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In 2003, Atserias and Dalmau resolved a major open question about the resolution proof system by estab-
lishing that the space complexity of a Conjunctive Normal Form (CNF) formula is always an upper bound on
the width needed to refute the formula. Their proof is beautiful but uses a nonconstructive argument based
on Ehrenfeucht-Fraı̈ssé games. We give an alternative, more explicit, proof that works by simple syntac-
tic manipulations of resolution refutations. As a by-product, we develop a “black-box” technique for proving
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1. INTRODUCTION

A resolution proof for, or resolution refutation of, an unsatisfiable formula F in Con-
junctive Normal Form (CNF) is a sequence of disjunctive clauses (C1, C2, . . . , Cτ ), where
every clause Ct is either a member of F or is logically implied by two previous clauses,
and where the final clause is the contradictory empty clause ⊥ containing no literals.
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Resolution is arguably the most well-studied proof system in propositional proof com-
plexity, and has served as a natural starting point in the quest to prove lower bounds
for increasingly stronger proof systems on proof length/size (which for resolution is the
number of clauses in a proof).

Resolution is also intimately connected to SAT solving in that it lies at the foun-
dation of state-of-the-art SAT solvers using so-called Conflict-Driven Clause Learning
(CDCL). This connection has motivated the study of proof space as a second interesting
complexity measure for resolution. The space usage at some step t in a proof is mea-
sured as the number of clauses occurring before Ct that will be used to derive clauses
after Ct, and the space of a proof is obtained by taking the maximum over all steps t.

For both of these complexity measures, it turns out that a key role is played by
the auxiliary measure of width, that is, the size of a largest clause in the proof. In
a celebrated result, Ben-Sasson and Wigderson [2001] showed that there are short
resolution refutations of a formula if and only if there are also (reasonably) narrow
ones, and almost all known lower bounds on resolution length can be (re)derived using
this connection. In 2003, Atserias and Dalmau (journal version in Atserias and Dalmau
[2008]) established that width also provides lower bounds on space, resolving a problem
that had been open since the study of space complexity of propositional proofs was
initiated in the late 1990s in Alekhnovich et al. [2002] and Esteban and Torán [2001].
This means that for space also, almost all known lower bounds can be rederived by
using width lower bounds and appealing to Atserias and Dalmau [2008]. This is not a
two-way connection, however, in that formulas of almost worst-case space complexity
may require only constant width, as shown in Ben-Sasson and Nordström [2008].

1.1. Our Contributions

The starting point of our work is the lower bound on space in terms of width in Atserias
and Dalmau [2008]. This is a very elegant but also indirect proof in that it translates
the whole problem to Ehrenfeucht–Fraı̈ssé games in finite model theory, and shows
that resolution space and width correspond to strategies for two opposite players in
such games. Unfortunately, this also means that one obtains essentially no insight into
what is happening on the proof complexity side (other than that the bound on space in
terms of width is true). It has remained an open problem to give a more explicit, proof
complexity theoretic argument.

In this article, we give a purely combinatorial proof in terms of simple syntactic
manipulations of resolution refutations. To summarize in one sentence, we study the
conjunctions of clauses in memory at each timestep in a small-space refutation, negate
these conjunctions and then expand them to conjunctive normal form again, and finally
argue that the new sets of clauses listed in reverse order (essentially) constitute a
small-width refutation of the same formula.1

This new, simple proof also allows us to obtain a new technique for proving space
lower bounds. This approach is reminiscent of Ben-Sasson and Wigderson [2001] in
that one defines a static “progress measure” on refutations and argues that when a
refutation has made substantial progress it must have high complexity with respect to
the proof complexity measure under study. Previous lower bounds on space have been
inherently adaptive and in that sense less explicit.

One important motivation for our work was the hope that a simplified proof of the
space-width inequality would serve as a stepping stone to resolving the analogous ques-
tion for the polynomial calculus proof system. Here, the width of clauses corresponds
to the degree of polynomials, space is measured as the total number of monomials of all

1We recently learned that a similar proof, though phrased in a slightly different language, was obtained
independently by Razborov [2014].
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polynomials currently in memory, and the problem is to determine whether space and
degree in polynomial calculus are related in the same way as are space and width in
resolution. A possible approach for attacking this question was proposed in Bonacina
and Galesi [2013]. In Filmus et al. [2013] we obtained a result analogous to Ben-Sasson
and Nordström [2008] that there are formulas of worst-case space complexity that re-
quire only constant degree. The question of whether degree lower bounds imply space
lower bounds remains open, however, and other results in Filmus et al. [2013] can be
interpreted as implying that the techniques in Bonacina and Galesi [2013] probably
are not sufficient to resolve this question. Unfortunately, as discussed toward the end
of this article, we also show that it appears unlikely that this problem can be addressed
by methods similar to our proof of the corresponding inequality for resolution.

1.2. Outline of This Article

The rest of this article is organized as follows. After some brief preliminaries in
Section 2, we present the new proof of the space-width inequality in Atserias and
Dalmau [2008] in Section 3. In Section 4, we showcase the new technique for space
lower bounds by studying so-called Tseitin formulas. Section 5 explains why we believe
it is unlikely that our methods will extend to polynomial calculus. Some concluding
remarks are given in Section 6.

2. PRELIMINARIES

Let us start with a brief review of the preliminaries. The following material is standard
and can be found, for example, in the survey by Nordström [2013].

A literal over a Boolean variable x is either the variable x itself (a positive literal) or
its negation that is denoted either as ¬x or as x (a negative literal). We define x = x.
A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals and a term T = a1 ∧ · · · ∧ ak is
a conjunction of literals. We denote the empty clause by ⊥ and the empty term by ∅.
The logical negation of a clause C = a1 ∨ · · · ∨ ak is the term a1 ∧ · · · ∧ ak that consists
of the negations of the literals in the clause. We will sometimes use the notation ¬C
or C for the term corresponding to the negation of a clause C and ¬T or T for the
clause negating a term T . A clause (term) is trivial if it contains both a variable and
its negation. For the proof systems we study, trivial clauses and terms can always be
eliminated without any loss of generality.

A clause C ′ subsumes another clause C if every literal from C ′ also appears in C.
A k-clause (k-term) is a clause (term) that contains at most k literals. A CNF formula
F = C1 ∧ · · · ∧ Cm is a conjunction of clauses, and a DNF formula F = T1 ∨ · · · ∨ Tm is
a disjunction of terms. A k-CNF formula (k-DNF formula) is a CNF formula (DNF for-
mula) consisting of k-clauses (k-terms). We think of clauses, terms, and CNF formulas
as sets: the order of elements is irrelevant and there are no repetitions. We also assume
that CNF formulas are nontrivial in the sense that they do not contain the contradic-
tory empty clause (this is just for technical simplicity to avoid a pathological corner
case).

Let us next describe a slight generalization of the resolution proof system due
to Krajı́ček [2001], who introduced the family of r-DNF resolution proof systems, de-
noted R(r), as an intermediate step between resolution and depth-2 Frege systems.
An r-DNF resolution configuration C is a set of r-DNF formulas. An r-DNF resolution
refutation of a CNF formula F is a sequence of configurations (C0, . . . , Cτ ) such that
C0 = ∅, ⊥ ∈ Cτ , and for 1 ≤ t ≤ τ we obtain Ct from Ct−1 by one of the following steps:

Axiom download. Ct = Ct−1 ∪ {A}, where A /∈ Ct−1 is a clause in F (sometimes
referred to as an axiom clause).
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Inference. Ct = Ct−1 ∪ {D}, where D /∈ Ct−1 is inferred by one of the following rules
(where G, H denote r-DNF formulas, T , T ′ denote r-terms, and a1, . . . , ar denote
literals):

r-cut.
(a1 ∧ · · · ∧ ar′ ) ∨ G a1 ∨ · · · ∨ ar′ ∨ H

G ∨ H
, where r′ ≤ r.

∧-introduction.
G ∨ T G ∨ T ′

G ∨ (T ∧ T ′)
, as long as |T ∪ T ′| ≤ r.

∧-elimination.
G ∨ T
G ∨ T ′ for any nonempty T ′ ⊆ T .

Weakening.
G

G ∨ H
for any r-DNF formula H.

Erasure. Ct = Ct−1 \ {D} for D ∈ Ct−1.

For r = 1 we obtain the standard resolution proof system. In this case, the only
nontrivial inference rules are weakening and r-cut, where the former can be eliminated
without loss of generality (but is sometimes convenient to have for technical purposes)
and the latter simplifies to the resolution rule

C ∨ x D ∨ x
C ∨ D

. (1)

We identify a resolution configuration C with the CNF formula
∧

C∈C
C.

The length L(π ) of an r-DNF resolution refutation π is the number of download and
inference steps, and the space Sp(π ) is the maximal number of r-DNF formulas in any
configuration in π . We define the length LR(r)(F � ⊥) and the space SpR(r)(F � ⊥) of
refuting a formula F in r-DNF resolution by taking the minimum over all refutations F
with respect to the relevant measure. We drop the proof system R(r) from this notation
when it is clear from context.

For the resolution proof system, we also define the widthW(π ) of a resolution refuta-
tion π as the size of a largest clause in π , and taking the minimum over all resolution
refutations we obtain the width W(F �⊥) of refuting F. We remark that in the context
of resolution the space measure defined previously is sometimes referred to as clause
space to distinguish it from other space measures studied for this proof system.

3. FROM SPACE TO WIDTH

In this section we present our new combinatorial proof that width is a lower bound for
clause space in resolution. The formal statement of the theorem is as follows.

THEOREM 3.1 ([ATSERIAS AND DALMAU 2008]). Let F be a k-CNF formula and
let π : F �⊥ be a resolution refutation in clause space Sp(π ) = s. Then, there is a
resolution refutation π ′ of F in width W(π ′) ≤ s + k − 3.

The proof idea is to take the refutation π in space s, negate the configurations one by
one, rewrite them as equivalent sets of disjunctive clauses, and list these sets of clauses
in reverse order. This forms the skeleton of the new refutation, where all clauses have
width at most s. To see this, note that each configuration in the original refutation is
the conjunction of at most s clauses. Therefore, the negation of such a configuration is a
disjunction of at most s terms, which is equivalent (using distributivity) to a conjunction
of clauses of width at most s. To obtain a legal resolution refutation, we need to fill
in the gaps between adjacent sets of clauses. In this process the width might increase
slightly from s to s + k − 3.

Before presenting the full proof, we need some technical results. We start by giving
a formal definition of what we mean by a negated configuration.
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Definition 3.2. The negated configuration neg(C) of a clause configuration C is
defined inductively as follows:

—neg(∅) = {⊥},
—neg(C ∪ {C}) = {D ∨ a | D ∈ neg(C) ; a ∈ C \ D ; �B ∈ neg(C) s.t. B∨ a � D ∨ a}.

Note that this definition makes sure that neg(C) will not contain any trivial or
subsumed clauses, and it also yields that neg({⊥}) = ∅.

Each clause of the original configuration C contributes at most one literal to each
clause of the negated configuration neg(C). This implies an upper bound on the width
of the clauses in neg(C) as stated next.

OBSERVATION 3.3. The width of any clause in the negated configuration neg(C) is at
most Sp(Ct) = |C|.

In our proofs we will use a different characterization of negated configurations that
is easier to work with. We state this characterization as a formal proposition.

PROPOSITION 3.4. The negated configuration neg(C) is the set of all minimal (nontriv-
ial) clauses C such that ¬C implies the configuration C. That is,

neg(C) = {C | ¬C � C and for every C ′ � C it holds that ¬C ′ � C.}
PROOF. Let us fix the configuration C and let D denote the set of all minimal clauses

implying C. We prove that for each clause C ∈ neg(C) there is a clause C ′ ∈ D such
that C ′ ⊆ C and vice versa. The proposition then follows because by definition neither D
nor neg(C) contains subsumed clauses.

First, let C ∈ neg(C). By the definition of neg(C) we know that for every clause D ∈ C
the clause C contains the negation of some literal from D. Hence, ¬C implies C as it
is a conjunction of literals from each clause in C. By taking a minimal clause C ′ ⊆ C
such that ¬C ′ � C we have that C ′ ∈ D.

In the opposite direction, we want to show for any C ∈ D that C must contain a
negation of some literal in D for every clause D ∈ C. Assume for the sake of contra-
diction that D ∈ C is a clause such that none of its literals has a negation appearing
in C. Let α be a total truth value assignment that satisfies ¬C (such an assignment
exists because C is nontrivial). By assumption, flipping the variables in α so that they
falsify D cannot falsify ¬C. Therefore, we can find an assignment that satisfies ¬C
but falsifies D ∈ C, which contradicts the definition of D. Hence, C must contain a
negation of some literal in D for every D ∈ C and by the definition of neg(C) there is
a C ′ ∈ neg(C) such that C ′ ⊆ C.

The following observation, which formalizes the main idea behind the concept of
negated configurations, is an immediate consequence of Proposition 3.4.

OBSERVATION 3.5. An assignment satisfies a clause configuration C if and only if it
falsifies the negated clause configuration neg(C). That is, C is logically equivalent to
¬neg(C).

Recall that what we want to do is to take a resolution refutation π = (C0, C1, . . . , Cτ )
and argue that if π has small space complexity, then the reversed sequence of negated
configurations π ′ = (neg(Cτ ), neg(Cτ−1), . . . , neg(C0)) has small width complexity. How-
ever, as noted previously, π ′ is not necessarily a legal resolution refutation. Hence, we
need to show how to derive the clauses in each configuration of the negated refuta-
tion without increasing the width by too much. We do so by a case analysis over the
derivation steps in the original refutation, that is, axiom download, clause inference,

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 28, Publication date: July 2015.



28:6 Y. Filmus et al.

and clause erasure. The following lemma shows that for inference and erasure steps
all that is needed in the reverse direction is to apply weakening.

LEMMA 3.6. If C � C′, then for every clause C ∈ neg(C) there exists a clause C ′ ∈ neg(C′)
such that C is a weakening of C ′.

PROOF. For any clause C in neg(C) it holds by Proposition 3.4 that ¬C � C. Since
C � C′, this in turns implies that ¬C � C′. Applying Proposition 3.4 again, we conclude
that there exists a clause C ′ ⊆ C such that C ′ ∈ neg(C′).

The only time in a refutation π = (C0, C1, . . . , Cτ ) when it does not hold that Ct−1 � Ct
is when an axiom clause is downloaded at time t, and such derivation steps will require
a bit more careful analysis. We provide such an analysis in the full proof of Theorem 3.1,
which we are now ready to present.

PROOF OF THEOREM 3.1. Let π = (C0, C1, . . . , Cτ ) be a resolution refutation of F in
space s. For every configuration Ct ∈ π , let Dt = neg(Ct) denote the corresponding
negated configuration. By assumption, each Ct contains at most s clauses, and thus
Observation 3.3 guarantees that the clauses in Dt have width at most s. We need to
show how to transform the sequence of clause configurations π ′ = (Dτ , Dτ−1, . . . , D0)
into a legal resolution refutation of width at most s + k− 3. Let us assume first that we
are dealing with CNF formulas of width k ≥ 3, since this makes the argument slightly
easier to present. At the end of the proof, we will see how to argue more carefully to
get rid of this assumption.

The initial configuration of the sequence π ′ is Dτ , which is the empty set by
Definition 3.2. If Ct+1 follows from Ct by inference or erasure, then we can derive
any clause of Dt from a clause of Dt+1 by weakening, as proven in Lemma 3.6. If Ct+1
follows from Ct by axiom download, then we claim that we can derive Dt from Dt+1 in
width at most s+k−3. Since the last configuration D0 of π ′ contains the empty clause ⊥
by Definition 3.2, we obtain a complete resolution refutation.

Hence, all that we need to do is to analyze what happens at axiom downloads. We
first observe that we can assume without loss of generality that prior to each axiom
download step the space of the configuration Ct is at most s − 2. Otherwise, immediately
after the axiom download step the proof π needs to erase a clause in order to maintain
the space bound s. If the clause erased is the one just downloaded, we can obviously just
ignore these two steps, and otherwise by reordering the axiom download and clause
erasure steps we get a valid refutation of F for which it holds that Sp(Ct) ≤ s − 2.

Suppose Ct+1 = Ct ∪ {A} for some axiom A = a1 ∨ · · · ∨ a�, with � ≤ k. Consider now
some clause C ∈ Dt \ Dt+1. By Observation 3.3 it holds that W(C) ≤ Sp(Ct) ≤ s − 2.
To derive C we first download the axiom A and then show how to obtain C from the
clauses in Dt+1 ∪ {A}. Note that all clauses C ∨ ai for ai ∈ A are either contained in,
or are weakenings of, clauses in Dt+1. This follows easily from Definition 3.2 as adding
an axiom A to the configuration Ct results in adding negations of literals from A to all
clauses C ∈ Dt. Hence, we can obtain C by the following derivation:

When C is the empty clause, the width of this derivation is W(A) ≤ k. Otherwise, it
is upper bounded by W(C) + W(A) − 1 ≤ s + k − 3. Since any resolution refutation
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has space at least 3 (unless the formula contains the empty clause itself, but our
definitions explicitly disallowed such trivial formulas), we conclude that the width of the
derivation (2) is at most max(k, s + k−3) = s+k−3. This in turn implies that the width
of the resolution refutation constructed from π ′ is at most max(s, s + k− 3) = s + k− 3,
where the last equality follows from the assumption k ≥ 3, and this completes the proof.

If k < 3, however, we have s + k − 3 < s, and so the preceding argument does not
quite suffice to establish the bound claimed in the theorem. This can be taken care
of by a postprocessing step as follows.2 Recall that inference and erasure steps can
only produce weakenings of clauses by Lemma 3.6, and axiom download steps only
occur when the space is at most s − 2. Consider the resolution refutation constructed
from π ′ as previously, and then erase all clause configurations obtained at inference or
erasure steps (i.e., via weakening) to obtain new refutation π ′′. It is straightforward
to verify that this yields a legal refutation and that the width does not increase (since
π ′′ contains a subset of the clauses in the previously constructed refutation). After this
step, the only new clauses in π ′′ that we need to derive at each step are those resulting
from axiom downloads in the original refutation π , and as already noted the width of
deriving such clauses as done in (2) is at most max(k, s+k−3) = s+k−3. The theorem
follows.

The proof of Theorem 3.1 also works for r-DNF resolution, although the bound gets
weaker as r grows. Let us state this as a theorem and sketch the proof.

THEOREM 3.7. Let F be a k-CNF formula and π : F �⊥ be an r-DNF resolution
refutation of F in space Sp(π ) ≤ s. Then there exists a resolution refutation π ′ of F in
width at most W(π ′) ≤ (s − 2)r + k − 1.

PROOF SKETCH. We define the negated configuration negR(r)(C) of an
R(r)-configuration inductively by setting negR(r)(∅) = {⊥} and

negR(r)(C ∪ {C})
= {D∨T | D∈negR(r)(C); T ∈C; �B∈negR(r)(C) s.t. B∨T � D∨T ; D∨T nontrivial} (3)

to make sure that negR(r)(C) contains no trivial or subsumed clauses. It is easy to see
that an r-DNF configuration of space s gets transformed into a resolution configuration
of width at most sr. We can prove that negR(r)(C) is the set of all minimal clauses D
such that ¬D � C for an r-DNF configuration C, which is an analog of Proposition 3.4.
The proof is essentially the same except that we reason using the terms of an r-DNF
formula C ∈ C instead of its literals. With this version of Proposition 3.4 proved, we
can immediately generalize Lemma 3.6 to the r-DNF case.

The analog of the proof of Theorem 3.1 follows easily from previous observations. The
inference and clause deletion steps follow by the generalized version of Lemma 3.6,
while the case of axiom download is the same as in the original proof because axioms
are clauses. Hence, running the negated r-DNF resolution refutation backward we get
a resolution refutation of F. The width of this latter refutation is at most (s−2)r + k−1,
as we again consider only configurations that have space equal to at most s − 2, and
the inference steps in the case of axiom download can add at most k − 1 to the width

2Alternatively, one can simply observe directly that the theorem is true for k < 3. To see this, note that any
unsatisfiable 1-CNF formula is refutable by resolving some literal with its negation in a single width-1 step.
And any resolution derivation from a 2-CNF formula, unsatisfiable or not, has width 2, since resolving two
2-clauses always yields another 2-clause. Hence, for k < 3 we have that any unsatisfiable k-CNF formula
can always be refuted in width at most k ≤ Sp(π ) + k − 3 for any refutation π (using again that Sp(π ) ≥ 3).
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Fig. 1. Example Tseitin formula.

of the resulting resolution refutation. When k < 2r + 1, an additional pruning step in
which all weakenings are eliminated completes the proof.

4. A STATIC TECHNIQUE FOR PROVING SPACE LOWER BOUNDS

Looking at the proof complexity literature, the techniques used to prove lower bounds
for resolution length and width (e.g., Ben-Sasson and Wigderson [2001], Chvátal and
Szemerédi [1988], Haken [1985], and Urquhart [1987]) differ significantly from those
used to prove resolution space lower bounds (e.g., Alekhnovich et al. [2002], Ben-
Sasson and Galesi [2003], and Esteban and Torán [2001]) in that the former are static
or oblivious, while the latter are dynamic.

Lower bounds on resolution length typically have the following general structure: if
a refutation is too short, then we obtain a contradiction by applying a suitable random
restriction (the length of the proof figures in by way of a union bound); so any refutation
must be long. When proving lower bounds on resolution width, one defines a complexity
measure and uses the properties of this measure to show that every refutation must
contain a complex clause; in a second step one then argues that such a complex clause
must be wide.

In contrast, most lower bound proofs for resolution space use an adversary argument.
Assuming that the resolution derivation has small space, one constructs a satisfying
assignment for each clause configuration. Such assignments are updated inductively
as the derivation progresses, and one shows that the update is always possible given
the assumption that the space is small. This in turn shows that the contradictory
empty clause can never be reached, implying a space lower bound on refutations.
The essential feature separating this kind of proof from the previous ones is that the
satisfying assignments arising during the proof depend on the history of the derivation;
in contrast, the complexity measures in width lower bounds are defined once and for
all, as are the distributions of random restrictions in length lower bounds.

In this section, we present a static lower bound on resolution space. Our proof com-
bines the ideas of Section 3 and the complexity measure for clauses used in Ben-Sasson
and Wigderson [2001]. We define a complexity measure for configurations that can be
used to prove space lower bounds along the lines of the width lower bounds mentioned
previously.

This approach works, in general, in that any complexity measure for clauses can
be transformed into a complexity measure for configurations. This turns many width
lower bound techniques into space lower bound ones (e.g., width lower bounds for
random 3-CNF formulas). In this section, we give a concrete example of this for Tseitin
formulas, which are a family of CNFs encoding a specific type of systems of linear
equations (see Figure 1 for illustration).
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Definition 4.1 (Tseitin formula). Let G = (V, E) be an undirected graph and
χ : V → {0, 1} be a function. Let us identify every edge e ∈ E with a variable xe,
and let us write PARITY v,χ to denote the canonical CNF encoding of the constraint∑

e�v xe = χ (v) (mod 2) for any vertex v ∈ V . Then the Tseitin formula over G with
respect to χ is Ts(G, χ ) = ∧

v∈V PARITY v,χ .

When the degree of G is bounded by d, PARITY v,χ has at most 2d−1 clauses, all of
width at most d, and hence Ts(G, χ ) is a d-CNF formula with at most 2d−1|V | clauses.
We say that a set of vertices U has odd (even) charge if

∑
u∈U χ (u) is odd (even). A simple

parity argument shows that when V (G) has odd charge, Ts(G, χ ) is unsatisfiable. On
the other hand, if G is connected then for each v ∈ V it is always possible to satisfy the
constraints PARITY u,χ for all u �= v.

The hardness of Tseitin formulas is governed by the expansion properties of the
underlying graph.

Definition 4.2 (Edge expander). The graph G = (V, E) is an (s, δ)-edge expander if for
every set of vertices U ⊆ V such that |U | ≤ s it holds that |∂(U )| ≥ δ|U |, where ∂(U ) is
the set of edges of G with exactly one vertex in U .

We next present a new technique of showing that if a graph G is a good edge expander,
then large space is needed to refute Ts(G, χ ) in resolution. We remark that this was
originally proven in Alekhnovich et al. [2002] and Esteban and Torán [2001] (and with
slightly better parameters, as discussed in the following).

THEOREM 4.3. For a Tseitin formula Ts(G, χ ) over a d-regular (s, δ)-edge expander G
it holds that Sp (Ts(G, χ ) �⊥) ≥ δs/d.

For the rest of this section we fix a particular d-regular connected graph G and a
function χ with respect to which V (G) has odd charge, and consider the corresponding
Tseitin formula Ts(G, χ ). The main tool used to prove Theorem 4.3 is a complexity
measure for configurations. We show that if G is a good expander, then every refutation
of Ts(G, χ ) must have a configuration with intermediate measure. We conclude the proof
by showing that the space of a configuration is at least its measure if the latter falls
within a specific range of values.

We first define our configuration complexity measure for terms (i.e., configurations
consisting of unit clauses), and then extend it to general configurations. In words,
the term complexity measure is the smallest number of parity axioms of Ts(G, χ)
that collectively contradict the term, and the configuration complexity measure is the
maximum measure over all terms that imply the configuration.

Definition 4.4 (Configuration complexity measure). The term complexity measure
ν(T ) of a term T is ν(T ) = min{|V ′| : V ′ ⊆ V and T ∧ ∧

v∈V ′ PARITY v,χ � ⊥}.
The configuration complexity measure μ(C) of a resolution configuration C is defined

as μ(C) = max{ν(T ) : T � C}. When C is contradictory we have μ(C) = 0.

Note that ν(T ) is a monotone decreasing function, since T ⊆ T ′ implies ν(T ) ≥ ν(T ′)
by definition. Hence, we only need to look at minimal terms T for which T � C in order
to determine μ(C). These minimal terms are the negations of the clauses in neg(C)
(compare Proposition 3.4). We now introduce the convenient concept of witness for the
measure.

Definition 4.5 (Witness of measure). A witness of the measure ν(T ) of the term T is
a set of vertices V ∗ for which ν(T ) = |V ∗| and T ∧ ∧

v∈V ∗ PARITY v,χ � ⊥. Similarly, for
configurations C a witness for μ(C) is a term T ∗ for which μ(C) = ν(T ∗) and T ∗ � C.
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There is a big gap between the measure of the initial and final configurations of a
refutation, and we will see that the measure does not change much at each step. Hence,
the refutation must pass through a configuration of intermediate measure. Formally, if
G is connected, then μ(∅) = |V |, because the empty term has measure |V |, and μ(C) = 0
when ⊥ ∈ C.

To study how the measure changes during the refutation, we look separately at what
happens at each type of step. As in the proof of Theorem 3.1, we can deal with inference
and clause erasure steps together, whereas axiom downloads require more work.

LEMMA 4.6. If C � C′, then μ(C) ≤ μ(C′).

PROOF. Let T ∗ be a witness for μ(C). Then, T ∗ � C and, hence, we also have T ∗ � C′.
Therefore, μ(C′) ≥ ν(T ∗), because μ(C′) is equal to the maximum value of ν(T ) for terms
T implying C′. As ν(T ∗) is equal to μ(C), the bound μ(C′) ≥ μ(C) follows.

LEMMA 4.7. For a clause A in Ts(G, χ ) and a graph G of bounded degree d, if C′ =
C ∪ {A}, then d · μ(C′) + 1 ≥ μ(C).

PROOF. Fix a witness T ∗ for μ(C). Since μ(C) = ν(T ∗), to prove the lemma we need
to upper bound the value ν(T ∗) by d · μ(C′) + 1.

For any literal a in A, we know that T ∗ ∧ a implies C′ because T ∗ implies C and
a implies A. Hence, it holds that μ(C′) ≥ ν(T ∗ ∧ a), and so it will be sufficient to
relate ν(T ∗) to the values ν(T ∗ ∧ a). To this end, we look at the set of vertices V ∗ =⋃

a∈A Va ∪ {vA}, where each Va is a witness for the corresponding measure ν(T ∗ ∧ a),
and vA is the vertex such that A ∈ PARITY vA,χ . Note that by definition it holds that
|Va| = ν(T ∗ ∧ a) for every a ∈ A, and also that |V ∗| ≤ 1 + ∑

a∈A |Va|, which sum can in
turn be bounded by d · μ(C′) + 1 because A has at most d literals.

We conclude the proof by showing that T ∗ ∧∧
v∈V ∗ PARITY v,χ � ⊥, which establishes

that ν(T ∗) ≤ |V ∗|. The implication holds because any assignment either falsifies the
clause A, and so falsifies PARITY vA,χ , or satisfies one of the literals a ∈ A. But then we
have as a subformula T ∗ ∧ ∧

v∈Va
PARITY v,χ , which is unsatisfiable by the definition

of Va when a is true. The bound ν(T ∗) ≤ |V ∗| then follows, and so μ(C) ≤ |V ∗| ≤
d · μ(C′) + 1.

The preceding results imply that every resolution refutation of the Tseitin formula
has a configuration of intermediate complexity. This holds because every refutation
starts with a configuration of measure |V | and needs to reach a configuration of
measure 0, as noted previously, while at each step the measure drops by a factor
of at most 1/d by the lemmas we just proved. Let us state this formally as a corollary.

COROLLARY 4.8. For any resolution refutation π of a Tseitin formula Ts(G, χ ) over a
connected graph G of bounded degree d and any positive integer r ≤ |V | there exists
a configuration C ∈ π such that the configuration complexity measure is bounded by
r/d ≤ μ(C) ≤ r.

It remains to show that a configuration having intermediate measure must also have
large space. This part of the proof relies on the graph being an expander.

LEMMA 4.9. Let G be an (s, δ)-edge expander graph. For every configuration C satisfy-
ing μ(C) ≤ s it holds that Sp(C) ≥ δ · μ(C).

PROOF. To prove the lemma, we lower bound the size of a minimal witness T ∗ for
μ(C) and then use the bound Sp(C) ≥ |T ∗|. This inequality follows by noting that at
most one literal per clause in C is needed in the implying term T ∗.

Fix T ∗ to be a minimal witness for μ(C) and let V ∗ be a witness for ν(T ∗). Note
that |V ∗| = μ(C). We prove that T ∗ must contain a variable for every edge in ∂(V ∗).
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Toward contradiction, assume that T ∗ does not contain some xe for an edge e in ∂(V ∗),
and let ve be a vertex in V ∗ incident to e. Let α be an assignment that satisfies
T ∗ ∧ ∧

v∈V ∗\{ve} PARITY v,χ . Such an assignment must exist as otherwise V ∗ would
not be a witness for ν(T ∗). We can modify α by changing the value of xe so that
PARITY ve,χ is satisfied. By the assumption, the new assignment α′ still satisfies T ∗
and

∧
v∈V ∗\{ve} PARITY v,χ as neither contains the variable xe. Thus, we have found an

assignment satisfying T ∗ ∧ ∧
v∈V ∗ PARITY v,χ , which is a contradiction.

Hence, the term T ∗ contains a variable for every edge in ∂(V ∗). Since G is an
(s, δ)-edge expander and |V ∗| ≤ s, the term T ∗ contains at least δ · |V ∗| variables. From
the inequality Sp(C) ≥ |T ∗| and the fact that |V ∗| = μ(C) it follows that Sp(C) ≥ δ ·μ(C)
when μ(C) ≤ s.

The preceding lemma and Corollary 4.8 together imply Theorem 4.3, because by
Corollary 4.8 there is a configuration with measure between s/d and s, and this config-
uration has space at least δs/d by Lemma 4.9.

We want to point out that Theorem 4.3 gives inferior results compared to a direct
application of Theorem 3.1 to known width lower bounds. The bounds that we get
are worse by a multiplicative factor of 1/d. One might have hoped to remove this
multiplicative factor by improving the bound in Lemma 4.7, but this is not possible
because this lemma is tight.

To see this, suppose that the graph G is a d-star: it consists of a center v which
is connected to d petals u1, . . . , ud by the edges e1, . . . , ed, the charge of the center is
χ (v) = 1, and the charges of the petals are χ (u1) = · · · = χ (ud) = 0. Let A ∈ PARITY v,χ

be the axiom A = xe1 ∨ · · · ∨ xed. Taking C = ∅ and C′ = {A}, we have that μ(C) = d + 1,
while μ(C′) = 1. The latter equality holds because every minimal term implying A is of
the form xei , a term which is contradicted by the single axiom xei ∈ PARITY ui ,χ . Hence,
we have an example where d · μ(C′) + 1 = μ(C), which shows that Lemma 4.7 is tight.

5. FROM SMALL SPACE TO SMALL DEGREE IN POLYNOMIAL CALCULUS?

An intriguing question is whether an analog of the bound in Theorem 3.1 holds also
for the stronger algebraic proof system polynomial calculus introduced in Clegg et al.
[1996]. In this context, it is more relevant to discuss the variant of this system presented
in Alekhnovich et al. [2002], known as Polynomial Calculus (with) Resolution or PCR,
which we briefly describe next.

In a PCR derivation, configurations are sets of polynomials in F[x, x, y, y, . . .], where
x and x are different formal variables. Each polynomial P appearing in a configuration
corresponds to the assertion P = 0. The proof system contains axioms x2 − x and
x + x − 1, which restrict the values of the variables to {0, 1}, and enforce the comple-
mentarity of x and x. A literal has truth value true if it is equal to 0, and truth value
false if it is equal to 1. Each clause C is translated to a monomial m with the property
that m = 0 if and only if C is satisfied. For example, the clause x ∨ y ∨ z is translated
to the monomial xyz. There are two inference rules, linear combination p q

αp+βq and mul-
tiplication p

xp , where p and q are (previously derived) polynomials, the coefficients α, β

are elements of F, and x is any variable (with or without a bar). These rules are sound in
the sense that if the antecedent polynomials evaluate to zero under some assignment,
then so does the consequent polynomial. A CNF formula F is refuted in PCR by
deriving the constant term 1 from the (monomials corresponding to the) clauses in F.

The size, degree, and monomial space measures are analogs of length, width, and
clause space in resolution (counting monomials instead of clauses). PCR can simulate
resolution refutations efficiently with respect to all of these measures.
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Fig. 2. Pebbling contradiction Peb�2
for the pyramid graph �2 of height 2.

Let us now discuss why the method we use to prove Theorem 3.1 is unlikely to
generalize to PCR. An example of formulas that seem hard to deal with in this way are
so-called pebbling contradictions, which we briefly describe next.

Pebbling contradictions are defined in terms of Directed Acyclic Graphs (DAGs)
G = (V, E) with bounded fan-in, where vertices with no incoming edges are called
sources and vertices without outgoing edges sinks. Assume G has a unique sink z, and
associate a variable V to each vertex v ∈ V . Then the pebbling contradiction over G
consists of the following clauses:

—for each source vertex s, a clause s (source axioms),
—for each nonsource vertex v, a clause

∨
(u,v)∈E u ∨ v (pebbling axioms),

—for the sink z, a clause z (sink axiom)

(see Figure 2 for an illustration). Ben-Sasson [2009] showed that pebbling contradic-
tions exhibit space-width trade-offs in resolution in that they can always be refuted in
constant width as well as in constant space but that there are graphs for which opti-
mizing one of these measures necessarily causes essentially worst-case linear behavior
for the other measure.

There are two natural ways to refute pebbling contradictions in resolution. One
approach is to go “bottom-up” from sources to sinks in topological order, and derive for
each vertex v ∈ V (G) the unit clause v using the pebbling axiom for v and the unit
clauses for its predecessors. When the refutation reaches z it derives a contradiction
with the sink axiom z (see Figure 3(a) for an example). This refutation can always be
carried out in constant width but for some graphs requires large space.

The other approach is a “top-down” refutation due to Ben-Sasson [2009] where one
starts with the sink axiom z and derives clauses of the form v1 ∨ · · · ∨ v�. A new clause
is derived by replacing any vertex vi in the old one by all its predecessors, that is, by
resolving with the pebbling axiom for vi. Since G is acyclic we can repeat this process
until we get to the sources, for which the negated literals can be resolved away using
source axioms. This refutation is illustrated in Figure 3(b). It is not hard to see that it
can be performed in constant clause space, but it might require large width.

A careful study now reveals that the transformation of configurations in our proof
of Theorem 3.1 maps either of the two refutations described previously into the other
one. Instead of providing a formal argument, we encourage the reader to compute the
transformations of the refutations in Figure 3(a)and 3(b), observing that the axioms
are downloaded in opposite order in the two derivations. This observation is the main
reason why our proof does not seem to generalize to PCR, as we now explain.

In PCR, we can represent any conjunction of literals a1 ∧ · · · ∧ ar as the binomial
1 − ∏

i ai. Using this encoding with the bottom-up approach yields a third refutation,

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 28, Publication date: July 2015.



From Small Space to Small Width in Resolution 28:13

Fig. 3. Example resolution refutations of pebbling contradiction Peb�2
.

which has constant space but possibly large degree: the fact that a set of vertices U “are
true” can be stored as the high-degree binomial 1 − ∏

v∈U v instead of as a collection
of low-degree monomials {v | v ∈ U }. Hence, there are constant space PCR refutations
of pebbling contradictions in both the bottom-up and the top-down directions. This in
turn means that if our proof method were to work for PCR, we would need to find
constant degree refutations in both directions. For the top-down case it seems unlikely
that such a refutation exists, since clauses of the form

∨
v∈U v cannot be represented

as low-degree polynomials.

6. CONCLUDING REMARKS

In this work, we present an alternative, more explicit, proof of the result by Atserias and
Dalmau [2008] that space is an upper bound on width in resolution. Our construction
gives a syntactic way to convert a small-space resolution refutation into a refutation in
small width. We also exhibit a new “black-box” approach for proving space lower bounds
that works by defining a progress measure à la Ben-Sasson and Wigderson [2001] and
showing that when a refutation has made medium progress toward a contradiction it
must be using a lot of space. We believe that these techniques shed interesting new
light on resolution space complexity and hope that they will serve to increase our
understanding of this notoriously tricky complexity measure.

As an example of a question about resolution space that still remains open, suppose
we are given a k-CNF formula that is guaranteed to be refutable in constant space. By
Atserias and Dalmau [2008] it is also refutable in constant width, and a simple counting
argument then shows that exhaustive search in small width will find a polynomial-
length resolution refutation. But is there any way of obtaining such a short refutation
from a refutation in small space that is more explicit than doing exhaustive search?
And can we obtain a short refutation without blowing up the space by more than,
say, a constant factor? Known length-space trade-off results for resolution in Beame
et al. [2012], Ben-Sasson and Nordström [2011], Beck et al. [2013], and Nordström
[2009] do not answer this question as they do not apply to this range of parameters.
Unfortunately, our new proof of the space-width inequality cannot be used to resolve
this question either, since in the worst case the resolution refutation we obtain might be
as bad as the one found by exhaustive search of small-width refutations (or even worse,
due to repetition of clauses). This would seem to be inherent—a recent result [Atserias
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et al. 2014] shows that there are formulas refutable in space and width s where the
shortest refutation has length n�(s), that is, matching the exhaustive search upper
bound up to a (small) constant factor in the exponent.

An even more intriguing question is how the space and degree measures are related in
polynomial calculus, as discussed in Section 5. Most relations between length, space,
and width in resolution carry over with little or no modification to size, space, and
degree, respectively, in polynomial calculus. So can it be that space also yields an
upper bound on degree in polynomial calculus? Or could perhaps even the stronger
claim hold that polynomial calculus space is an upper bound on resolution width?
These questions remain wide open, but in the recent paper by Filmus et al. [2013]
we made some limited progress by showing that if a formula requires large resolution
width, then the “XORified version” of the formula requires large polynomial calculus
space. We refer to the introductory section of Filmus et al. [2013] for a more detailed
discussion of these issues.
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