block(G%) has an SOS refutation of domain-
degree d, then ¢ has an SOS refutation of degree 24dn /k.

PROOF. Again we start by giving an overview of the proof, which
works by transforming a refutation of k—Block(G’;) of domain-
degree d into a refutation of ¢ of degree 24dn /k.

Given a refutation of k-Block (G';)) of domain-degree d, we re-
place every variable x, with a polynomial over the variables of ¢.
In this way, we get an SOS refutation from the polynomials cor-
responding to the substituted axioms of k—Block(G(’;). The latter
polynomials need not be axioms of ¢, but we show that they can
be efficiently derived in SOS from ¢. We thus obtain an SOS refu-
tation of ¢, the degree of which is easily verified to be as in the
statement of the lemma.
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We now describe the substitution in detail. Consider a block V;
and suppose that the corresponding 3-XOR formula ¢; mentions
t variables. Let us write  to denote this set of variables. Then
every vertex v € Vj represents an assignment 5 € {0,1}' to Z. In
what follows, we denote the indicator polynomial dz_s in (2.4) by
0, for brevity, and we substitute for each variable x, the polynomial
d, of degree t < 24n/k.

Before the substitution, each monomial in the original refuta-
tion has domain-degree at most d by assumption. Two important
observations are that (5v)2 = ¢, for every v € V; and that 4,0, =0
for every two distinct u, v in the same block V;. Therefore, after the
substitution each monomial is either identically zero or the prod-
uct of at most d indicator polynomials, and hence, its degree is at
most 24dn/k. To verify these observations, note that the identity
(6,)° = &, holds by Proposition 2.10. The equality 8,8, = 0 holds
because ¢, and 9, are the indicator polynomials of two incompat-
ible assignments, and so their product always evaluates to zero.
Applying Proposition 2.10 again, we conclude that the (multilin-
ear) polynomial 4,6, is identically zero.

In order to complete the proof outline above, we now need to
present SOS derivations starting from the 3-XOR constraints of ¢
of all polynomial constraints resulting from the substitutions in the
axioms of k-Block (G’;) described above, and to do so in degree at
most 24n/k.

Let us first look at the axioms (3.6a). By Fact 2.5, the identity

(3.16) b= > Grp=1

vev; pe{0,1}t

holds syntactically, so substitutions in axioms of the form (3.6a)
result in tautologies 1 = 1.

The remaining axioms of k-Block(G%) in (3.6b) have the form
z,+x, < 1 for non-edges (u, v) between vertices in different blocks.
By construction of G’;, the reason u and v are not connected is
either that the partial assignments corresponding to the two ver-
tices are incompatible, or that their union violates some constraint

in ¢.
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In the first case, 1 — §, — d, > 0 is an SOS axiom because of
the identity

(3.17) (1—06,—06,)°=1—0,—0,,

which follows from the observation that §,, and §, are the indicator
polynomials of two incompatible assignments and cannot evaluate
to 1 simultaneously, and so (1 — ¢, — ¢,) evaluates to either 0 or
1 and is identical to its square by Proposition 2.10. The degree
of (3.17) is 24n/k.

In the second case, the two assignments corresponding to u
and v are compatible but their union violates some initial equation
f = 0 of the form (3.12a)—(3.12h). Any such f is a degree-3 in-
dicator polynomial which evaluates to 1 whenever the assignment
satisfies the equations 6,0, = 1. This means that 4,0, contains f
as a factor. We factorize f as f, f, so that d, = f,0,, and 6, = f,0,.
Given this notation, we can derive 0 < 1—4¢, —d, using the identity

(3.18) (1= fu—f.) 2+ (fu—0.)"+(fo — 60)° =2fufs = 1—0,—0,

of degree at most 24n/k. To verify (3.18), observe that the left-
hand side is the sum of some squared polynomials plus —2f, f,,
which is —2f and thus 0. Expanding the squared polynomials
and using Proposition 2.10 repeatedly, we have that (f,)?> = fu,
(fo)? = fo, (0,)* = by, and (8,)* = 4, from which we also conclude
that

(3.19) fubu = Lu(fu0l) = (£u)°6, = fud, = b4

and

(3.20) fobo = Fu($8,) = (£0) 6, = £.5, = b,
which establishes that (3.18) holds. The lemma follows. O

Now we can put together all the material in this section to
prove a formal version of Theorem 1.5 as stated next.

THEOREM 3.21. There are universal constants Ny € NT and «y,
0 < ap < 1, such that for every k > 1 there exists a graph Gy, with

at most kNy = O(k) vertices and a 3-CNF formula k-Clique(Gy,)
of size polynomial in k with the following properties:
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(i) Resolution can refute the formula k-Clique(Gy) in simulta-
neous size 2°%1°¢%) and width k + 1.

(ii) Any SOS refutation of k-Clique(Gy,) requires domain-degree
at least agk.

PROOF.  Fix any positive € < 1 and let Ny = 2**", ap = & and
n = kn., where n, and « are the universal constants from Theo-
rem 3.13. To build the graph G, we take a 3-XOR formula ¢ on n
variables and 8n equations from the distribution in Definition 3.11.
Since n > n., Theorem 3.13 implies that there is a formula in the
support of the distribution that is unsatisfiable and that requires
degree an to be refuted in SOS. We fix ¢ to be that formula and let
G be the graph G’;) constructed as in Definition 3.14. Then G’qﬁ is
k-partite, with each part having at most 22**/* = N vertices, and
the graph has no k-clique because otherwise ¢ would be satisfiable.

Suppose that there is an SOS refutation of k—Clique(G’;) of
domain-degree d. We want to argue that d > agk. Since G(’; is
k-partite, by Proposition 3.7 the formula k—Block(Gé‘;) also has an
SOS refutation in domain-degree d. By Lemma 3.15, this in turn
yields an SOS refutation of ¢ in degree 24dn/k. Now Theorem 3.13
implies that 24dn/k > an, and hence d > 2k = aok.

To conclude the proof, we can just observe that the resolution
width and size upper bounds are a direct application of Proposi-
tion 3.3. 0]

4. Size lower bounds from relativization

Using the material developed in Section 3, we can now describe
how to relativize formulas in order to amplify degree lower bounds
to size lower bounds in SOS. This method works for formulas that
are “symmetric” in a certain sense, and so we start by explaining
exactly what is meant by this.

DEFINITION 4.1 (Symmetric formula). Consider a CNF formula
F on variables x; 7, where i is an index in some domain D and 7
denotes a collection of other indices. For every subset of indices
v = {i1,19,...,isy € D, we identify the subformula F; of F such
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that each clause C' € F; mentions exactly the indices in 7', so that
a formula F' of domain-width d can be written as

(4.2) F :/d\ N Fr.

s=07CD
[7]=s
We say that I’ is symmetric with respect to D if it is invariant
with respect to permutations of D, i.e., if for every F; C F it also
holds that Fy C F, where 7 is any permutation on D and 7 ()
is the set of images of the indices in . Phrased differently, F' is
symmetric with respect to D if for any permutation ™ on D the
syntactic equality F' = N\;cp Fr@) holds (where we recall that we
treat CNF formulas as sets of clauses). We apply this terminology
for systems of polynomial equations and inequalities in the same
way.

Let us illustrate Definition 4.1 by giving perhaps the most cano-
nical example of a formula that is symmetric in this sense.

ExXAMPLE 4.3. Recall that the CNF encoding of the pigeonhole
principle with a set of pigeons D and holes [n] claims that there
is a mapping from pigeons in D to holes such that no hole gets
two pigeons. For every pigeon i € D, there is a clause \/ jeln] Tij
and for every two distinct pigeons 7,4’ and hole j, there is a clause
T, V Ty ;. Since any permutation of the set of pigeons D gives
us back exactly the same set of clauses (only listed in a different
order) the pigeonhole principle formula is symmetric with respect
to D. O

By now, the reader might already have guessed that another
example of a symmetric formula, which will be more interesting
to us in the current context, is the k-clique formula discussed in
Section 3.

OBSERVATION 4.4. The k-Clique(G) formula in Definition 3.1 over
variables x;, is symmetric with respect to the indices i € (k.

Starting with any formula F' symmetric with respect to a do-
main D, we can build a family of similar formulas by varying the
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size of the domain. If F' has domain-width d, then for each s,
0 < s < d, the subformulas F; with |7'| = s in (4.2) are the same
up to renaming of the domain indices in 7. Hence, we can arbitrar-
ily pick one such subformula to represent them all, and denote it
as Fy. The formulas {F,}¢_, are completely determined by F, and
together with D they in turn completely determine F'. Using this
observation, we can generalize the formula F' over domain D to
any domain D" with |D’| > d by defining F[D’] to be the formula

(4.5) FIDT =N\ N\ F

s=07CD’
[v|=s

where each F; for || = s is an isomorphic copy of Fs with its
domain indices renamed according to 7". Let us state some simple
but useful facts that can be read off directly from (4.5):

1. For any formula F' of domain-width d symmetric with respect
to domain D, it holds that F[D] is (syntactically) equal to F.

2. For any domains D', D" with |D’| = |D"| > d, the two for-
mulas F[D'] and F[D"] are isomorphic.

3. For any D" D D’ with |D'| > d, the formula F[D"] contains
many isomorphic copies of F[D'].

When we want to emphasize the domain D of a formula F' in
what follows, we will denote the formula F' as F[D]. When the
domain is D = [t], we abuse notation slightly and write F'[t] in-
stead of F[[t]]. As discussed above, from a symmetric formula F of
domain-width d we can obtain a well-defined sequence of formulas
Ft] for all t > d. We say that the unsatisfiability threshold of such
a sequence of formulas is the least ¢ such that F'[t] is unsatisfiable.
For instance, the pigeonhole principle formula in Example 4.3 has
unsatisfiability threshold n + 1.

4.1. Relativization of symmetric formulas. Given a formula
F = F|m| symmetric with respect to [m] and a parameter k <
m, we now want to define the k-relativization of F[m], which is



cc 26 (2017) Tight size-degree bounds for SOS 937

intended to encode the claim that there exists a subset D C [m] of
size |D| > k such that the subformula F[D] C F|m)] is satisfiable.
We remark that a CNF formula encoding such a claim will be
unsatisfiable when £ is at least the unsatisfiability threshold of F'.

In order to express the existence of the subset D, we use selec-
tors $1,89,...,S, as indicators of membership in the subset and
encode the constraint on the subset size |D| = > 's; > k as
described in the next definition.

DEFINITION 4.6. We define the threshold-k formula for variables
§={s1,...,8m} to be the 3-CNF formula Thry(3) that consists of
the clauses

(4.7a) Yeo (e [K],

(4.7b) Toio1 vV Pei V Ye C e [k],ie[m],

(4.7¢) Tom i € [ml,

(4.7d) Dei NV Pri G0 e k], C# L0 € [m],
(4.7¢) Pei Vs 0 e [k],i € [m).

To see that Thrg(5) indeed enforces a cardinality constraint,
note that the variables p,; encode a mapping between [k] and [m)]
(with pg; being true if and only if ¢ maps to ).  The clauses
(4.7a)—(4.7c) force every ¢ € [k] to have an image in [m], since they
form the 3-CNF representation of clauses \/, p;. The clauses (4.7d)
forbid two distinct elements of [k] to have the same image, so there
must be at least k elements in the range of the map, and for each
of them, the corresponding selector must be true because of the
clauses (4.7¢). We will need the following properties of the thresh-
old formula.

OBSERVATION 4.8. The formula Thry(s) in Definition 4.6 has the
following properties:

(i) Thry(3) has size polynomial in both k and m.

(ii) For any partial assignment to § with at least k ones, there is
an assignment to the extension variables that satisfies Thry(3).
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(iii) There is a resolution refutation of the set of clauses

Thry(5) U {\/ 3

€D

D € [m], |D| = k‘}

of size O(k:m"”) and width k + 1.

PROOF. The first two items are immediate. In order to show
the third item, we can first derive each clause p;, V...V Dy, by
resolving 5;, V...V 3, with clauses of the form (4.7¢) and then
apply Lemma 2.13. U]

Using the formula in Definition 4.6 to encode cardinality con-
straints on subsets, we can now define formally what we mean by
the relativization of a symmetric formula.

DEFINITION 4.9 (Relativization). Given a CNF formula F sym-
metric with respect to a domain [m| and a parameter k < m, the
k-relativization (or k-relativized formula) F'[k;m] is the formula
consisting of

(i) the threshold formula Thry(S) over selectors § = {s1,...,Sm};

(ii) aselectable clause s;, V...VS;, VC for each clause C € F[m],
where {iy,1s,...,is} are the indices mentioned by C.

Since we are dealing with refutations of unsatisfiable formulas,
it will always be the case that the parameter k in Definition 4.9
is at least the unsatisfiability threshold of F'. An important prop-
erty of relativized formulas is that the hardness of F[k;m| scales
nicely with m. In particular, if F[k] is not too hard, then the
relativization F'[k;m] also is not too hard.

PROPOSITION 4.10. If F[k] has a resolution refutation of size S
and width w, then the relativized formula F'[k;m] has a resolution
refutation of size S - (Z) + O(k:mk) and width w + k.

PrROOF. For every set D C [m]| with |D| = k, we show how to
derive

(4.11) S
€D
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in size S 4+ 1 and width w + k from F[k;m]. Without loss of
generality (because of symmetry), we assume that D = [k], so
that we want to derive 57 V --- V 5. Consider the assignment
p={s1=1,...,s, = 1}. In the restricted formula F[k;m][,, the
selectable clauses in Definition 4.9, item ii, with all indices in [k]
become the clauses of F[k], which has a refutation of size S and
width w. Thus the clause 5, V - - -V 3, can be derived in size S + 1
and width w + k from F[k;m] by Observation 2.11. After we have
derived all clauses of the form (4.11) in this way, we can obtain
the empty clause in width k£ + 1 and in size at most O(k:mk) using
Observation 4.8. O

4.2. Random restrictions and lower bounds on size. To
prove size lower bounds on refutations of relativized formulas, we
use random restrictions sampled as follows.

DEFINITION 4.12 (Random restrictions for relativized formulas).
Given a relativized formula F[k;m], we define a distribution R of
partial assignments over the variables of this formula by the fol-
lowing process.

(i) Pick uniformly at random a set D C [m] of size k.
(ii) Fix s; to 1 ifi € D and to 0 otherwise.

(iii) Extend this to any assignment to the remaining variables of
the formula Thry(s) that satisfies this threshold formula.

(iv) For every variable x; 7 that has index i & D, fix x; 7 to 0 or 1
uniformly and independently at random.

(v) All remaining variables z;; for the indices i € D are left
unset.

It is straightforward to verify that the distribution R is con-
structed in such a way as to give us back F[k] from F[k;m)].

OBSERVATION 4.13. For any relativized formula F[k;m] and any
p € R, it holds that F|k;m|[, is equal to F[k] up to renaming of
variables.
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The key technical ingredient in the size lower bound on sums-
of-squares proofs is the following property of the distribution R,
which was proven in Atserias et al. (2015, 2016) but is rephrased
below using the notation and terminology in this paper. We also
provide a brief proof sketch just to give the reader a sense of how
the argument goes.

LEMMA 4.14 (Atserias et al. (2015, 2016)). Let k, £, m be positive
integers such that m > 16 and { < k < m/(4logm). Let M be a
monomial over the variables of F[k;m] and let p be a random re-
striction sampled from the distribution R in Definition 4.12. Then
the domain-degree of M, is less than ¢ with probability at least

1 — (4klogm)® /mt.

PROOF SKETCH. Ley ¢ be the domain-degree of M. The re-
striction p will set independently and uniformly at random at least
0" — k of its variables, so if (¢’ — k) is larger than ¢logm, the re-
stricted monomial M|, is non zero with probability at most 1/ mt.
Otherwise, we upper bound the probability that M[, has domain-
degree ¢ with the probability that the ¢ indices in M contain ¢ of
the k surviving indices. By a union bound, this probability is at
most (4klogm)* /m?. O

Using Lemma 4.14, it is now straightforward to show that rel-
ativization amplifies degree lower bounds to size lower bounds.

THEOREM 4.15. Let k,{, m be positive integers such that m > 16
and ¢ < k < m/(4logm). If F[k| requires sums-of-squares refu-
tations of domain-degree ¢, then the relativized formula F'[k;m)]
requires sums-of-squares refutations of size m/(4klogm)*.

PROOF. Suppose that there is a sums-of-squares refutation of
Flk;m] in size S, i.e., containing S monomials. For p sampled
from R, we see that the probability that some monomial in the
refutation restricted by p has domain-degree at least ¢ is at most

(4klogm)*

(4.16) S

by appealing to Lemma 4.14 and taking a union bound.
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As noted in Observation 4.13, the formula F[k; m][, is equal to
F[k] up to renaming of variables, and so it cannot have a refutation
of domain-degree ¢ or less. This implies that the bound on the
probability (4.16) is greater than one, and thus we obtain

mé

4.17 >,
(4.17) (4klogm)*

which proves the theorem. 0]

4.3. Statement of main result and discussion of possible
improvements. Putting everything together, we can establish
the formal version of our main results in Theorem 1.4 as follows.

THEOREM 4.18. Let k = k(m) be any monotone non-decreasing
integer-valued function such that k(m) < m/(4logm). Then there
is a family of 4-CNF formulas { Fy;, . }m>1 with O (/{;mQ) clauses over
O(km) variables such that:

(i) Resolution can refute F, in size k°®m* and width 2k + 1.

(ii) Any SOS refutation of F,, j, requires size Q(m®* /(4k log m)¥),
where «aq Iis a universal constant.

PrROOF. Let G be a graph with properties as in Theorem 3.21
and let F[k] be the CNF formula k-Clique(G) in Definition 3.1.
Since F[k] is symmetric, we can relativize it as in Definition 4.9
to obtain F[k;m|, which will be our 4-CNF formula F,, ;. The-
orem 3.21 says that F[k] has a resolution refutation of size kO
and width k£ + 1, and appealing to Proposition 4.10, we get a res-
olution refutation of F),  in size ECF)mk and width 2k + 1. Since
we have a domain-degree lower bound of agk for refuting F[k]
according to Theorem 3.21, we can use Theorem 4.15 to deduce
that the required size to refute F), ; in sums-of-squares is at least
Q(m®* /(4klogm)*). The theorem follows. O

We remark that straightforward calculations show that when

k(m) = O(m?) for § < ap the upper bound in Theorem 4.18 is

mO®) and the lower bound is m2*),
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Let us now discuss a couple of the parameters in Theorem 4.18
and how they could be improved slightly. We stated our main
theorem for 4-CNF formulas, since that is the clause size that
results naturally from our construction. However, if one wants
to minimize the clause width and obtain an analogous result for
3-CNF formulas this is also possible to achieve, just as was done in
Atserias et al. (2016) for other proof systems. To prove a version
of Theorem 4.18 for 3-CNF formulas, we need a simple but rather
ad hoc variation of the relativization argument presented above.
Let us briefly describe what modifications are needed.

The way we presented the construction above, we started with
the 3-CNF formula k-Clique(G) and then applied relativization,
which turned the clauses (3.2¢)—(3.2¢) into the 4-CNF formula

(419&) 3@ V Zi,0 1€ [k’],
(419b) gi \/27;7(]‘_1) V xi,vj V Zi.j 1€ [k?], ] € [N],

An alternative approach would be to first encode k-Clique(G) with
wide clauses \/j\[:1 ;,, instead of clauses of the form (3.2¢)—(3.2e),
relativize this new, wide formula, and then convert the relativized
formula into 3-CNF using extension variables. Instead of clauses
(4.19a)—(4.19c¢), this would yield the collection of clauses

(420&) §i V Zi,0 1€ [k’],
(4.20b) Zi-1) V Tiw, V 2 i € [k], j € [N],
(420(3) E@N 1 € [k’]

This causes a small technical problem in that some of these clauses
mention i € [m] but lack the literal 5;, and so a random restriction
sampled as in Definition 4.12 may actually falsify these clauses.
The solution to this is to change the random assignment so that
when s; = 0, we fix each z;,, uniformly at random in {0, 1}, set
each z; ;1) equal to the value assigned to w;,,, and finally fix 2
to 0. The new restriction satisfies all clauses (4.20a)—(4.20¢), and
the proof of Lemma 4.14 still goes through.

Another parameter in Theorem 4.18 that could be improved
is the value of «g, which determines how tightly the size lower
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bound matches the upper bound implied by width/degree and also
how high we can push k(m). In our reduction from a 3-XOR for-
mula ¢ to the clique formula k—Clique(G’;), we start by splitting
the 8n constraints into k£ blocks. The vertices in each block cor-
respond to assignments to 24n/k variables, and because of this an
SOS refutation in domain-degree d of k—Clique(G'q‘;) can be con-
verted to a refutation in degree 24dn/k of ¢.

If we want to obtain a more efficient reduction, we could in-
stead split the n wvariables, rather than the 8n constraints, into
k parts. In this way each vertex in G’; would correspond to an
assignment to n/k variables, and an SOS refutation in domain-
degree d would translate to a refutation of ¢ in degree dn/k. But
now we cannot reduce to the clique problem anymore. Splitting
with respect to constraints allows us to enforce pairwise consistency
between vertices in different blocks referring to common variables.
When splitting with respect to variables, the vertices in different
blocks correspond to partial assignments on disjoint domains and
so are always pairwise compatible. However, we must still require
that these partial assignments are consistent with the constraints
in ¢. Each such constraint refers to up to three blocks. Thus, any
satisfying assignment to ¢ corresponds to k vertices such that no
triple of vertices violates an 3-XOR constraint. This reduces to
the problem of finding a k-hyperclique in a 3-uniform hypergraph.
The rest of the reduction can be made to work as in Lemma 3.15.
In the end, we get an analogous result of that in Theorem 3.21
but with ag equal to a instead of 73, which also improves Theo-
rem 4.18. In this paper, we instead presented a reduction to the
k-clique problem for standard graphs, partly because we believe
that a degreelower bound for this problem can be considered to be
of independent interest.

5. Concluding remarks

In this paper, we show that using Lasserre semidefinite program-
ming relaxations to find degree-d sums-of-squares proofs is optimal
up to constant factors in the exponent of the running time. More
precisely, we show that there are constant-width CNF formulas
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on n variables that are refutable in sums-of-squares in degree d
but require proofs of size n@.

As for so many other results for the sums-of-squares proof sys-
tem, in the end our proof boils down to a reduction from 3-XOR
using the version of Schoenebeck (2008) of the degree lower bound
by Grigoriev (2001b). It would be very interesting to obtain other
SOS degree lower bounds by different means than by reducing from
Grigoriev’s results for 3-XOR and knapsack.

Another interesting problem would be to prove average-case
SOS degree lower bounds for k-clique formulas over Erdés—Rényi
random graphs, or size lower bounds for (non-relativized) k-clique
formulas over any graphs. In this context, it might be worth
it to point out that the problem of establishing proof size lower
bounds for k-clique formulas for constant k, which has been dis-
cussed, for instance, in Beyersdorff et al. (2012). The problem
still remains open even for the resolution proof system, although
Beyersdorff et al. (2013) show a tight lower bound for tree-like res-
olution, and Lauria et al. (2013) extends it to general resolution,
but only for a different encoding of clique formulas that is more
amenable to lower bound techniques.
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