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ABSTRACT

One of the major open problems in proof complexity is to prove
lower bounds on ACq[p]-Frege proof systems. As a step toward
this goal Impagliazzo, Mouli and Pitassi in a recent paper suggested
to prove lower bounds on the size for Polynomial Calculus over the
{£1} basis. In this paper we show a technique for proving such
lower bounds and moreover we also give lower bounds on the size
for Sum-of-Squares over the {+1} basis.

We show lower bounds on random A-CNF formulas and formu-
las composed with a gadget. As a byproduct, we establish a sepa-
ration between Polynomial Calculus and Sum-of-Squares over the
{£1} basis by proving a lower bound on the Pigeonhole Principle.
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1 INTRODUCTION

The main task of proof complexity is to quantify the size of the
smallest proof required to prove that some given formula is unsat-
isfiable. Establishing superpolynomial lower bounds on the sizes
in all proof systems will imply that NP # coNP.

In some situations if we can prove lower bound on some model
of computations we can translate it into a lower bound for a proof
system based on this model. The major success in such lower
bounds was done by Ajtai for ACq-Frege proof system [1]. For
a stronger proof system ACq [p]-Frege we also can try to translate
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lower bounds from ACq[p] circuits, that were proved by Razborov
and Smolensky [29, 30]. But despite on well-developed techniques
for ACq[p] circuits we still do not know how to apply algebraic
reasoning used by Razborov and Smolensky for proof systems. To
deal with this approach it seems natural to study algebraic and
semialgebraic proof systems: Nullstellensatz [5], Polynomial Cal-
culus (PCR) [10] and Sum-of-Squares (SOS) [15].

Mod, gates and limitations of current techniques. Despite the
success in proving lower bounds on Polynomial Calculus and Sum-
of-Squares the lower bounds we still do not know how to transfer
lower bounds from these systems to ACq[p]-Frege. If we consider
standard {0, 1} basis then in these systems there is no efficient way
to simulate Mod), gates. In case of Sum-of-Squares there is a canon-
ical hard example: Tseitin formulas (that are particular case of lin-
ear systems modulo 2) [15]. In Polynomial Calculus over a proper
field we can simulate limited number of Mod), gates (one per line),
that is enough solve Tseitin formulas but not enough to say that
we can simulate Mod), gates in this proof system. This statement
can be illustrated by current technique for proving lower bounds:
we deal with monomials independently.

If we consider proof systems that are restriction of ACq|[p]-
Frege that can simulate nontrivial number of Mod, gates per line
[8, 12, 23, 28] then current techniques do not give us lower bounds
on the size of proofs. Even for Resolution with parity [22] any non-
trivial lower bound (without restrictions on the structure of proofs)
on CNF formulas remains open.

The most popular approach for proving lower bounds is a “re-
striction technique”. The main idea is the following: we hit a proof
by some restriction in order to obtain a “well-structured” proof. In
particular, for algebraic proof systems by using this approach we
can reduce a question about the size of proof to a question about a
degree of the proof:

o size-degree tradeoff [4, 10, 21];

e pure random restriction, for example [2].
For algebraic proof systems it is the only approach at current mo-
ment for size lower bounds, but Mod,, gates are “immune” to the
restrictions. This approach will most likely not work for proof sys-
tems that can simulate Mod,, gates.

{£1} basis. One important benefit of the {+1} basis is that we
n

can represent parity as a monomial: Parity(x1,...,x,) = [] x;
i=1

hence we can encode multiple parity gates in a single line in the
proof. In this representation Grigoriev [14] shows Nullstellansatz
proof of polynomial size on Tseitin formulas as well as degree
lower bound. Lower bound strategy was generalized by Grigoriev
[15] to the Positivestellensatz and by Buss, Grigoriev, Impagliazzo
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and Pitassi [7] to the Polynomial Calculus. These lower and upper
bounds explain the power of the {+1} basis as well as weak points
of current techniques for proving lower bounds.

The question about size lower bound in the {+1} basis was ex-
plicitly stated by Impagliazzo, Mouli and Pitassi [20] as a step to
lower bounds for ACq[p]-Frege.

1.1 Our Results

In this work we give an answer to the question raised in [20]
by presenting a technique for proving size lower bounds on Sum-
of-Squares and Polynomial Calculus over the {+1} basis. Denote
these systems by SOS(, 1) and PCR{il} (we omit index if we can

use any basis). We also use notation PCRF to specify a field.
The first result is a lower bound on the size of SOS (1 }-proofs.

Theorem 1.1 (Informal). Let # be a polynomial system of degree
do on n variables. There is a function g on a constant number of
variables such that if d is the minimal degree of an SOS-proof of

¥ then any SOS,)-proof of ¥ o g has size exp [Q (W)]

We show by analogy with [6] that a small PCR]ERil

be transformed into a small SOS,1}-proof. Hence Theorem 1.1
R

{=1}
the difference between the considered proof systems (SOS(41y

}-proof can

also gives us alower bound for PCR -proofs. This result shows

and PCRDFil }) and ACp[p]-Frege since in the last system the size
of the proofs should not depend on the small gadgets substitution.
The second lower bound works for SOS ;) and PCR]L” over

any field F. And it is the canonical example of hard formulas.

Theorem 1.2 (Informal). If A > 11 is a constant and ¢ is a ran-
dom A-CNF formula on m clauses where m = O(n) then whp any
SOS 41y of PCRH{:ﬂ}—proof of ¢ has size exp(Q(n)).

In the last part we show a lower bound on PCRil}—proofs
over any field F on formulas that encode the Pigeonhole Princi-
ple. Together with the upper bound on SOS-proofs (independent
of basis) from [17] we show an exponential separation between
SOS 41} and PCRﬂ;ﬂ} proof systems. Moreover our proof works
for a strengthening of the Pigeonhole Principle, so called Graph
Pigeonhole Principle.

Theorem 1.3 (Informal). Let G be an (r, A, 4)-boundary expander.
Then any PCR]Ll}—proof of G-PHP™*1 has size exp (Q(n)).

1.2 Related Work

Various restrictions on ACq-Frege were studied by Krajicek [23].
In this paper Kraji¢ek showed exponential lower bounds on tree-
like versions of proof system that can use one Mod, gate. Gen-
eralizations of these systems were considered by Garlik and
Kotodziejczyk [12].

Raz and Tzameret [28] introduced Resolution with linear func-
tions over reals. Itsykson and Sokolov [22] considered similar proof
system over Fa. On both proof systems lower bounds on CNF for-
mulas are still open. Partial progress in this direction was achieved
by Part and Tzameret [25].
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Pitassi [26, 27] introduced strong generalization of Polynomial
Calculus that operates directly with formulas. Groshow and Pitassi
[19] consider even more powerful version, so called Ideal Proof Sys-
tem. On the one hand these proof systems are so strong that lower
bounds on it will imply separation between VP and VNP, but on
the other hand we do not have efficient deterministic verification
algorithms for proofs hence these structures are not proof systems
in terms of Cook—Reckhow [11] definition.

Grigoriev and Hirsch [16] considered extensions of algebraic
systems that are still satisfy Cook-Reckhow definition. In this pa-
per it was showed that even with small extensions these systems
may be powerful enough to solve various formulas that are hard
for ACp-Frege. “Constant depth” extensions was considered by
Impagliazzo, Mouli and Pitassi [20]. This systems are powerful
enough to quasi-polynomially simulate TCp-Frege. It is still an
open problem to prove any lower bound for these systems.

1.3 Technique

Let start with the {0, 1} basis. We describe the basic idea of an
algorithm that transforms proofs of small size into proofs of small
degree. Together with a degree lower bound this algorithm gives
a proof of size lower bound.

(1) If we have a small proof of a polynomial system ¥ then
there are not so many terms of big degree.

(2) Pick aliteral x that appears in a significant fraction of terms
of big degree.

(3) Since 0 is a feasible assignment, we can assign x to 0 in the
whole proof and thus banish all terms that contain x.

(4) After this assignment, the resulting proof is still a proof of
F | (x=0).

(5) After some number of steps we banished all terms of big de-
gree and it remains to show that after these partial assign-
ments the system is still hard in terms of degree.

We will try to implement similar strategy for the {+1} basis. As
mentioned above in some cases we have small proofs of big degree,
which means that degree is not enough to prove lower bounds on
size. This phenomena is not the only difference, in particular, in
Polynomial Calculus, using the axiom x2 — 1, which is the ana-
logue of the “boolean” axiom for the {0, 1} variables, we can invert
multiplication by the x variable.

x2-1
x*p-p
p

This derivation says that if a variable x is contained in all terms
of a proof line, then we can erase it. This shows that degree is not
really a representative measure. The crucial idea is that instead of
the usual degree we consider the quadratic representation of
the proof. In case of Polynomial Calculus we deal with the squares
of the lines in the proof. The intuition behind it is that we want to
measure the symmetric difference between monomials that appear
in a single proof line.

The next problem that arises in the case of {+1} variables is that
we do not have any assignment that removes terms from the proof.
To solve this problem, we “force” an assignment that banishes a sig-
nificant part of terms in the quadratic representation. The “forcing”

xp
x2p




(Semi)Algebraic Proofs over {+1} Variables

operation uses different properties of formulas for different lower
bounds.

(1) Symmetry. For formulas with a gadget (Theorem 1.1), we
consider two copies of the original proof with permuted
variables. The symmetry of the formula then helps us to
combine these copies into a new proof.

Locality. For random formulas and the Pigeonhole Princi-
ple (Theorems 1.2 and 1.3), we define a Split,. operation that
depends on the considered proof system, but we can think
of it as a linear combination of the original proof, hit by dif-
ferent partial assignment. We use locality to show that the
result of the Split, operation is a proof of a “locally dam-
aged” version of F.

@)

In order to implement the last part of our strategy we have to
show that the degree of the quadratic representation is related to
the degree of the proof and keep the system # hard in terms of
degree during the whole process.

(1) For formulas with gadgets we use a result from [4] that
states that we can carefully choose a partial assignment that
does not decrease the degree of the proof.

(2) For random formulas and the Pigeonhole Principle we use
the iterative analogue of the closure operation on graphs,
which seems to have originated in [2, 3]. By using ideas
of this operation we show that these formulas are “self-
reducible”: after some applications of the Split, operation
we have a proof of smaller instance of original formula.

1.4 Outline

The paper is organized as follows. In section 3 we give the defini-
tions of the used proof systems and introduce the key notion of
quadratic representation for Sum-of-Squares and Polynomial Cal-
culus. In section 4 we prove lower bounds on polynomial systems
composed with a gadget. In section 5 we show the lower bound on
random A-CNF formulas, and in section 6 we prove lower bounds
on the Pigeonhole Principle that give us a separation between
SOS(41} and PCRY

{1}’
2 PRELIMINARIES
For the rest of the paper we fix some notation: ¥ = {fi =
0,..., fm = 0} is a system of polynomial equations and H = {h; >
0,...,hs > 0} is a system of polynomial inequalities over the set

of variables X = {x1,...,xn}.

Let F be a field. A restriction is a partial assignment to the
variables that is a function p : X — X U F such that the value of
p(x) is either x or a constant from F. For a polynomial p, we denote
by p | p the polynomial p in which any variable x is replaced by

p(x).
In the rest of the paper we assume that F is an arbitrary field.
Wlog the characteristic of F is different from 2, as otherwise 1 = —1

and the {+1} basis does not make any sense.

2.1 Composition with Gadgets

Suppose we have a multilinear system (¥, ) and we want to com-
pose it with a gadget. We only consider gadgets that satisfy some
properties.

80

STOC 20, June 22-26, 2020, Chicago, IL, USA

Definition 2.1. Let Z be either {+1} or {0, 1}. A symmetric func-
tiong : zZk > Zis compliant iff:
(1) g is not parity i.e. not [] x; in the case of the {+1} basis;

l
(2) for any b € Z there is an assignment f = (f162... ) €
Zk such that f; # fo and g(p) =b.

Note that the second property holds for any pair of indices since
g is symmetric. MAJ(z1, z2, z3) is an example of a compliant func-
tion.

Remark 2.2. For our purposes (Theorem 1.1) we cannot use parity
as a gadget. For Tseitin formulas we have degree lower bound [7,
18]. But composition of Tseitin formula with parity is still a Tseitin
formula and we have a short proof of it in all considered proof
systems [14].

We say that the system (¥, H) o g is the composed version of
the system (F, H) with a gadget g, if it is the result of the following
process: for each variable x; introduce new variables z; 1, ..., z;
and replace each occurrence of x; in (¥, H) by a multilinear poly-
nomial encoding of the function g.

Proposition 2.3. (1) (¥, H) o g is a multilinear system.
(2) If p € (F,H) o g and g is symmetric then for any i polyno-
mial p is stable under any permutation of the z; . variables.

Proor. The first claim follows by multilinearity of (#,H) and
multilinearity of the encoding of g.

For the second claim note that p := r o g for some r € (¥, H).
Since g is the symmetric gadget, then it is unaffected by permuta-
tions of z; . variables. Hence r o g is also unaffected by permutation
of z; . variables. Due to uniqueness of multilinear representation of
the functions polynomial p remains the same after such permuta-
tions. O

Remark 2.4. Suppose that each polynomial in (¥, H) depends
only on a constant number of variables and the gadget g has con-
stant size. Let (F/,H’) and (F",H"") be two encodings of the
system (¥, H) o g, that means for each constraint p € (F,H) og
there are constraints p’ € (F’,H’) and p”’ € (F”,H") with
the same set of satisfing assignment, but maybe not the the same
type (equality or inequality). Then each polynomial f”/ € ¥’ (or
h” € H) can be derived in SOS and PCRF (independent of basis)
from (F’,H’) in constant size.

Hence if start with a proper polynomial system (F,H) for
which we have linear degree lower bound (for example polyno-
mial encoding of Tseitin formula) the results from section 4 can be

used for any encoding of (¥, H) o g.

2.2 Encodings of CNF Formulas
We consider semialgebraic proof systems and thus we need to en-
code formulas as polynomials. There are two popular encodings:
the CNF (aka multiplicative) and the Cutting Planes (CP, aka addi-
tive) encodings. In both encodings we encode clauses separately.
CNF \/xlfli =3 foi =0over {0,1} or [] M =0
i i i
over {+1}.
CP \/xl.“i =3 Zx?i —1>0over{0,1} or - X ((-1)1"%x; —
i i i

1 L
1) =1 > 0over {£1}.
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In this paper we deal with the CNF encoding. A very useful prop-
erty of this encoding is that for any variable there is an assignment
that sets the whole polynomial to zero.

Remark 2.5. As in the previous case if we deal with formulas of
constant width then for each clause we can derive one encoding
from the other in constant degree (and constant size). Hence results
from sections 5 and 6 hold for both encodings.

3 PROOF SYSTEMS
Let x be a variable and x its negation.

(1) The range axiom for a variable x is one of the following
polynomials:
e x2 — x for the {0, 1} basis;
o x2 — 1 for the {+1} basis.

(2) The complementary axiom for a variable x is a polyno-
mial:
e x +x — 1 for the {0, 1} basis;
e x + x for the {1} basis.

We will use proof systems with an index that represents the ba-
sis if it is important to specify it, for example: SOS (41, PCR]?O’1 b
We omit the index to stress the fact that the current statement is in-
dependent of the basis. In particular we can switch from the {0, 1}
basis to the {+1} basis via affine shift. Hence if we talk about the
degree of a proof, we typically do not care about basis (see Lemma

3.7).

3.1 The Sum-of-Squares Proof System

Sum-of-Squares (SOS) is a semi-algebraic proof system. Formally,
a Sum-of-Squares proof of f > 0 from (¥, H) is a sequence of
polynomials (p1,...,Pa;71,--->n; q1,---»qp) such that:

a m b
D pufu+ D riRi+ ) doho = f
u=1 j=1 v=1

e Rj is a range axiom or a complementary axiom,;
e fue¥ and
® hy e HU{1}.

Note that some polynomials & € 9 may appear more than once
in this sum. We do not want to charge for range axioms, so we
assume that all operations are in RIX ]/I where I is the ideal that
is generated by all range axioms. Since we care about the size in
the {+1} basis, we assume that there are no negated variables (we
can replace the variable X by —x without increasing the size of the
proof). Hence we can simplify the proof to:

a b
Zpufu"'zqghv =1,
u=1 v=1

where all polynomials assumed to be multilinear.

The degree of a proof is the maximum of the following two
numbers: deg(py) + deg(f,), 2deg(qo) + deg(hy).

We need to be precise about the size and the degree mea-
sures. The monomial size of a polynomial p is MSize(p) =
number of monomials in p.
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The size of a proof is:

a b
Z (MSize(py) + MSize(£,)) + Z MSize(gy) + Z MSize(h).
u=1 =1 heH
Here we count polynomials in H at most once.

To formulate the next property we need to consider another de-
gree measure. The reduced degree of a proof is the maximum of
the following numbers: deg(py,), 2deg(qo).

The next lemma is a simplified version of Lemma 5 from [4]

(w =1, c(u) = deg(pu), c(v) = deg(qy)).

Lemma 3.1 ([4]). For any variable x € X.If the SOSq ;}-reduced
degrees of (F,H) [ (x =0) and (¥, H) [ (x = 1) are at most 2d
then there is an SOSq 1}-proof of (¥, H) of reduced degree at
most 2d + 2.

Since the degree of any polynomial does not depends on basis
the following corollary holds for any basis.

Corollary 3.2. If SOS-reduced degree of (F, H) is d then for any
variable x there is an assignment a such that the SOS-reduced
degree of (F,H) | (x = a) is at least d — 3.

Proor. For contradiction we assume that for any assignment o
there is an SOS-proof of (F,H) [ (x = a) with reduced degree
(d—4).By Lemma 3.1 there is a proof of (¥, H) of reduced degree
(d — 1), which contradicts with the statement. O

Quadratic representation. Let © = (p1,...,Pa;q1,----qp) be
a PCRH{3 +1}—proof. The quadratic representation of r is the

sequence (p1,p2, ..., Pa; q%, ...,q2) where squares are expanded
without cancellations. For example, if ¢, = (xy — x — y) then
g2 :=(1-y—x)—(y—1-xy) - (x—xy— 1) and we assume that
it contains nine terms.

The q-size (quadratic size) of the proof is:

a b
Z MSize(py) + Z MSize(go)?
u=1 v=1

This definition of g-size is not usual.

(1) We do not charge for the original polynomials. In terms of
the Cook-Reckhow definition of proof system [11], this is
not the right way to define size, since it is not clear whether
proofs are checkable in polynomial time. But it will help us
to simplify the computations in our proofs and makes our
results only stronger.

(2) Q-size is the monomial size of quadratic representation and
quadratic representation is the crucial object for our proofs.
Hence it is more useful to deal with the size of quadratic
representation. Q-size is polynomially related to the usual
size, the results hold for both measures up to a constant in
the exponent.

See also the discussion about size measures in [4].

The following Lemma gives a transformation of SOS (4 1 ) -proof
with low-degree quadratic representation into a proof of low de-
gree, that is not straightforward since we deal with factor field and
one can find a polynomial p such that deg(p?) < deg(p).
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Lemma 3.3. Let 7 be an SOS(1}-proof of (F, H). If quadratic
representation of 7 does not contain any term of degree greater
than d then there is an SOS-proof 7’ of (¥, H) of reduced degree
2d.

ProoF. Let 7 == (p1,...
pu is at most d.
Let g, == ), t; and q}, =
i

,Pa;q1,---»>qp)- Note that degree of all

>, t1t;, where t; are terms. Note that
i

(q;)2 = (qo)? and moreover all terms t1t; are presented in the
quadratic representation of g, hence qj, has degree at most d.

To conclude the proof note that 7 = (p1,...,pa; q}, - -, q;) is
a proof of (¥, H). O

3.2 Polynomial Calculus

The PCRF proof system is equipped with range and complemen-
tary axioms and has the following derivation rules:

e linear combination: ﬁq

for any a, f € F, p, q € F[X];
o multiplication: £ 7 for any p € F[X].

A polynomial f is derivable from a set of polynomials
fi,. .., fm (written fi,..., fi + f) if there is a sequence of polyno-
mials such that each polynomial is either an axiom (an f;, a range
or a complementarity), or the conclusion of a derivation rule ob-
tained from previously derived polynomials.

Definition 3.4. A PCR proof of a set of polynomials f1, ..., fm is
a derivation IT of the polynomial 1 from the polynomials fi, .. ., fm.

Remark 3.5. Let say that an assignment is feasible if it satisfies all
range axioms. Observe that by definition, fi,..., i, F f is equiv-
alent to saying that f is in the ideal generated by fi, ..., fi,, along
with all range and complementarity axioms. Intuitively, a PCRE-
proof is a certificate that the system 7 has no feasible solution. It
turns out that the converse is also true: if a system of polynomial
equations has no feasible solution, then 1 is in the ideal generated
by the polynomials arising in the system together with the polyno-
mials from the range and complementary axioms. In other words,
the system is sound and complete.

As in case of SOS we do not want to charge for the usage
of range axioms. So we assume that all operations are in F[X ]/I
where I is the ideal that is generated by all range axioms. Further,
in case of the {+1} basis we assume that there is no negated vari-
ables since we can replace X by —x.

The size of a PCRF -proof is the total number of non-zero mono-
mials (counted with repetition) that appear in a derivation when
all polynomials are expanded out as linear combinations of mono-
mials. The degree of a PCRF-proof is the maximum degree of a
non-zero monomial that appears in the derivation.

Let 7 = (p1,p2,P3-..,pr) be a PCR]F—proof. Define a lazy
representation ((£;p);) of polynomials in s:

o (fxp); = pi, if p; is an axiom or p; is obtained by multipli-
cation rule.

o (£zp); = ap;j + Ppy without cancellations, if p; is obtained

by linear combination from p; and pj with coefficients «, f.

The quadratic representation of x is the sequence

((t’ﬂp)%, ({’,[p)g, (t’ﬂp)g, . ..,({’,rp)?) where squares are expanded
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without cancellations. The q-size of 7 is the number of monomials
in the quadratic representation of 7. Note that q-size of a proof =
is bounded by O(size(r)?).

The notion of lazy representation is technical and we use only
for the following Lemma. As in case of Sum-of-Squares the state-
ment is not trivial since we deal with factor field.

Lemma 3.6. Let 7 be a system of degree dy and 7 be a PCR{+1}
proof of ¥ If quadratic representation of 7 does not contain any
term of degree greater than d then there is a PCR" -proof 7’ of 7
of degree max(2d, dp).

ProoF. Let & = (p1,....pr), pi = Zti’j and s; = Zti,lti,j~
J J

Note that p; = t;1s; and s; = t;1p;.

By definition all monomials that appear in pi2 also appear in
(t’np)?, hence all terms of s; appear in (t’,,p)i2 this implies that the
degree of s; is at most d. Consider the sequence (sy,...,sr). It is
not a PCRF-proof but we want to show that all s; are derivable
in degree 2d from previous polynomials and polynomials from 7.
We prove it by induction on i. Consider three cases.

(1) pi € F. Then s; is derivable from p; in degree max(d, dp).
(2) pi == xpj. Thens; = s;.

(3) pi = apq + Ppp. In this case consider (£7p); = aZ taj +

J
B2ty and denote q = @ X lq1tq,j + f X ta,1tp,; Without
J J J

cancellations. All terms of g appear in (f,,p)i2 hence it has
degree at most d, in particular term #5111 has degree at
most d.

Note that g = as,+f Z taltpj = asa+ﬁta31tb’1 Z ﬁtb,ltb,j =

J J
asq + Pta1tp 155 Hence it is derivable in degree 2d from sq
and sp,.
Z ti1t;j but all t; ; appear in the collection U{ta KU

U{tb k} Wlog tj1 = t, hence s; = t, jtq,19 and 1t is deriv-

able from q in degree 2d.

3.3 Switching Between Bases

We can change the basis via affine shift. Let x € {0,1} and y =
(1 — 2x). This fact allows us to transform proofs from one basis to
another.

Lemma 3.7. Let C be either SOS or PCRF proof system and
(F,H) be a polynomial system on n variables. If there a Cyg 13-
proof of size s and degree d of (F, H) then there is a C 41} -proof

of size 2¢poly(n)s and degree d of (7, H).

ProoF. Let 7 be a Cy( 1} proof of size s and degree d of (¥, H).

If we apply substitution x; « % to all variables x; then the
result will be a Cy,y-proof in y; € {£1} variables. To conclude
the proof note that range axiom for a x; can be derived in constant
number of steps from range axiom for the y; variable. O

Remark 3.8. The same statement holds if we switch from the
{£1} basis to the {0, 1} basis.



STOC 20, June 22-26, 2020, Chicago, IL, USA

4 “LIFTED” SYSTEMS

In this section, we prove lower bounds on the size of SOS(,1}-
proofs. At first, if we have a short proof of the “lifted” system then
we can get low-degree proof for the original system under certain
partial assignment. Then, we show that we regain enough control
over the partial assignment so that the remaining system will still
have large degree, contradicting the first step.

The following theorem illustrates the first step of our plan.

Theorem 4.1. Let (¥, H) be a system over X := {x1, ..
g be a compliant gadget of size k and let a1, a2, ..
arbitrary string consisting of +1.

If there is an SOS . 1}-proof of (F, H) og of size s, then there is

. Xn}, let
.,Q@,... be an

a sequence of variables x;,, X;,, . .., Xj,, where £ > 4k % such
that:

e the choice of xi; is independent of (aj, ajs1,...);
e there is an SOSy,1}-proof of (F,H) [ {xi; = ocj}§:1 of
reduced degree d.

We defer the proof of this Theorem to the next section. Assum-
ing the above Theorem we give the desired lower bound on the
size.

Theorem 4.2 (Formalization of Theorem 1.1). Let (F,H) be a
system on n variables of degree dy and g be an compliant gad-
get of constant size. If di is the minimal degree of SOS-proof
of this system then any SOS(,)-proof of (¥, H) o g has size

o[ 1458)|.

. ._ di—dy — _1 .
Proor. Fix parameters d = 5 and € = 5052 where k is

the size of the gadget g. For contradiction, assume that we have an
(d1=do)?
- .

SOS (41}-proof 7 of size s = exp (E

We want to apply Theorem 4.1 for the parameter d and some

carefully chosen sequence ai,...,a,, where ¢ = 4k2% =

2
4k2% = 8k2¢(dy — do) < Dz,
The reduced SOS-degree of (7, H) is at least d1 —dp. By Corol-
lary 3.2 for any variable there is an assignment that decrease the
reduced degree by at most 3. By Theorem 4.1 there is a choice of
variable x;, does not depend on «; for all i > 1. Hence we can
choose x;, and choose a1 to be the value such that any SOS-proof
of (F,H) | (xi; = a1) has reduced degree at least (d1 — dp) — 3.
We can repeat this process and choose x;, dependent on x;, and a7.
Hence after the second step we have the system (7, H) [ {(x;, =
a1), (xi, = a2)} such that any SOS-proof of it has reduced degree
at least (d; — dp) — 6.
After ¢ repetitions we have a partial assignment p = {(x;, =
ai),...,(xi, = ag)} such that:
o the reduced SOS-degree of (F,H) [ pisatleast (d1 —dp)—
3¢ (by the choice of @;) and
o there is an SOS-proof of (¥, H) [ p with reduced degree d
(by Theorem 4.1).

This implies that d > (di — do) — 3¢ > (d1 — dp) — “5% = 4,
which is a contradiction. Hence there is no proof of (¥, H) o g of
1 (di—do)? ) o

size exp (50k2 m
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Corollary 4.3. Let F be a system on n variables of degree dy and
g be a compliant gadget of constant size. If d1 is the minimal degree
of SOS-proofs of ¥ then any PCRD{{ﬂ}—proof of ¥ o g has size at

least exp [Q (M)]

The proof of this corollary follows from the next statement
which is an analogue of the statement from [6] for the {+1} ba-
sis.

Theorem 4.4. [Analogue of [6]] Let F be a system of polynomial
equations. If there is a PCR]ERﬂ}—proof of F of size S and degree

d then there is an SOS 1} -proof of size poly(S) and degree 2d.

The proof of this corollary is analogous to the proof for the {0, 1}
basis [6]. For the proof see the full version [31].

4.1 Proof of Theorem 4.1
Let f/ = fiogand h] = h; o g. Denote by Z = {z;; |
i € [n],j € [k]} the set of variables of (F,H) o g. Let 7 =
(p1,---»Pa; q15---»qp) be an SOS,)-proof of (F,H) o g of q-
size sq < 2.

We say that monomial t on Z variables touches a variable x; €
X iff there is an unordered pair j’, j”” € [k] such that z; j» € t
and z; j» ¢ t. We also say that term ¢ is fat if it touches at least %
variables from the set X.

Let H be a multiset of fat terms in the quadratic representation
of 7, i.e. in the collection of polynomials (p1,..., pa; q%, .. .,qi),
where polynomials g2 are represented without cancellations.

We would like to find a partial assignment that helps us to erase
significant fraction of fat terms, but since z; ; € {+1} it is not so
clear if such an assignment exists. Instead of it we modify the proof
by using symmetry of the gadget and “force” such an assignment
to a new proof.

Pick the most frequent variable x; € X among variables that are
touched by fat terms (it is the first variable x;, in the sequence).
d|H|

By an averaging argument x; is touched by at least
For each of these terms there is an unordered pair z; 7, z; j» such

. . 2
that z; j» € t and z; j» ¢ t or vise versa. Since there are at most %

different pairs we can fix j” and j” such that there is at least ‘i‘?h; l

terms that contains exactly one of the variables z; j» and z; j». We
say that these terms are active.

Consider the permutation o that swaps z; 7 and z;j» and
leaves everything else in its place. Denote by p° the result
of an application of the permutation o to the polynomial
p. Note that the sequence n’ = (%(pl + py ,...,%(pa +

29); \%ql, \L@qi’ R %qb, %qg) is a proof of (7, H) o g. Indeed

fat terms.

a b
—1= 3" (pufi)7 + ) (qsh)°
u=1 v=1
a b
D ANE DN
u=1 v=1

a b
= > pafi+ D (a)h,
u=1 v=1
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where the last equality holds by symmetry of g and the symmetric
encoding of it. Hence

a b
= P_u+P3 / L 2 L o\2\ 1.7
—1—;1 5 m;((ﬁqa + (GaDH,

Since g is compliant we have that by property 2 and symmetry
of g we can find for any a1 € {+1} an assignment f € {+1}¥ to
the z; . variables such that g(f) = a and By # Bj». Let p be a
restriction that maps the z; . variable to . Note that if term ¢

e is active, then t = z; yr and t7 = z; j»r (or vice versa),
hence (t+t%) [ p = (zij +zij)r [ p=0;
e is not active then t = 7, hence (¢t +t%) [ p =2t | p.

Thus for any u € [a] the polynomial %(pu +p9) | p only con-
tains inactive terms t restricted by p.

Now consider a polynomial g, for v € [b]. Let us rewrite g, =
ol +ZijTo2 + zj j# Ty 3 and denote ry 4 = zj jiry2 + 2i jr 1y 3. We
see that

2_ 2
(q0)” = To1 T Zij/To1l02 T Zij"Ty170,3
2
*ZijTo2r01 ¥ Zij 03701 + 1y
2 2
(q5)" = Yo T Zij o102 + Zi,j'Ty,1703
2
*Zij 02 01 + Zij 03701 + 1y 4
and hence
L 2
oy\2 _ 2 2
5 ((CIU) + (qv) ) rp - rv,l +rv,4
Not that only the following terms were active before the restric-
tion: z; j1ry170,2, Zi,j#T0,170,3, Zi,j*T0,2V0,1, Zi,j#T0,370,1. In the rep-
resentation rfl + rg & all of these terms are erased. Here it is im-
portant that we do not allow any cancellation while representing
squared polynomials, as otherwise the size of the new representa-

tion may be bigger than the size of the original polynomial g2.

We conclude that the proof 7’/ =

a4 b b
L= St pOf o+ D ks [+ ) raahly I
u=1 v=1 o=1

is a proof of (F,H) og | p (and hence of ((F,H) | (xi =a1))og)
such that its quadratic representation contains at most (1- %) |H|
fat terms.

By repeating this process ¢ times we get a partial assignment
Xiy = Q1,%i, = a2,...,%;, = ar such that the choice of x;; only
depends on the original proof 7 and @ for j* < j. We end up with

a proof mp of ((77, H) T {xi; = aj }ﬁzl) o g such that its quadratic

representation contains at most (1 — %)fsq fat terms. But (1 —
2
%)fsq <(1- %)% nlogs/d¢2 < exp(—4logs)s? < 1, we see
that in this setting, quadratic representation of 7g does not contain
any fat term.
To conclude the proof we want to transform 7 into a proof of

(F.H) | {xi; = aj }5.:1 of small degree. And here we use the fact
that g is not parity: there are two points f,y € {+1}¥ such that:

k k

o I A= 11vs
Jj=1 Jj=

e g(B)=1;

o g(y)=-1
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For all i € [n],j € [k] we make the following substitution in
the proof mp:

e if f; = y;, we replace z; j by fi;
e if B; = 1 and y; = —1, we replace z; j by x;;
e if j = —1 and y; = 1, we replace z; j by —x;.

Denote the result of this replacement applied to a term ¢ by ¢*.
Note that after this replacement g(z; 1, zi,2, - . -, z; ) Will return the
value of x;

Suppose term t over Z variables does not touch x;, that means ¢
does not contain any variable z; . or it contains z; j forall j € [k].In
the first case x; will not appear in *. In the second case we observe
that f and y are different in even number of positions hence x; will
appear in t* in even degree and we just erase it since we deal all
operations in factor ring over range axioms. This fact implies that
degree of the quadratic representation of (7p)* is bounded by max-
imum over all terms ¢ that appear in the quadratic representation
of 7p of number of variables x; € X that are touched by ¢. But the
quadratic representation of 77y does not contain any fat term hence
this replacement produces terms of degree at most %

Also note that (f;))* pointwise equal to f;,. We consider only
multilinear polynomials for that means for any function there is
a unique representation hence (f;,)* is the same polynomial as f;,.
By analogy the same holds for h, and by analogy the same holds
after a partial assignment. Hence 7} is a proof of (7, H) [ {xi; =
a j}§:1 such that quadratic representation of it does not contain

any term of degree greater than % By Lemma 3.3 there is a proof
of (FLH) I {xi; = aj}§:1 of degree at most d + dp.

5 RANDOM A-CNF

In this section we prove a lower bound on the size of SOS .1} and
PCRH{: ﬂ}—proofs of random A-CNF formulas. The general idea is

the same as in the case of “lifted” systems: we want to consider a
linear combination of two proofs of the formula and hit it by a re-
striction in order to kill all terms of high degree. Unfortunately, in-
stances of random A-CNF do not have symmetry that was crucially
used in previous case, instead of it we will use “self-reducibility”
of A-CNF instances. We describe the “self-reducibility” in terms of
the dependency graph of the formula, hence lets start with some
definitions and useful properties of graphs.

5.1 Expanders and Closure

We use the following notation: Ng(S) is the set of neighbours of
the set of vertices S in the graph G, 9 (S) is the set of unique neigh-
bours of the set of vertices S in the graph G. We omit the index G
if the graph is evident from the context.

A bipartite graph G = (L,R,E) is an (r, A, c)-expander if all
vertices u € L have degree at most A and for all sets S C L, |S| < r,
it holds that |N(S)| > ¢ - |S|. Similarly, G := (L,R,E) is an (r, A, ¢)-
boundary expander if all vertices u € L have degree at most A
and for all sets S C L, |S| < r, it holds that |dS| > ¢ - |S]. In this

context, a simple but useful observation is that

A|S| = aS| _ AlS| +|aS|

N(S)| < [aS] + ,
IN(S)| < Jos] + =2 .

1)
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since all non-unique neighbours have at least two incident edges.
This implies that if a graph G is an (r, A, (1 — ¢)A)-expander then
it is also an (r, A, (1 — 2¢)A)-boundary expander.

The next proposition is well known in the literature. In this form
it was used in [13].

Proposition 5.1. If G = (L,R E) is an (r, A, c)-boundary ex-
pander then for any set S = {v1,...,0¢} C L of size at most r
there is a partition | | R; = N(S) such that R; € N(v;) and |R;| > c.

1
In particular, there is a matching on the set S.

Proor. Since [S| < r it holds that |9S| ¢|S| and there is a
vertex v; € S such that |dv;| > c. Let R; := dv;, and repeat the

process on S \ {v;}. O

=

Let G := (L,R E) denote a bipartite graph. Consider a closure
operation that seems to have originated in [2, 3].

Definition 5.2. For vertex sets S € L,U C R we say that the set
Sis (U,r,v)-contained if |S| < r and |dS \ U| < v|S|. For any set
J € RletS := CI"Y(J) denote an arbitrary but fixed set of maximal
size such that S is (J, r, v)-contained.

Lemma 5.3. Suppose that Gisan (r, A, ¢)-boundary expander and
that J C R has size |J| < Ar. Then [C1"V(])] < %

Proor. By definition we have that [9C1">V(J) \ J| < v|CI""V(J)|.
Since |C1™Y(J)| < r by definition, the expansion property of the
graph guarantees that ¢|CI""(J)| = |J| < [2C1"Y(J) \ J|. The con-

clusion follows. |

Suppose J C R is not too large. Then Lemma 5.3 shows that the
closure of J is not much larger. Thus, after removing the closure
and its neighbourhood from the graph, we are still left with a de-
cent expander. The following lemma makes this intuition precise.

Lemma 5.4. Let J C R be such that |J| < Ar and [CI"V(])| < §
andlet G’ := G\ (CI"Y(J) U J U N(C1I"Y(J))). Then any set S of
vertices from the left side of G’, with size |S| < % satisfies that
|9g'S| = v|S|.

ProOF. Suppose the set S € L(G’) violates the boundary expan-
sion guarantee. Observe that C1I™*"(J) and S are both sets of size at
most §. Furthermore, the set (C1"(J) U S) is (J, r, v)-contained
in the graph G. As C1™V(J) is a (J, r, v)-contained set of maximal
cardinality, this leads to a contradiction. O

5.2 Random Formulas

Let ¢ be a formula on X variables. We denote a restriction of de-
pendency graph of ¢ to a subset of variables Xo C X by G(}; 0=
(L(p,Xo,E;fO)A To be precise L, corresponds to the set of clauses

of ¢ (and we identify these two sets) and (u,x) € Eg” iff clause
u contains a variable x, or its negation. We omit superscript Xg
if we assume the full set of variables. We will also deal with the
formulas after application of some partial assignment, in this case
we erase all vertices from the left part of dependency graph that
correspond to satisfied constrains.

Definition 5.5. Let ¢(m, n, A) denote the distribution of random
A-CNF on n variables obtained by sampling m clauses (out of the
(Z)QA possible clauses) uniformly at random with replacement.
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Lemma 5.6 ([9]). For any A > 3 whp ¢ ~ ¢(m,n, A) is unsatisfi-
ableif m > 1n2-2%n.

The next Lemma is a modification of well-known result for ran-
dom graphs (see [32]).

Lemma 5.7. If m = O(n), A > 11 and ¢ ~ ¢(m,n, A) then whp
Gy is an (r, A, 5)-boundary expander where r = Q(%).

Proor. For proof see the full version [31]. O

A next Lemma is a straightforward corollary from the main re-
sult of [15] (see also [18]).

Lemma 5.8 ([15]). If ¢ is an unsatisfiable A-CNF formula and G,
is an (r, A, 2)-expander then SOS-degree of ¢ is Q(r).

5.3 Lower Bound on Random Formulas

Before we formulate the main theorem we want to reduce the de-
grees of all vertices in the dependency of the instances of random
formulas.

Lemma 5.9. Let ¢ be a A-CNF formula on n variables and m
clauses. If Gy is an (r, A, ¢)-boundary expander then there is a con-
stant £ and partial assignment p of size at most (A + 1) § such that
Gy|p is an (5, A, v)-boundary expander and the degree of all ver-
tices of G¢, Ip is bounded by 2A%, where v <c¢—-1.

ProoF. Pick aset J C R of vertices of degree greater than 2A 2.
There are at most Am edges in the graph G hence |J| < §. By
Lemma 5.3 there is a set S := CI""(J) such that |[S| < |J|. By a
straightforward corollary of Proposition 5.1 there is a matching M
on the set S. Define a partial assignment p in the following way:

o for all (s,x5) € M assign x; by the value that satisfy clause
s;
e assign variables from N(S) U J in an arbitrary way.

We assign all variables from J hence the degree of all vertices in
Gy|p is bounded by 2AZ*. Note that Ry, = Ry \ (J U N(S)) and
Lytp € Lyp\S since p satisfy all clauses from S. By Lemma 5.4 G 1
is an (4, A, v)-boundary expander. [Vars(p)| < |NG¢ S)|+1J| <
(A+D)5. O

Now can formulate the main statement of this section.

Theorem 5.10. Let A > 0 be an integer and ¢ be an unsatisfiable
A-CNF formula on n variables and m clauses.

If G is an (r, A, 4)-boundary expander such that degree of all
vertices are bounded by 7 then any SOS, )-proof of ¢ has size

2
exp(Q(50).
We defer the proof of this Theorem to the section 5.5.

Corollary 5.11 (Formalization of Theorem 1.2). If A > 1l isa
constant, ¢ ~ ¢(m,n, A) where m = O(n) then whp any SOS (1}~
proof of ¢ has monomial size exp(Q(n)).

Proor. Wlog & > 1 (otherwise ¢ is satisfiable with high prob-
ability). Let n := 2AT!. Fix a formula ¢. By Lemma 5.7 there is
some § > 0 such that whp Gy is an (8%, A, 5)-boundary expander.
Wlog assume that § < 21—0. By Lemma 5.9 there is assignment p of
size at most % such that G(p Ip isan (% n, A, 4)-boundary expander
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with degrees bounded by 7. By Theorem 5.10 any SOS ,1}-proof
of ¢ | p has size exp(Q(n)) hence the same holds also for . O

5.4 Split Operation

The heart of proof of Theorem 5.10 is a Split, operation. The idea
of this operation is the following:

e we want to banish all terms in the proof that contain a vari-

able x;
e after application of this operation to an SOSy.iy or
PCRI? 1} proof the result still be a proof, but maybe of a

“damaged” formula.

Unfortunately it is not clear how to define this operation for
both considered proof systems in the same way, so we will do it
separately. Let ¢ be a boolean formula and ¥ is a CNF encoding of
¢ as a polynomial system.

Sum-of-Squares. Let = =  (p1,...,Pa;q1,---,qp) be an
SOS41)-proof of F. Recall that we consider CNF encodings of
boolean formulas, hence there is no inequalities.

Pick a variable x and consider a linear combination of proof with
different assignments to x. Lets do it more formally and consider
the following operation % (pl (x==1)+p | (x=1)). Note that
the result of this operation contains only terms of p and only those
terms that do not touch x.

(1) If f, € ¥ is a constraint that does not depend on x then
puful x==-D+pufu | (x=1)=(pul (x=-1)+py |
(x = 1)) f, and we banish all terms that contain x variable.

(2) If f, € F is a constraint that depends on x then we cannot
simplify the expression p,fy, [ (x = -1) +pufu [ (x =
1) and we say that constraint f;, (that correspond to some
clause in ¢) is damaged.

(3) Let gy := (ry+xey) where ry, e, are polynomials that do not
contain x then:

q% = rg + 2xrye, + e%
gl (x=-1)+q5 [ (x=1) =2(r7 +¢3)

And r, and e, be a new representation of g, after restriction.
Note that we banish all terms that touch x. And as in case
of lifted formulas this is a place there we use the fact that
we do not allow cancellations while computing squares.

The result of Split, () is a proof:

1=y

1
Shufu | (x = —1)) +
ueD (2

I AN

u¢D

2,

ueD

(gpufi 1 x=1)

where p/, is a polynomial that contain only those terms of p,, that
do not touch x, D is a set of damaged constraints.

Observe important property that damages constrains are origi-
nal constraints with some partial assignment and if we assign any
variable except x in order to satisfy clause u € D of ¢ we will set
to 0 all damaged constraints that correspond to u.

The result of Split, () is an SOSy,}-proof of damaged sys-
tem, but the size of it maybe bigger than the size of = because of
damaged part. In our applications we will care about and:
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o exclude monomials that corresponds to damaged part from
counting (see. Remark 5.13)
o satisfy all damaged damaged constraints.

..pa) bea PCRY,

of . A naive idea is to do the same operation as in case of
SOS {41}, but lets consider the following example:

Polynomial Calculus. Let & := (p1,.. -proof

where p does not contain x. If we apply operation
% (gl (x=-1)+q ] (x=1)) to all polynomials in this proof
then first and third line will not be affected but the middle line will
be set to 0 and it will not be a valid PCR]?+1 }—proof of anything.

For each line of the proof p; consider a decomposition p; :=
ri+xq; where r; and g; do not contain x. We use this decomposition
to define Split operation. More formally, the result of Split,. ()
is a proof: (r1,q1,72,92, .. .,"a, qa) Where we omit trivially zero
polynomials.

We want to show that Split, () gives a PCRI{Fﬂ}

(1) If p; is an axiom that does not depend on x then r; = p; and
¢i = 0 hence we do not change this line.

(2) If p; is a CNF encoding of an axiom that depends on x and
it corresponds to clause (C V x) of ¢ (with X situation is
similar) then:
o= %pc and q; = %pc, or equivalently
eri=1pi [ (x=1)andgq = 3p; [ (x=1),
where p. is a CNF encoding of the clause C. We say that this
constraint is damaged.

(3) Let p; = apj + Bpy where j,k < ithenr; = arj + fry and
qi = aqj + fqx-

(4) Let p; = xpj where j < ithenr; = gj and ¢q; = ;.

(5) Let p; = x"p; where j < iand x’ is different from x then
ri =x'rj and g; = x'qj.

-proof.

As in previous case observe important property that damages
constrains are correspond to clauses of ¢ without x and if we as-
sign any variable except x in order to satisfy clause u € D of ¢
we will set to 0 all damaged constraints that correspond to u. We
deal with the result of Split, () as with usual proof of damaged
system, in particular quadratic representation of it is well-defined
(this situation is a bit easier than in Sum-of-Squares where we need
to pay some attention to the damaged part of the proof).

The only problem with this transformation that it does not kill
any term. But lets consider some polynomial pi2 in the quadratic
representation of 7. p? = ri2 +xriqi + qi2 the only parts of this poly-
nomial that touch x is xr;q; and in the quadratic representation
of Split, () we have only polynomials ri2 and qi2. By analogy the
same holds for lazy representations hence this operation banish all
terms that contain x in the quadratic representation.

Remark 5.12. In some sense Split, corresponds to “double false”
assignment since we erase all occurrences of x from clauses of our
formula independently of the signs.
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5.5 Proof of Theorem 5.10

By Lemma 5.8 there is a constant g such that there is no SOS
and PCRF proof of degree eor of any formula based on (5.4,2)-
boundary expander. Fix ¢ := %.

Let ¥ be a CNF encoding of the formula ¢ as a polynomial
system. For the sake of contradiction assume that we have an

SOS 41y or PCRH{Z”

can choose size measure).

Fix the parameter d = %r. We say that a term ¢ is fat if
deg(t) > d and H is a multiset of all fat term in the quadratic
representation of the proof x.

The idea of the proof is the following.

proof 7 of g-size exp(’?i2 . %) (here we

(1) In order to erase all fat terms we iteratively apply Split op-
eration (instead of ordinary restrictions). On each iteration
we choose a variable x and replace a proof 7 by Split,. ()
to banish all fat terms in the quadratic representation that
contain x.

(2) During this process our formula may become “easy” for
SOS or PCRF. To avoid this situation we hit the formula
after each iteration by a partial assignment. This allows us
to restore the expansion property on the remainder of the
formula.

Now we can describe the general algorithm. It takes a proof x

and transforms it into a proof of small degree of a “damaged” for-
mula. On each iteration

Algorithm 1 Degree reduction

A1 =X > Set of alive variables
2J1=0 > Set of active variables
3 D1 =0 > Set of damaged constraints
4 =1

5. 11 =TT

6 p1 =0

7. while H # 0 do

8: Pick the most frequent variable x in H

% Jer1 = Je U {x}

10: 7’ = Split, ()

11: Gos1 = G;‘F/\)EX}

12: Bp :=max{BC Ly | |B| <, |(9Gt,+1 (B)| < 3|B[}

13: Dyy1 = (D[ U NG(P Lpe (x)) \B[

14: Find a matching M on By in Gpy1 > Proposition 5.1

15: Pe+1 = pe

16: for (u,xy) € M do

17: pe+1 = pe+1 U {xy, = value that satisfies u} >—11is
True, 1 is False

18: 7ps1 =7 [ pes1

19: Aper = Ap \ ({x} U Vars(pre1))

20: H = set of fat terms of the QR of 7py; > See remark 5.13

21: =1+
return

Remark 5.13. In case of SOS(, ) we do not add fat terms to H
that correspond to the damaged part of the formula.

We start with the system # and assume that all constraints are
not damaged.
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In each iteration we pick a variable x that appears in at least
%|H | fat terms and consider Split, (7). The fact that Split, ()
banish all terms that contain x allows us to estimate the number
of iterations. In case of SOS .} the Split, (=) may not kill terms
in the damaged part of the proof but we do not count these terms
(see Remark 5.13) since we will set the damaged constraints to 0
later.

Proposition 5.14. £ < #

Proor. We Kkill at least fat %IH | terms. Hence the process will
terminate when (1 — %)Z|H| < 1. |H| is at most the g-size of the

proofnand(l—%)[|H| < (1—%)‘7 exp(q%%) < exp(—%d+n%§

is less than 1 if ¢d > n%rQ. This implies that £5% >

10
10 . By the choice of ¢ we obtain desired result. O

< r and hence
n

>

Eon

Damaged axioms are axioms from ¥ that are hit by partial as-
signments to active variables. If we assign to any alive variable x
the value that satisfies clause u in our formula, then all damaged
axioms that correspond to u will be set to 0. Note that this assign-
ment is independent of p; and the assignments to the active vari-
ables. In order to find such an assignment and keep the formula
hard for SOS (and PCRF), we polish it after each iteration by a
partial assignment that satisfy the set B;.

First we want to show that all sets B; are not too big and we

1
can always find a matching on Bj. Let C; := |J Bj. The following
Jj=1
Lemma formalizes this statement. The proof is similar to the proof
of Lemmas 5.3 and 5.4, but, unfortunately, we need to care about

parameters during all iterations simultaneously.

(1) ICe| < 2.
_isan (r, A, 3)-boundary expander.

Proposition 5.15.

. Ai
@ viele.6h

Proor. See the full version [31]. o

Since G4
@lpi
(r, A, 2)-boundary expander (as we just remove one vertex on the
right side). By Proposition 5.1 there is a matching on B;.
To conclude the proof we note that the number of damaged
constraints in the end is at most 7|J’| < 2~ and by Proposition

is an (r,A,3)-boundary expander, Gjy1 is an

5
5.15 we have an (r, A, 3)-boundary expandrér on alive variables.
Denote it by G and consider S := Cng (NG(Dy)). By Lemma 5.3
IS| < [Ng(Dy)| < £. By Proposition 5.1 there is a matching on
S U Dy and hence there is a partial assignment y on Ng(S U Dy)
that satisfies all clauses in S U Dy. But by Lemma 5.4 the graph
of the remaining formula will be an (%, A, 2)-boundary expander
and 7, | y is a proof of this formula. Moreover the quadratic rep-
resentation of 7y [ y does not contain any fat terms and hence by
Lemmas 3.6 and 3.3 the proof 7y | y can be transformed into a
proof of degree at most 2d. This is a contradiction with the choice
of d.
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6 SEPARATION BETWEEN PCR]? +1} AND
SOS a1
In this section we show a separation between PCR]fﬂ} and

SOS (41)-

6.1 Pigeonhole Principle

We consider a graph version of the Pigeonhole Principle for two
reasons:

e our lower bounds depends on the number of variables and
we want to reduce it;

e in case of constant width formulas we can choose the en-
coding that suit us best.

It is convenient to think of the Pigeonhole Principle in terms of
a bipartite graph G = (L, R, E) with pigeons L = [m] and holes
R = [n] for m > n+ 1. Every pigeon i can fly to its neighbouring
holes N(i) as specified by the graph G.

We encode the claim that there does in fact exist an injective
mapping of pigeons to holes as a CNF formula consisting of pi-
geon axioms

fl=\/ xy
J€NG (i)
and hole axioms
71 =iy v X )
that require that every hole contains get at most one pigeon (where
the intended meaning of the variables is that x; j is true if pigeon i
flies to hole j).

We consider a CNF encoding of the Pigeonhole Principle
G-PHP}.

fori# i’ € [m],j € Ng(i) N Ng(i’)

Theorem 6.1 ([3, 24]). Let G be an (r, A, 2)-boundary expander.
Then any PCRI{FO 1}-proof of the G-PHP} has degree Q(r) and

. 2
size exp [Q (Ar—m)]
The next claim is an interpretation of the result from [17].

Theorem 6.2 ([17]). Let G be a constant degree graph. Then there
is an SOS (g 1}-proof of the G-PHP} in CNF encoding of constant
degree and size poly(n).

Theorem 6.3. Let G be an (r, A, 4)-boundary expander then any
PCRIfﬂ}—proof of the G-PHPJ? has size exp [Q (ﬁ)]

6.2 Proof of Theorem 6.3

The proof is similar to the lower bound proof of random formulas,
but we need to take care of hole axioms.

We choose a constant gy such that there is no PCRF proof of
degree egr of Pigeonhole Principle based on (%, A, 2)-boundary ex-
pander. By Theorem 6.1 such constant exists. Fix ¢ := 150_00.

Let ¥ be a CNF encoding of G-PHP}}! as a polynomial system.
For the sake of contradiction assume that we have a PCRF

{1}
proof 7 of size exp(5 - %) and hence of g-size exp(e% .
Fix the parameter d := %r. We say that a term t is fat if
deg(t) > d and let H be the multiset of all fat term in the quadratic
representation of the proof 7.
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The idea of the proof is similar to the proof of Theorem 5.10.

The following algorithm takes a proof 7 and transforms it into
a proof of small degree of a Pigeonhole Principle over a smaller
graph. This case is a bit simpler than in section 5.5 since we do not
need to take care about SOS ;1.

Algorithm 2 Degree reduction. PHP
: Ri =R
L1 =1L
J1=0
=1
T =7
p1 = 0
: while H # 0 do
Pick the most frequent variable x; j in H.
Jes1 = Jo U {xi 5}
a’ = Splitxi‘j(n')
P+l = pe
for k € (N(j) \ {i}) do
pe+1 = pe+1 U (xi j = False)

> Set of alive holes
> Set of pigeons that are not yet satisfied
> Set of active variables

b A A S o L

[
W N = O

14: Let1 ==Ly
15 Rey1 = Re\ {j}
16: By == max{B C Ly+1 | |B| < 1,|9R,,, (B)| < 3|B[}

17: Find a matching M on By in (Lg+1, Re+1, E) > Proposition
5.1

18: for (i, j’) € M do

19: Les1 = Les1 \ {i'}

20: Rer1 = Res1 \ {j’}

21: Pe+1 = pe+1 U {xir’j/ = True}

22: for k € Np,,, (j’) do

23: pe+1 = pr+1 U (xg j = False)

4 w1 =7 ] peat

25: H := set of fat terms of the QR of mp41

26:

£ =1+
return

Note that Split,, . (7):

o transforms polynomial representation of pigeon axiom for
the pigeon i into the polynomial representation of the same
axiom without hole j;

e damages hole axioms for hole j;

e does not affect all other axioms.

After Splitxi’j () operation we assign all variables x;. ; to False
that sets all “damaged” hole axioms to zero and remove hole j from
our graph. Hence at line 14 7’ is a proof of G-PHP based on graph
without hole j. In the last part we try to restore expansion property
on the graph of Pigeonhole Principle after removing hole j. We put
some pigeons into holes and remove these pigeons and holes from
the graph. Hence in the end of iteration p41 will be a proof of
G-PHP on graph induced by Ly4+1 and Rpy1.

We start with the system 7. In each iteration we pick a vari-
able x;; that appears in at least ﬂ |H| fat terms and consider
Splitxi’j (7). The fact that Splitxi’j (7r) banishes all terms that con-
tain x allows us to estimate the number of iterations.

s r
Proposition 6.4. ¢ < .
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Proor. We kill at least fat ﬁ |H| terms. Hence the process will

terminate if (1 — ﬁ)[|H| < 1.|H| is at most the q-size of the proof
2 2
mand (1— ﬂ)f|H| <(1- %)f exp(e4;,;) < exp(—% +Eq
is less than 1 if £d > er2. The choice of ¢ implies the desired result.
m]

We know that damaged axioms are pigeon axioms that are hit
by a partial assignment. If we put all damaged pigeons into alive
holes, this assignment will set all damaged axioms to zero. Again,
as in case of random formulas, in order to be able to find such an
assignment, and keep the formula hard for PCRF we polish it after
each iteration by a partial assignment that satisfies the set B;.

The next Proposition is an analogue of Proposition 5.15 in sec-
tion 5.10 and the proof of this Proposition is the same.

Proposition 6.5. (1) |Cr| < 2.

(2) Vi € [¢],(Li,R;, E) is an (r, A, 3)-boundary expander.

i
Where C; := U B;.
Jj=1

Since (Lj, R;, E) is an (r, A, 3)-boundary expander then (L;, R; \
{x},E) is an (r, A, 2)-boundary expander (we just remove one ver-
tex on the right side). By Proposition 5.1 there is a matching on
B;.

7¢ is a proof of the G-PHP on a graph that is (r, A, 3)-boundary
expander. Moreover the quadratic representation of 7, does not
contain any fat terms. Hence by Lemma 3.6 the proof 7p can be
transformed into a proof of degree at most 2d which is a contradic-
tion to the choice of d.

6.3 Separation
Theorem 6.6 (Formalization of 1.3).
boundary expander then:
o there is an SOS g 1} and SOS (.1} -proof of the G-PHPI*!
of size poly(n);
e any PCRH{:ﬂ}
exp(n).

Let G be an (r,A4)-

or PCRF

{01}—proof of G-PHP™! has size

Proor. The upper bounds follows from Theorem 6.2 and
Lemma 3.7.

For the lower bounds we apply Theorems 6.1 and 6.3 to an
(Q(n), A, 4)-boundary expander. m]

7 CONCLUDING REMARKS

In this paper we present techniques for proving lower bounds on
the algebraic proof systems on the {+1} basis. We demonstrate
that gadget substitution helps us to transfer the lower bound from
degree to size. But this bound was demonstrated only for real num-
bers (since we can prove it for Sum-of-Squares but can not prove it
directly for Polynomial Calculus). It is interesting to do it directly
for Polynomial Calculus.

Also we showed the lower bounds for the classical hard formula
examples. The main idea of all the results based on the quadratic
representation of the proofs. It is interesting to find other appli-
cations of this representation and also to study the power of the
high-order representations.
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Open problems. To develop new techniques it would be interest-
ing to study the size of proofs for concrete formulas.

(1) The proof of Theorem 6.3 works only for the basic version
of the Pigeonhole Principle. Can we prove lower bounds for
Functional or Onto Pigeonhole Principle?

(2) Algebraic proof systems over {+1} basis are exponentially
stronger than proof systems over {0, 1} on Tseitin formu-
las. Can we find the opposite separation? Can we simulate

Resolution in PCR]?il} or SOS(3113?
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