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SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION∗

CHRISTOPH BERKHOLZ† AND JAKOB NORDSTRÖM‡

Abstract. We show that there are CNF formulas which can be refuted in resolution in both
small space and small width, but for which any small-width proof must have space exceeding by far
the linear worst-case upper bound. This significantly strengthens the space-width trade-offs in [E.
Ben-Sasson, SIAM J. Comput., 38 (2009), pp. 2511–2525], and provides one more example of trade-
offs in the “supercritical” regime above worst case recently identified by [A.A. Razborov, J. ACM,
63 (2016), 16]. We obtain our results by using Razborov’s new hardness condensation technique and
combining it with the space lower bounds in [E. Ben-Sasson and J. Nordström, Short proofs may
be spacious: An optimal separation of space and length in resolution, in Proceedings of the 49th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’08), 2008, pp. 709–718].
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1. Introduction. Propositional proof complexity studies the problem of how to
provide concise, polynomial-time checkable certificates that formulas in conjunctive
normal form (CNF) are unsatisfiable. Research in this area was initiated in [22] as
a way of attacking the problem of showing that NP 6= coNP, and hence P 6= NP,
and it is therefore natural that the main focus has been on proving upper and lower
bounds on proof length/size. More recently, however, other complexity measures have
also been investigated, and this study has revealed a rich and often surprising web of
connections.

1.1. Resolution length, width, and space. Arguably the most thoroughly
studied proof system in proof complexity is resolution, which appeared in [17] and
began to be investigated in connection with automated theorem proving in the 1960s
[23, 24, 35]. Because of its simplicity—there is only one derivation rule—and because
all lines in a proof are clauses, this proof system is well suited for proof search, and
it lies at the heart of current state-of-the-art SAT solvers based on so-called conflict-
driven clause learning [4, 28, 29].

It is not hard to show that any unsatisfiable CNF formula over n variables can
be proven unsatisfiable, or refuted , by a resolution refutation containing at most
exp(O(n)) clauses, and this holds even in the restricted setting of tree-like resolution,
where each intermediate clause in the refutation has to be rederived from scratch
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every time it is used. In the breakthrough paper [26], Haken obtained a length
lower bound on the form exp

(
Ω
(
nδ
))

for general resolution refutations of so-called
pigeonhole principle formulas, and this result was later followed by truly exponential
lower bounds exp(Ω(n)) for other formula families in [6, 20, 37] and many other
papers.

In a seminal work [12], Ben-Sasson and Wigderson identified width, measured as
the largest size of any clause appearing in a refutation, as another interesting complex-
ity measure for resolution. Clearly, any unsatisfiable CNF formula over n variables
can be refuted in width at most n. Moreover, any refutation in width w need never be
longer than nO(w), since this is an upper bound on the number of distinct clauses of
width w (and this naive counting argument is essentially tight [3]). What Ben-Sasson
and Wigderson showed is that strong enough lower bounds on width also imply lower
bounds on length; in particular, that linear Ω(n) width lower bounds imply expo-
nential exp(Ω(n)) length lower bounds for CNF formulas of bounded width. This
connection can be used to rederive almost all currently known resolution length lower
bounds.

Motivated by questions in SAT solving, where efficient memory management is a
major concern, a more recent line of research in proof complexity has examined a third
complexity measure on proofs, namely space. This study was initiated by Esteban and
Torán [25], who defined the (clause) space of a resolution proof as the maximal number
of clauses needed to be kept in memory during verification of the proof,1 a definition
that was generalized to other proof systems by Alekhnovich et al. [1]. It should be
noted that although the original impetus for investigating proof space came from the
applied SAT solving side, space complexity is, of course, a well-studied measure in its
own right in computational complexity, and the study of space in proof complexity has
turned out to be of intrinsic interest in that it has uncovered intriguing connections
to proof length and width. It can be shown that a CNF formula over n variables
can always be refuted in space n+ O(1) even in tree-like resolution [25], although the
refutation thus obtained might have exponential length. Linear space lower bounds
matching the worst-case upper bound up to constant factors were obtained for a
number of formula families in [1, 9, 25].

The space lower bounds obtained in the papers just discussed turned out to match
closely known lower bounds on width, and in a strikingly simple and beautiful result
Atserias and Dalmau [2] showed that in fact the resolution width of refuting a k-CNF
formula F is a lower bound on the clause space required,2 minus an additive term k
adjusting for the largest width of any clause in F . This allows to recover the space
lower bounds mentioned above as immediate consequences of width lower bounds
shown in [12]. Furthermore, it follows from [2] that for k = O(1) any k-CNF formula
that can be refuted by keeping only a constant number of clauses in memory can also
be refuted in polynomial length and constant width. These connections go only in one
direction, however—in the sequence of papers [30, 32, 10] it was shown that there are
formula families that have high space complexity although they possess refutations in
linear length and constant width.

1For completeness, we want to mention that for resolution there is also a total space measure
counting the total number of literals in memory (with repetitions), which has been studied in [1, 13,
18, 19]. In this paper, however, “space” will always mean “clause space” in the sense of [25] unless
otherwise stated.

2Note that this is a nontrivial connection since a lower bound on width, i.e., the number of literals
in a clause, is shown to imply essentially the same lower bound on the number of clauses needed.
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1.2. Resolution trade-offs. As was discussed above, a resolution proof in suf-
ficiently small width will by necessity also be short, whereas the linear worst-case
upper bound on space is achieved by a proof in exponential length. It is natural to
ask, therefore, whether for a given formula F there exists a single resolution refuta-
tion of F that can simultaneously optimize these different complexity measures. The
question of trade-offs between proof complexity measures was first raised by Ben-
Sasson [8], who gave a strong negative answer for space versus width. More precisely,
what was shown in [8] is that there are formulas which are refutable separately in
constant width and in constant space, but for which any resolution proof minimizing
one of the measures must exhibit almost worst-case linear behavior with respect to
the other measure.

A question that arises in the context of SAT solving is whether it is possible to
simultaneously optimize size and space (corresponding to running time and memory
usage). In addition to the space-width trade-offs discussed above, in [8] Ben-Sasson
also proved a size-space trade-off for the subsystem tree-like resolution, and building
on [8, 10] it was shown in [11] for general resolution that there are formulas which
have refutations in linear length and also in small space, but for which any space-
efficient refutation must have superpolynomial or even exponential length. Beame,
Beck, and Impagliazzo [5] extended the range of parameters of the trade-offs further
by exhibiting formulas over n variables refutable in length polynomial in n where
bringing the space down to linear, or even just shaving a constant factor off the
exponent in the polynomial space bound that follows immediately from the length
bound, incurs a superpolynomial penalty in proof length, a result that was generalized
and strengthened in [7].

Turning finally to the relation between length and width, what was shown in [12] is
that a short resolution refutation can be converted to a refutation of small width, but
the way this conversion is done in [12] blows up the length exponentially. Thapen [36]
proved that this is inherent by exhibiting formulas refutable in small width and small
length, but for which any small-width refutation has to have exponential length. For
the restricted case of tree-like resolution, Razborov [34] recently showed that there are
formulas refutable in small width for which any tree-like refutation even doing slightly
better than the trivial linear upper bound with respect to width must by necessity
have doubly exponential length.

We want to emphasize an intriguing property of the trade-off results in [5, 7, 34]
that was highlighted by Razborov, and that sets these results apart from the other
trade-offs surveyed above. Namely, for most trade-off results between complexity mea-
sures it is the case that the trade-off plays out in the region between the worst-case
upper bounds for the measures, where as one measure decreases the other measure
has to approach its critical worst-case value. However, the short resolution proofs in
[5, 7] require space even polynomially larger than the worst-case upper bound, and
the small-width tree-like proofs in [34] require proofs exponentially larger than the
exponential upper bound for tree-like length. To underscore the dramatic nature of
such trade-off results, Razborov refers to them as ultimate in the preliminary ver-
sion [33] of [34]. In this paper, we will instead use the term supercritical trade-offs,
which we feel better describes the behavior that one of the complexity measures is
pushed up into the supercritical regime above worst case when the other measure is
decreased.

1.3. Our contribution. Answering Razborov’s call in [34] for more examples
of the type of trade-offs discussed above, in this paper we prove a supercritical trade-
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off between space and width in resolution. As already observed, any refutation in
width w of a CNF formula over n variables in general resolution need not contain
more than O(nw) clauses, which is also a trivial upper bound on the space complexity
of such a refutation. Our main result is that this bound is essentially tight, and is
also somewhat robust. Namely, we show that there are n-variable formulas that can
be refuted in width w, but for which any refutation in width even up to almost a
multiplicative logarithmic factor larger than this requires space nΩ(w).

Theorem 1.1. For any constant ε > 0 and any nondecreasing function `(n),

6 ≤ `(n) ≤ n
1
2−ε, there is a family {Fn}n∈N of n-variable CNF formulas which can

be refuted in resolution in width `(n) but for which any resolution refutation in width
o(`(n) log n) requires clause space at least nΩ(`(n)).

1.4. Techniques. In one sentence, we obtain our results by using Razborov’s
hardness condensation technique in [34] and combining it with the space lower bounds
in [10].

In slightly more detail, our starting point are the so-called pebbling formulas de-
fined in [12]. These formulas are refutable in constant width, but it was observed in
[8] that space lower bounds for pebble games on directed acyclic graphs (DAGs) carry
over to lower bounds on the variable space (the number of variables kept simultane-
ously in memory) of resolution refutations for the corresponding pebbling formulas.
It was shown in [10] that substituting every variable in such formulas by an exclusive
or of two new variables and expanding out to CNF produces a new family of formu-
las which are still refutable in constant width but for which the variable space lower
bounds have been amplified to clause space lower bounds.

The result in [10] is one of several examples of how the method of XOR substitu-
tion, or XORification, has been used to amplify weak proof complexity lower bounds
to much stronger lower bounds. In all of these applications distinct variables of the
original formula are replaced by disjoint sets of new variables. The wonderfully simple
(with hindsight) but powerful new idea in [34] is to instead do XOR substitution with
overlapping sets of variables from a much smaller variable pool (but with exclusive
ors of higher arity).

This recycling of variables has the consequence that hardness amplification as
in [10] no longer works, since it crucially depends on the fact that all new substitution
variables are distinct. What Razborov showed in [34] was essentially that if the pat-
tern of overlapping variable substitutions is described by a strong enough bipartite
expander, then locally there are enough distinct new variables to make tree-like am-
plification lower bounds as in [8] go through over a fairly wide range of the parameter
space, yielding supercritical trade-offs between width and tree-like length. Since, in
addition, the number of variables in the formula has decreased significantly, this can
be viewed as a kind of hardness condensation.

We use Razborov’s idea of XORification with recycled variables, but since we
want to obtain results not for tree-like but for DAG-like resolution the technical
details of our proofs are somewhat different. At a high level, we start with formulas
over N variables that are refutable in constant width but require space Ω(N/ logN).
We modify these formulas by applying w-wise XORification using a much smaller
set of n variables, and then show that from any refutation in width O(w) of this
new, XORified formula it is possible to recover a refutation of the original formula
with comparable space complexity. But this means that any small-width refutation
of the XORified formula must have space complexity roughly Ω(N/ logN). Choosing
parameters so that N ≈ nw yields the bound stated in Theorem 1.1.
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We should point out that compared to [34] we get significantly less robust trade-
offs, which break down already for a multiplicative logarithmic increase in width.
This is mainly due to the fact that we deal not with tree-like resolution as in [34], but
with the much stronger general resolution proof system producing DAG-like proofs.
We share with [34] the less desirable feature that although our formulas only have
n variables they contain on the order of nw clauses. Thus, measured in terms of
formula size our space-width trade-offs do not improve on [8], and the width of our
formulas is not constant but scales linearly with w. Still, since the number of variables
provides a worst-case upper bound on space (independently of formula size), measured
in terms of variables it seems fair to say that the trade-off result in Theorem 1.1 is
fairly dramatic.

1.5. Organization of this paper. The rest of this paper is organized as follows.
We start by reviewing some preliminaries in section 2. In section 3 we prove our main
result assuming a hardness condensation lemma, and this lemma is then established
in section 4.

We conclude in section 5 with a discussion of possible directions for future re-
search. For completeness, proofs of some technical claims are provided in Appendix
A.

2. Preliminaries. A literal over a Boolean variable x is either the variable x
itself (a positive literal) or its negation x (a negative literal). We define x = x. A
clause C = a1 ∨ · · · ∨ ak is a disjunction of literals over pairwise disjoint variables
(without loss of generality we assume that there are no trivial clauses containing both
a variable and its negation). A clause C ′ subsumes another clause C if every literal
from C ′ also appears in C. A k-clause is a clause that contains at most k literals. A
CNF formula F = C1∧· · ·∧Cm is a conjunction of clauses, and F is a k-CNF formula
if it consists of k-clauses. We write Vars(F ) to denote the set of variables appearing
in a formula F . We think of clauses and CNF formulas as sets: the order of elements
is irrelevant and there are no repetitions.

A resolution refutation π : F `⊥ of an unsatisfiable CNF formula F , which can
also be referred to as a resolution proof for (the unsatisfiability of) F , is an ordered
sequence of clauses π = (D1, . . . , Dτ ) such that Dτ = ⊥ is the empty clause containing
no literals, and each clause Di, i ∈ [τ ] = {1, . . . , τ}, is either one of the clauses in F
(an axiom) or is derived from clauses Dj , Dk in π with j, k < i by the resolution rule

(2.1)
B ∨ x C ∨ x

B ∨ C .

For technical reasons, it will also be convenient to permit a weakening rule

(2.2)
B

B ∨ C
allowing to derive a strictly weaker clause from a clause already derived, although
this rule is not essential.

With every resolution proof π we can associate a DAG Gπ by having a sequence
of vertices vi on a line in order of increasing i, labeled by the clauses Di ∈ π, and with
directed edges (vj , vi) and (vk, vi) if the clause Di was derived by resolution from Dj

and Dk or an edge (vj , vi) if Di was derived from Dj by weakening. Note that there
might be several occurrences of a clause D in the proof π, and if so each occurrence
gets its own vertex in Gπ.

Now we can formally define the proof complexity measures discussed in section 1.
The length L(π) of a resolution proof π is the number of clauses in it (counted with



SUPERCRITICAL SPACE-WIDTH TRADE-OFFS 103

repetitions). The width W(C) of a clause C is |C|, i.e., the number of literals, and
the width W(π) of a proof π is the size of a largest clause in π. The (clause) space
at step i is the number of clauses Cj , j < i, with edges to clauses Ck, k ≥ i in Gπ,
plus 1 for the clause Ci derived at this step. Intuitively, space measures the number
of clauses we need to keep in memory at step i, since they were derived before step i
but are used to infer new clauses at or after step i. The space Sp(π) of a proof π
is the maximum space over all steps in π. Taking the minimum over all resolution
refutations of a CNF formula F , we define the length, width, and space of refuting F ,
respectively, as L(F `⊥) = minπ:F `⊥{L(π)}, W(F `⊥) = minπ:F `⊥{W(π)}, and
Sp(F `⊥) = minπ:F `⊥{Sp(π)}. We remark that any applications of the weakening
rule (2.2) can always be eliminated from a refutation without increasing the length,
width, or space.

When reasoning about space, it is sometimes convenient to use a slightly differ-
ent, but equivalent, description of resolution that makes explicit what clauses are in
memory at each point in time. We say that a configuration-style resolution refutation
is a sequence (D0, . . . ,Dτ ) of sets of clauses, or configurations, such that D0 = ∅,
⊥ ∈ Dτ , and for all t ∈ [τ ] the configuration Dt is obtained from Dt−1 by one of the
following derivation steps:
Axiom download. Dt = Dt−1 ∪ {C}, where C is a clause C ∈ F .
Inference. Dt = Dt−1 ∪ {D} for a clause D derived by resolution (2.1) or weaken-

ing (2.2) from clauses in Dt−1.
Erasure. Dt = Dt−1 \ D′ for some D′ ⊆ Dt−1.
The length of a configuration-style refutation π = (D0, . . . ,Dτ ) is the number of
axiom downloads and inference steps, the width is the size of a largest clause, as
before, and the space is maxt∈[τ ]{|Dt|}. Given a refutation as an ordered sequence
of clauses π = (D1, . . . , Dτ ), we can construct a configuration-style refutation in the
same length, width, and space by deriving each clause Di via an axiom download or
inference step, and interleave with erasures of clauses Cj , j < i, as soon as these clauses
have no edges to clauses Ck, k ≥ i, in the associated DAG Gπ. In the other direction,
taking a configuration-style refutation and listing the sequence of axiom download
and inference steps yields a standard resolution refutation in the same length, width,
and space (assuming that clauses are erased as soon as possible). Thus, we can switch
freely between these two ways of describing resolution refutations.

In this paper, it will be convenient for us to limit our attention to a (slightly
nonstandard) restricted form of resolution refutations as described next. We define
a homogeneous resolution refutation to be a refutation where every resolution rule
application is of the form

(2.3)
C ∨ x C ∨ x

C
.

The requirement of homogeneity is essentially without loss of generality, since we
need to insert at most two weakening steps before each application of the resolution
rule, which increases the width by at most 1, and the weakened clauses can then
immediately be forgotten. We state this observation formally for the record.

Observation 2.1. If a CNF formula F has a standard resolution refutation with-
out weakening steps in length L, width w, and (clause) space s, then it has a homo-
geneous refutation in length at most 3L, width at most w + 1, and (clause) space at
most s+ 2.

As already mentioned, a useful trick to obtain hard CNF formulas for different
proof systems and complexity measures, which will play a key role also in this paper,
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is XORification, i.e., substituting variables by exclusive ors of new variables and
expanding out in the canonical way to obtain a new CNF formula. For example, the
standard way to define binary XOR substitution for a positive literal x is

(2.4) x[⊕2] = (x1 ∨ x2) ∧ (x1 ∨ x2)

for a negative literal y we have

(2.5) y[⊕2] = (y1 ∨ y2) ∧ (y1 ∨ y2) ,

and applying binary XOR substitution to the clause x∨y we obtain the CNF formula

(x ∨ y)[⊕2] = x[⊕2] ∨ y[⊕2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) ,
(2.6)

where we use the notation C ∨ D for two set of clauses C and D to mean

(2.7) C ∨ D = {C ∨D | C ∈ C, D ∈ D, C ∨D nontrivial} .

The XORification of a CNF formula F is the conjunction of all the formulas corre-
sponding to the XORified clauses of F . We trust that the reader has no problems
parsing this slightly informal definition by example or generalizing it to substitutions
with XOR of arbitrary arity (but see, e.g., Definition 2.12 in [31] for a more rigorous
treatment).

Usually, XORification is done in such a way that any two variables in the original
formula are replaced by exclusive ors over disjoint sets of new variables. Razborov [34]
observed that it can sometimes be useful to allow XORification with overlapping sets
of variables. Let us define this concept more carefully.

Definition 2.2 (XORification with recycling [34]). Let F be a CNF formula
over the set of variables u1, . . . , uN , and let G = (U

.
∪V,E) be a bipartite graph with left

vertex set U = {u1, . . . , uN} and right vertex set V = {v1, . . . , vn}. Then for the vari-
ables ui we define the XORified literals ui[G] =

⊕
v∈N (ui)

v and ui[G] = ¬
⊕

v∈N (ui)
v

(where N (ui) denotes the neighbors in V of ui), for clauses C ∈ F we define C[G] =∨
a∈C a[G] expanded out to CNF as in (2.6) but with trivial clauses pruned away, and

the XORification of F with respect to G is defined to be F [G] =
∧
C∈F C[G].

Note that if F is an N -variable k-CNF with m clauses and G = ({u1, . . . , uN}
.
∪

{v1, . . . , vn}, E) is a bipartite graph of left degree d, then F [G] is an n-variable kd-
CNF formula with at most 2k(d−1)m clauses. We want to highlight that by definition
we have the equality

(2.8) (C ∨ a)[G] = C[G] ∨ a[G]

(where we can view the expressions in (2.8) either as the Boolean functions computed
by these formulas or as the corresponding clause sets but with trivial clauses removed),
and this will be convenient to use in some of our technical arguments.

We conclude this section with two simple observations that will also be useful in
what follows.

Observation 2.3. If F has a (homogeneous) resolution refutation in width w and
G has left degree bounded by d, then F [G] can be refuted in (homogeneous) resolution
in width at most 2dw.
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Observation 2.3 is not hard to show and follows, e.g., from the proof of Theorem 2
in [11] (strictly speaking, this theorem is for XORification without recycling, but
recycling can only decrease the width). For the convenience of the reader, we include
a proof below.

Proof. First, consider a homogeneous resolution refutation π of F in width w. We
show that for every C ∈ π we can construct a homogeneous derivation of the clause
set C[G] from F [G] in width dw. For axioms there is nothing to prove, and the case
of weakening steps is immediate. Suppose, therefore, that C is derived by resolving
C ∨ u and C ∨ u. Note that by definition we have

(2.9) u[G] ∪ u[G] = {D | Vars(D) = N (u)} ,

where the latter set denotes all 2|N (u)| clauses over the variables in N (u). Using (2.7)
and (2.8) to unpack and repackage the notation, we obtain that

(2.10) (C ∨ u)[G] ∪ (C ∨ u)[G] = C[G] ∨ {D | Vars(D) = N (u)}

(implicitly pruning away trivial clauses), from which it is straightforward to see that
we can derive every clause in C[G] by a sequence of homogeneous resolution steps
resolving away all the variables in N (u) \Vars(C[G]) in (2.10).

For refutations that are not homogeneous, we first apply Observation 2.1 to trans-
late them into a homogenous refutation of width at most w + 1 and then apply the
argument above to obtain a refutation of width d(w + 1). Hence, in both cases the
width is bounded by 2dw.

Observation 2.4. If F has a (homogeneous) resolution refutation π such that
the associated DAG Gπ has depth (i.e., longest path) s, then π can be carried out
(in homogeneous resolution) in space s + 2 (possibly by repeating and/or reordering
clauses in π).

This second observation is essentially due to [25]. To see why this is true, note that
the proof DAG Gπ can be turned into a binary tree of the same depth by repeating
vertices/clauses, and it is then straightforward to show that any tree-like proof DAG
in depth s can be realized in space at most s+ 2.

3. Proof of main theorem. In this section we present a proof of Theorem 1.1.
The proof makes use of the following hardness condensation lemma, which will be
established in the next section and which is the main technical contribution of the
paper.

Lemma 3.1 (hardness condensation lemma). For all k ∈ N+ and ε > 0 there
exist n0 ∈ N+ and δ > 0 such that the following holds. Let ` and n be integers
satisfying n ≥ n0 and k ≤ ` ≤ n

1
2−ε, and suppose that F is an unsatisfiable CNF

formula over N = bnδ`c variables which requires width W(F `⊥) = k and (clause)
space Sp(F `⊥) = s to be refuted in resolution.

Then there is a bipartite graph G = (U
.
∪ V,E) with |U | = N and |V | = n such

that the n-variable CNF formula F [G] has the following properties:
• F [G] can be refuted in resolution in width `.
• Any resolution refutation π : F [G]`⊥ in width w ≤ ` log n requires space

Sp(π) ≥ (s− w − 3)2−w.

We want to apply this lemma to formulas of low width complexity but high space
complexity as stated next.
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Theorem 3.2 (see [10]). There is a family {FN}N∈N of N -variable 6-CNF for-
mulas of size Θ(N) which can be refuted in width W(FN `⊥) = 6 but require space
Sp(FN `⊥) = Ω(N/ logN).

Combining Lemma 3.1 and Theorem 3.2, we can prove our main result.

Proof of Theorem 1.1. Recall that we want to prove that for any constant ε > 0
and any nondecreasing function `(n) such that 6 ≤ `(n) ≤ n

1
2−ε, there is a family

{Fn}n∈N of n-variable CNF formulas which have resolution refutations of width `(n)
but for which any refutation of width o(`(n) log n) requires clause space nΩ(`(n)).

From Theorem 3.2 we obtain constants ε′ > 0 and N0 ∈ N+ and a family of
N -variable 6-CNF formulas FN that require clause space ε′N/ logN for all N ≥ N0.
We want to apply hardness condensation as in Lemma 3.1 to these formulas. Let
ε > 0 be given in Theorem 1.1 and fix k = 6. Plugging this into Lemma 3.1 provides
constants δ > 0 and n0 ∈ N+, where in addition we choose n0 large enough so that

bnδ`(n0)
0 c ≥ N0 (this is always possible since δ`(n0) ≥ 6δ > 0).

For any n ≥ n0, set N = bnδ`(n)c ≥ N0 and let G = (U
.
∪ V,E) with |U | = N

and |V | = n be a bipartite graph with properties as guaranteed by Lemma 3.1.
Then the lemma says that FN [G] is an n-variable formula which can be refuted in
width `, but for which every refutation of width w ≤ ` log n requires clause space
(s− w − 3)2−w, where s ≥ ε′N/ logN = ε′bnδ`(n)c/ logbnδ`(n)c is the space lower
bound for FN . Choosing w ≤ δ

2 ·`(n) log n−3 (which we can do since the width bound
is o(`(n) log n) in the statement of Theorem 1.1) and using that `(n) is nondecreasing
in n, the calculation

(3.1) (s− w − 3)2−w ≥
(
ε′bnδ`(n)c/ logbnδ`(n)c − δ

2`(n) log n
)
2−

δ
2 `(n) logn

≥ Ω
(
n
δ
3 `(n)

)
yields the desired space lower bound.

If one looks more closely at what is going on inside the proof of Theorem 1.1, where
Lemma 3.1 and Theorem 3.2 come together, one can make a somewhat intriguing
observation.

As discussed in the introduction, Theorem 3.2 is shown by using so-called pebbling
formulas, which we now describe briefly. Given a DAG D with sources S and a unique
sink z, and with all nonsources having fan-in 2, we let every vertex in D correspond
to a variable and define the pebbling formula over D, denoted PebD, to consist of the
following clauses:

• for all s ∈ S, the clause s;
• for all nonsource vertices v with predecessors u1, u2, the clause u1 ∨ u2 ∨ v;
• for the sink z, the clause z.

Applying standard binary XOR substitution (without recycling of variables) as in (2.6)
to these CNF formulas amplifies lower bounds on the number of variables in mem-
ory VarSp(PebD `⊥) (which follow from properties of the chosen DAG D) to lower
bounds on the number of clauses Sp(PebD[⊕2] `⊥) [10]. In Lemma 3.1 we then do
another round of XOR substitution, this time with recycling, to decrease the number
of variables while maintaining the space lower bound for small-width refutations. It is
not entirely clear why we would need two separate rounds of XORification to achieve
this result. In one sense, it would seem more satisfying to get a clean one-shot argu-
ment that just takes pebbling formulas and yields the supercritical trade-offs by only
one round of XORification.
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And in fact, if we are willing to accept a slightly weaker bound, we could make such
a one-shot argument and apply substitution with recycling directly to the pebbling
formulas. The reason for this is that one can actually prove a somewhat stronger
version of hardness condensation than in Lemma 3.1, as we will see in section 4.
There is no need to require that the original formula should have high space complexity
unconditionally, but it suffices that the formula exhibits a strong trade-off between
width and clause space. Since the number of clauses times the maximal width of any
clause is an upper bound on the total number of distinct variables in memory, for
any resolution refutation π we have the inequality Sp(π) ·W(π) ≥ VarSp(π). In [8]
a variable space lower bound VarSp(PebD ` ⊥) = Ω(N/ logN) was presented (for
appropriately chosen DAGs D), implying that any width-w refutation requires clause
space at least Ω(N/(w logN)). Since our hardness condensation step incurs a loss of
a factor 2−w, by starting with standard pebbling formulas and applying XORification
with recycling directly we could obtain asymptotically similar bounds to those in
Theorem 1.1 in one shot.

However, one can also argue that by combining Lemma 3.1 and Theorem 3.2 in
the way done above one obtains a more modular proof, which shows that any formulas
satisfying the conditions in Theorem 3.2 can be used for hardness condensation in a
black-box fashion. This is why we chose to present the proof in this way.

4. Hardness condensation. Let us now establish the hardness condensation
lemma. We prove a slightly stronger version of the lemma below, which obviously
subsumes Lemma 3.1.

Lemma 4.1 (hardness condensation lemma, strong version). For all k ∈ N+ and
ε > 0 there are n0 ∈ N+ and δ > 0 such that the following holds. Let ` and n be
integers satisfying n ≥ n0 and k ≤ ` ≤ n

1
2−ε and suppose that F is an unsatisfiable

CNF formula over N = bnδ`c variables which requires width W(F ` ⊥) ≤ k to be
refuted in resolution.

Then there is a bipartite graph G = (U
.
∪ V,E) with |U | = N and |V | = n such

that the n-variable CNF formula F [G] has the following properties:
• The XORified formula F [G] can be refuted in width `.
• Any resolution refutation π : F [G]`⊥ of the XORified formula F [G] in width
w ≤ ` log n requires space Sp(π) ≥ (s− w − 3)2−w, where s is the minimal
space of any refutation π′ : F `⊥ of the original formula F in width at most w.

Clearly, the key to obtaining Lemma 4.1 is to choose the right kind of graphs. As
in [34], we use boundary expander graphs where the right-hand side is significantly
smaller than the left-hand side. Let us start by giving a proper definition of these
graphs and reviewing the properties that we need from them. Most of our discussion
of boundary expanders can be recovered from [34], but since our setting of parameters
is slightly different we give a self-contained presentation and also provide full proofs of
all claims in Appendix A for completeness. We remark that there is also a significant
overlap with [15] in our treatment of expander graphs below.

In what follows, we will let G = (U
.
∪ V,E) denote a bipartite graph with left

vertices U and right vertices V . We write N G
(
U ′
)

=
{
v
∣∣{u, v} ∈ E(G), u ∈ U ′

}
to

denote the set of right neighbors of a left vertex subset U ′ ⊆ U (and vice versa for
right vertex subsets), dropping the graph G from the notation when it is clear from
context. For a single vertex v we will use the abbreviation N (v) = N ({v}).

Definition 4.2 (boundary expander). A bipartite graph G = (U
.
∪ V,E) is an

N × n (r, c)-boundary expander, or unique neighbor expander, if |U | = N , |V | = n,
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and for every set U ′ ⊆ U , |U ′| ≤ r, it holds that |∂(U ′)| ≥ c|U ′|, where ∂(U ′) ={
v ∈ N G(U ′) :

∣∣N G(v) ∩ U ′
∣∣ = 1

}
is the boundary or the set of unique neighbors

of U ′. An (r, d, c)-boundary expander is an (r, c)-boundary expander where additionally∣∣N G(u)
∣∣ ≤ d for all u ∈ U , i.e., where the left degree is bounded by d.

An important property of (r, c)-boundary expanders, which holds for arbitrarily
small but positive expansion c > 0, is that any left vertex subset U ′ ⊆ U of size
|U ′| ≤ r has a matching into V . In addition, this matching can be chosen in such a
way that there is an ordering of the vertices in U ′ such that every vertex ui ∈ U ′ is
matched to a vertex outside of the neighborhood of the preceding vertices u1, . . . , ui−1.
The proof of this fact uses what is sometimes referred to as a peeling argument , which
we recapitulate below for the reader’s convenience.

Lemma 4.3 (peeling lemma). Let G = (U
.
∪V,E) be an (r, c)-boundary expander

with r ≥ 1 and c > 0. Then every left vertex subset U ′ ⊆ U of size |U ′| = ` ≤ r can
be ordered U ′ = (u1, . . . , u`) in such a way that there is a matching into an ordered
right vertex subset V ′ = (v1, . . . , v`) ⊆ V for which vi ∈ N (ui) \ N ({u1, . . . , ui−1}).

Proof. The proof is by induction on `. The base case ` = 1 is immediate since
r ≥ 1 and c > 0 implies that no left vertex can be isolated. For the induction
step, suppose the lemma holds for ` − 1. To define the sequence v1, . . . , v` we first
fix any v` ∈ ∂(U ′), which exists because

∣∣∂(U ′)
∣∣ ≥ c|U ′| > 0. Since v` is in the

boundary of U ′ there exists a unique u` ∈ U ′ such that |N (v`) ∩ U ′| = {u`}. Thus,
for this pair (u`, v`) it holds that v` ∈ N (u`) \ N

(
U ′ \ {u`}

)
. By the induction

hypothesis we can now find sequences u1, . . . , u`−1 and v1, . . . , v`−1 for U ′ \ {u`} such
that vi ∈ N (ui) \ N ({u1, . . . , ui−1}), to which we can append u` and v` at the end.
The lemma follows by the induction principle.

For a right vertex subset V ′ ⊆ V in G = (U
.
∪ V,E) we define the kernel

ker
(
V ′
)
⊆ U of V ′ to be the set of all left vertices whose entire neighborhood is

contained in V ′, i.e.,

(4.1) ker
(
V ′
)

=
{
u ∈ U

∣∣N (u) ⊆ V ′
}
.

We write G \ V ′ to denote the subgraph of G induced on
(
U \ ker(V ′)

) .
∪
(
V \ V ′

)
. In

other words, we can think of G \V ′ as being obtained from G by first deleting V ′ and
afterwards all isolated vertices from U .

Even if G is a good expander, it can happen that G \ V ′ is no longer expanding.
But another key property of boundary expanders is that for any small enough right
vertex set V ′ we can always find a closure γ

(
V ′
)
⊇ V ′ with a small kernel on the left

such that the subgraph G \ γ(V ′) has good boundary expansion. The next lemma
is very similar to an analogous lemma in [34], but since our parameters are slightly
different we provide a proof in Appendix A.

Lemma 4.4. Let G be an (r, 2)-boundary expander. Then for every V ′ ⊆ V with
|V ′| ≤ r/2 there exists a set of vertices γ(V ′) ⊇ V ′ such that

∣∣ker
(
γ
(
V ′
))∣∣ ≤ |V ′| and

the induced subgraph G \ γ(V ′) is an (r/2, 1)-boundary expander.

We also need a lemma stating that there exist N ×n (r, d, 2)-boundary expanders
where the size n of the right-hand side is significantly smaller than the size N = nΘ(d)

of the left-hand side. The proof, which closely follows [34, Lemma 2.2], is a standard
application of the probabilistic method, but is included in Appendix A for complete-
ness.
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Lemma 4.5. Fix constants ε, δ > 0 and d0 ≥ 2 such that δ+ 1
d0
< ε/2. Then there

exists an n0 ∈ N+ such that for all n, d, and r satisfying n ≥ n0, d0 ≤ d ≤ n1/2−ε,
and r ≤ n1/2 there are bnδdc × n (r, d, 2)-boundary expanders.

After this review of boundary expanders and their properties we now come to the
core argument of the paper, namely that space lower bounds are preserved for small-
width resolution refutations when we apply XORification as in Definition 2.2 with
respect to an (r, 2)-boundary expander. To get cleaner technical arguments in the
proofs we will restrict our attention to homogeneous resolution refutations as in (2.3),
which for our purposes is without loss of generality by Observation 2.1.

Lemma 4.6 (main technical lemma). Let F be an unsatisfiable CNF-formula,
and let G be an (r, 2)-boundary expander, and suppose that π : F [G]`⊥ is a homo-
geneous resolution refutation in width w ≤ r/2 of the XORified formula F [G]. Then
there is a homogeneous refutation π′ : F `⊥ of the original formula F in width at
most w and space Sp(π′) ≤ 2w · Sp(π) + w + 3.

Proof. Assume that π = (C0,C1, . . . ,Cτ ) is a configuration-style homogeneous
resolution refutation of F [G] in width W(π) = w ≤ r/2. We will show how to
transform π into a refutation π′ of the original formula F in width and space as
claimed in the lemma. To help the reader navigate the proof, we remark that in
what follows we will use the notational conventions that B and C denote clauses over
Vars(F [G]), D denotes a clause over Vars(F ), and A denotes an axiom clause from
the original formula F before XORification.

Recall that for clauses C ∈ F [G] we have Vars(C) ⊆ V by construction. For
convenience, we will overload notation and write ker(C) = ker(Vars(C)), which is a
subset of the variables U of the original formula F . Furthermore, for every clause
C ∈ π we fix γ(C) := γ(Vars(C)) ⊆ V to be a minimal closure with properties as
guaranteed by Lemma 4.4, i.e., such that

∣∣ker
(
γ(C)

)∣∣ ≤ |Vars(C)| and the induced
subgraph G \ γ(C) is an (r/2, 1)-boundary expander. Note that such closures exist
since all clauses C ∈ π have width at most w, and by requiring minimality we ensure
that γ(⊥) = ∅. It might be worth pointing out, though, that the definition of closure
is purely existential—we have no control over how these closures are constructed, and,
in particular, for two clauses B and C such that B ⊆ C it does not necessarily hold
that γ(B) ⊆ γ(C).

An important notion in what follows will be that of simultaneous falsifiability ,
where we say that two CNF formulas F and G are simultaneously falsifiable if there is
a truth value assignment that at the same time falsifies both F and G. To transform
the resolution refutation π of F [G] into a refutation π′ of F we let Dt be obtained
from Ct by replacing every clause C ∈ Ct by the set of clauses

G−1(C) := {D |Vars(D) = ker(γ(C)); D[G] and C simultaneously falsifiable}(4.2)

and defining

Dt :=
⋃
C∈Ct G

−1(C)(4.3)

(where the notation G−1(C) is chosen to suggest that this is in some intuitive sense the
“inverse operation” of XORification with respect to G). Every clause in D ∈ G−1(C)
has width at most w, because

(4.4) |Vars(D)| = |ker(γ(C))| ≤W(C) ≤ w ,

where the first equality is by the definition in (4.2), the following inequality is guaran-
teed by Lemma 4.4, and the final inequality is by assumption. Furthermore, we have
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|G−1(C)| ≤ 2w, since all clauses in G−1(C) are over the same set of variables and each
variable appears positively or negatively in every clause, and hence

(4.5)
∣∣Dt∣∣ ≤ 2w ·

∣∣Ct∣∣ ≤ 2w · Sp(π) .

We want to argue that the sequence
(
D0,D1, . . . ,Dτ

)
is the “backbone” of a resolution

refutation π′ of F , by which we mean that for every t it holds that Dt+1 can be derived
from Dt by a sequence of intermediate steps without affecting any proof complexity
measure too much.

To make this claim formal, we first observe that for C0 = ∅ we obviously get
D0 = ∅ by (4.3). Moreover, it holds that G−1(⊥) = {⊥} and hence ⊥ ∈ Dτ , since the
unique minimal closure of the empty set is the empty set itself. We want to show that
for every 0 ≤ t < τ the configuration Dt+1 can be obtained from Dt by a resolution
derivation (Dt = Dt,0,Dt,1,Dt,2, . . . ,Dt,jt−1,Dt,jt = Dt+1), where the space of every
intermediate configuration is bounded by max{Sp(Dt),Sp(Dt+1)}+ w + 3.

If Ct+1 is obtained from Ct by erasing a clause C, then Dt+1 can be obtained
from Dt by erasing all clauses G−1(C) \Dt+1. Suppose that Ct+1 is obtained from Ct
by downloading an axiom C ∈ F [G]. We claim that every clause in G−1(C) is either
an axiom or a weakening of an axiom from F . By the definition of F [G], every axiom
C ∈ F [G] is a clause in the CNF formula A[G] for some original axiom A ∈ F . Fix
any axiom A ∈ F such that C ∈ A[G]. Then for all D ∈ G−1(C) it holds by (4.2)
that Vars(D) = ker(γ(C)) ⊇ ker(C) ⊇ Vars(A) and that there is an assignment
falsifying both D[G] and C. To see that this implies that A subsumes D, suppose
that there is a variable x appearing positively in A such that x ∈ D. Any truth
value assignment falsifying D[G] must falsify a[G] for all literals a ∈ D, and hence
in particular x[G]. This means that x[G] is satisfied by the same assignment, and
then so is all of the formula A[G] including C, since A[G] =

∨
a∈A a[G]. But this is a

contradiction to the simultaneous falsifiability of D[G] and C, and so not only does
it hold that Vars(A) ⊆ Vars(D) but A is in fact a subclause of D as claimed. From
this we see that we can add the clauses G−1(C) to Dt using axiom download and
weakening. After applying a weakening step we immediately delete the old clause.
Hence, the additional weakening might increase the space by at most one. It follows
that the space of the intermediate configurations need never exceed Sp(Dt+1) + 1.

It remains to argue that Dt+1 can be derived from Dt when Ct+1 is obtained
from Ct by an inference step adding a new clause C ∈ Ct+1 \Ct. This is stated in the
following two claims regarding applications of the resolution and weakening rules.

Claim 4.7. Every clause D ∈ G−1(C) can be derived from G−1(C∨x)∪G−1(C∨x)
by a homogeneous resolution derivation of width w and depth w + 1.

Claim 4.8. For any two clauses B and C with B ⊆ C it holds that every clause
D ∈ G−1(C) can be derived from G−1(B) by a homogeneous derivation of width w and
depth w + 1.

Taking these two claims on faith for now, let us see how they allow us to conclude
the proof of the lemma. Since the depth of a refutation provides an upper bound
on the clause space by Observation 2.4, it follows that in both cases we can derive
all clauses in the clause set G−1(C) one by one by using additional space w + 3 to
perform the derivations in depth w + 1.

This shows that F has a homogeneous resolution refutation π′ of width w and
clause space Sp(π′) ≤ 2wSp(π) + w + 3, which establishes the lemma.

We proceed to establish Claims 4.7 and 4.8.
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Proof of Claim 4.7. Recall that by Lemma 4.4 the subgraph GC := G \ γ(C) is
an (r/2, 1)-boundary expander and that for ker(γ(C ∨ x)) = ker(γ(C ∨ x)) we have
|ker(γ(C ∨ x))| ≤ W(C ∨ x) ≤ w ≤ r/2. Therefore, we can apply Lemma 4.3 to the
set K = ker(γ(C ∨ x)) \ ker(γ(C)) to obtain an ordering u1, . . . , u` of K satisfying

(4.6) N GC(ui) \ N GC({u1, . . . , ui−1}) 6= ∅ .

For 0 ≤ i ≤ ` we let

Ki :=
(

ker(γ(C)) ∩ ker(γ(C ∨ x))
)
∪ {uj | 1 ≤ j ≤ i}(4.7)

so that K` = ker(γ(C ∨ x)) and K0 ⊆ ker(γ(C)), and define

Di := {D | Vars(D) = Ki; D[G] and C are simultaneously falsifiable} .(4.8)

Observe that

G−1(C ∨ x) ∪ G−1(C ∨ x)

= {D | Vars(D)=ker(γ(C ∨ x));D[G] & C ∨ x simultaneously falsifiable}
∪ {D | Vars(D)=ker(γ(C ∨ x));D[G] & C ∨ x simultaneously falsifiable}(4.9)

= {D | Vars(D)=ker(γ(C ∨ x)); D[G] & C simultaneously falsifiable}
= D`

and that every clause in G−1(C) is subsumed by a clause in D0 since K0 ⊆ ker(γ(C)).
Thus, we are done if we can derive all clauses in D0 from the clauses in D`.

We do so inductively: for i = `, ` − 1, . . . , 2, 1 we can obtain any clause D ∈
Di−1 by an application of the homogeneous resolution rule to the clauses D ∨ ui
and D ∨ ui, which we claim are both available in Di. What remains to show is
that D ∈ Di−1 indeed implies that

{
D ∨ ui, D ∨ ui

}
⊆ Di. To argue this, note

that by the definition of Di−1 in (4.8) there is a (partial) truth value assignment α
that simultaneously falsifies D[G] and C. By (4.6) we are guaranteed that N GC(ui) \
Vars(D[G]) = N GC(ui) \ N G

(
Ki−1

)
has a nonempty intersection with V \ γ(C), the

right-hand side of the expander GC . Hence, we can extend α and set the variables
in N GC(ui) \

(
Vars(D[G]) ∪ Vars(C)

)
⊇ N GC

(
Ki
)
\ N GC

(
Ki−1

)
6= ∅ to appropriate

values so that the parity
⊕

v∈N (ui)
α(v) is even and thus (D∨ui)[G] = D[G]∨ui[G] is

falsified, and we do so without assigning any variables in C, which therefore remains
falsified. In an analogous fashion, by instead ensuring that the parity

⊕
v∈N (ui)

α(v)

is odd we get a falsifying assignment for (D ∨ ui)[G] ∨ C. Hence, by (4.8) it holds
that D ∨ ui and D ∨ ui both appear in Di.

Finally, to get from D0 to G−1(C) we might need an extra weakening step as
observed above. The total depth of the whole derivation is at most `+ 1 ≤ w + 1.

Proof of Claim 4.8. Notice that if ker(γ(B)) ⊆ ker(γ(C)), this claim would be
easy to establish, but as noted above we have no guarantee that this is the case.
Instead, we apply a proof strategy similar to the one for the previous claim. We again
have that GC := G \ γ(C) is an (r/2, 1)-boundary expander, so that we can apply the
peeling lemma to the left-hand vertex set ker(γ(B)) \ker(γ(C)) to obtain an ordering
u1, . . . , u` of its vertices satisfying N GC(ui) \ N GC({u1, . . . , ui−1}) 6= ∅. For 0 ≤ i ≤ `
we let

Ki :=
(

ker(γ(C)) ∩ ker(γ(B))
)
∪ {uj | 1 ≤ j ≤ i}(4.10)
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and as before define

Di := {D | Vars(D) = Ki; D[G] and C are simultaneously falsifiable} .(4.11)

Note that D` ⊆ G−1(B), because if D[G] and C are simultaneously falsifiable, then
D[G] and B ⊆ C are certainly simultaneously falsifiable. Hence, we can obtain D`
from G−1(B) by just erasing clauses. Once more, we apply the peeling argument in
an inductive fashion and derive any D ∈ Di−1 from D∨ui and D∨ui appearing in Di,
exactly as in the proof of Claim 4.7. In the end, we can infer any clause in G−1(C)
from D0 because every clause in G−1(C) can be seen to be a weakening of some clause
in D0.

We can now combine the construction in Lemma 4.6 with the existence of good
boundary expanders in Lemma 4.5 to prove the hardness condensation in Lemma 4.1.

Proof of Lemma 4.1. Given ε > 0 and k ∈ N+ we choose δ := ε
10k . Note that

we can assume ε ≤ 1/2 since otherwise the lemma is vacuous. Suppose ` and n are

parameters such that k ≤ ` ≤ n
1
2−ε and let F be an unsatisfiable CNF formula over

N = bnδ`c variables that can be refuted in width k. To apply Lemma 4.5 we set
d0 := b 5

εc ≥ 10. Noting that d0 = 5
ε − η for η < 1 ≤ 1

2ε , we get that d0 ≥ 9
2ε , and

hence δ + 1
d0
≤ ε

10k + 2ε
9 < ε

2 . We choose the degree of the expander to be d :=
⌊
`

2k

⌋
and set the size guarantee for expanding left vertex sets to r := 2` log n. By the bound
on ` we have d ≤ ` ≤ n 1

2−ε. Furthermore, we adjust n0 obtained from Lemma 4.5 to
be large enough so that r ≤ 2n

1
2−ε log n ≤ n 1

2 for all n ≥ n0.
Now we have two cases. The first, and interesting, case is when d ≥ d0 holds.

Then Lemma 4.5 guarantees that there exists an N × n (r, d, 2)-boundary expander
G. Applying XORification with respect to G, we obtain a CNF formula F [G] with
n variables. By Observation 2.3 it holds that F [G] has a resolution refutation in width
2dk ≤ `. Now suppose that π : F [G]`⊥ is a refutation in width w ≤ ` log n = r/2.
Then Lemma 4.6 yields a refutation π′ of the original formula F in width w and space
2w · Sp(π) + w + 3, and so if this space has to be at least s we get that Sp(π) ≥
(s− w − 3)2−w.

The second case is when d < d0. Then we do not actually need any XORification
but can use the original formula. Formally, let G = (U

.
∪ (V ∪ V ′), E) be a matching

between two sets U and V of size |U | = |V | = N plus some isolated vertices V ′ on the
right-hand side such that |V ∪ V ′| = n. To check that this is well defined, we have to
verify that N ≤ n, which follows from the calculations N = bnδ`c ≤ bn ε

10k 2k(d+1)c ≤
bn ε

10k 2kd0c ≤ bn ε
10k 2k 5

ε c = n, where we used d0 ≥ d + 1 ≥ `
2k . In this somewhat

convoluted way we obtain F [G] = F (plus some left-over dummy variables) and we
have W(F [G] `⊥) = W(F `⊥) = k ≤ ` as well as Sp(π) ≥ s ≥ (s− w − 3)2−w. The
lemma follows.

5. Concluding remarks. In this paper we prove that there are CNF formulas
over n variables exhibiting an nΩ(w) clause space lower bound for resolution refutations
in width w. This lower bound is optimal (up to constants in the exponent) as every
refutation in width w can be carried out in length, and hence space, at most nO(w).
Our lower bounds do not only hold for the minimal refutation width w but remain
valid for any refutations in width asymptotically smaller than w log n. Measured in
terms of the number of variables n, this is a major improvement over the previous
space-width trade-off result in [8], and provides another example of trade-offs in the
supercritical regime above worst-case recently identified in [34].
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Regarding possible future research directions, a first open problem is whether the
range of applicability can be extended even further so that the space lower bound
holds true up to width o(n). It is clear that the lower bound has to break down at
some point, since if one is allowed maximal width n any formula can be refuted in
clause space n+ 2 [25]. A supercritical trade-off on resolution proof depth over width
ranging from w all the way up to n1−ε/w was shown in [34], suggesting that the above
goal might not be completely out of reach.

Another intriguing open problem is to prove space trade-offs that are superlinear
not only in terms of the number of variables but measured also in formula size. Such
lower bounds cannot be obtained by the techniques used in this paper, but they are
likely to exist as the following argument shows (see [27] for a more detailed discussion).
Suppose that every refutation in width w(n) can be transformed into a refutation
that has width w(n) and clause space polynomial in the size of the formula. Then we
can find such a refutation nondeterministically in polynomial space by keeping the
current configuration in memory and guessing the inference steps. Thus, by Savitch’s
theorem, finding refutations of width w(n) would be in deterministic PSPACE. On
the other hand, it has been shown by the first author that the problem of finding
resolution refutations of bounded width is EXPTIME-complete [14]. Hence, unless
EXPTIME = PSPACE there are formulas where every refutation of minimal width
needs clause space that is superpolynomial in the size of the formula.

Finally, it would be interesting to study if the supercritical trade-offs between
clause space and width in resolution shown in this paper could be extended to similar
trade-offs between monomial space and degree for polynomial calculus or polynomial
calculus resolution as defined in [1, 21].

Appendix A. Proofs of two lemmas concerning boundary expanders.
In this appendix we give proofs for Lemmas 4.4 and 4.5. As already mentioned, most
of this material appears in a similar form in [34] (although the exact parameters are
slightly different), and there is also a substantial overlap with analogous technical
lemmas in [16]. In fact, Lemma 4.4 is exactly as stated in in [16], but we present a
proof below to give a self-contained exposition of our version of Razborov’s hardness
condensation technique adapted to general resolution.

Lemma 4.4 (restated). Let G be a bipartite (r, 2)-boundary expander. Then for
every right vertex set V ′ ⊆ V of size |V ′| ≤ r/2 there exists a superset γ(V ′) ⊇ V ′ such
that

∣∣ker
(
γ
(
V ′
))∣∣ ≤ ∣∣V ′∣∣ and the induced subgraph G \ γ(V ′) is an (r/2, 1)-boundary

expander.

Proof. With assumptions as in the lemma, let G = (U
.
∪V,E) be an (r, 2)-boundary

expander, and let V ′ ⊆ V be a right vertex set of size |V ′| ≤ r/2. We will construct
an increasing sequence of right vertex sets V ′ = V0 ⊂ V1 ⊂ · · · ⊂ Vτ such that for
γ(V ′) = Vτ it holds that G \ Vτ is an (r/2, 1)-boundary expander.

If G \ V0 is an (r/2, 1)-boundary expander, then we can stop right away, but oth-
erwise there must exist a left vertex set U1 of size at most r/2 such that

∣∣∂G\V0(U1)
∣∣ ≤

|U1|. Delete N G\V0(U1) and ker
(
N G\V0(U1)

)
from G \ V0. If now the resulting graph

is an (r/2, 1)-boundary expander, then we are done, but otherwise we repeat this
process and iteratively delete vertex sets that violate the expansion requirements.
Formally, for i ≥ 1 we let Ui be any left vertex set of size at most r/2 such that



114 CHRISTOPH BERKHOLZ AND JAKOB NORDSTRÖM∣∣∂G\Vi−1(Ui)
∣∣ ≤ |Ui|, where we set

(A.1) Vi := V0 ∪
i⋃

j=1

N G(Uj)

(and where we note that what is deleted at the ith step is N G\Vi−1(Ui) together with
the kernel of this right vertex set ker

(
N G\Vi−1(Ui)

)
, so that after the ith step all of

N G(Ui) and ker(N G(Ui)) has been removed from the graph).
Since all sets Ui constructed above are nonempty, this process must terminate

for some i = τ and the resulting graph G \ Vτ is then an (r/2, 1)-boundary expander
(if nothing else, an empty graph without vertices vacuously satisfies the expansion
condition). However, we need to check that the condition |ker(Vτ )| ≤ |V0| holds. This
follows from the next claim.

Claim A.1. Let V−1 = U0 = ∅ and suppose that i ≥ 0. Then for Ui and Vi as
constructed above we have the following properties:

1. For all U ′ such that ker(Vi−1)∪Ui ⊆ U ′ ⊆ ker(Vi) it holds that
∣∣∂G(U ′)\V0

∣∣ ≤
|ker(Vi)|.

2. The kernel of Vi has size |ker(Vi)| ≤ |V0|.
We establish Claim A.1 by induction. For the base case i = 0, Property 1

holds since U ′ ⊆ ker(V0) implies that ∂G(U ′) ⊆ V0. For Property 2, suppose that
|ker(V0)| ≤ r. Then by the expansion of G we have that 2|ker(V0)| ≤ |∂G(ker(V0))|,
and in combination with ∂G(ker(V0)) ⊆ V0 this implies |ker(V0)| ≤ 1

2 |V0|. If instead
|ker(V0)| > r, then we can find a subset U ′ ⊆ ker(V0) of size |U ′| = r for which it
holds by expansion that |∂G(U ′)| ≥ 2r. But this is a contradiction since as argued
above we should have

∣∣∂G(U ′)
∣∣ ≤ |V0| ≤ r/2.

For the induction step, suppose that Properties 1 and 2 both hold for i− 1. Let
us write U∗ = ker(Vi−1) ∪ Ui and consider any U ′ such that U∗ ⊆ U ′ ⊆ ker(Vi). We
claim that every vertex in ∂G(U ′) is either in the boundary ∂G(U∗) or is a member
of V0. To see why this is so, observe that since U ′ ⊆ ker(Vi) we have ∂G(U ′) ⊆ Vi =

V0 ∪
⋃i
j=1N G(Uj). Furthermore, note that

⋃i
j=1 Uj ⊆ U∗ ⊆ U ′ holds (which is due

to the fact that N (ker(V ′)) ⊆ V ′ for any V ′). Hence, for any v ∈ ∂G(U ′) \ V0 it must

be the case that v ∈
⋃i
j=1N G(Uj), and so the unique neighbor of v on the left is

contained in
⋃i
j=1 Uj and therefore also in U∗, implying that v ∈ ∂(U∗). From this

we can conclude that

(A.2) ∂G(U ′) \ V0 ⊆ ∂G(U∗) \ V0

(i.e., U ′ ⊇ U∗ does not add any new boundary elements outside of V0 on top of what
is already provided by U∗). We will use this to show that

(A.3)
∣∣∂G(U∗) \ V0

∣∣ =
∣∣∂G(ker(Vi−1) ∪ Ui) \ V0

∣∣ ≤ |ker(Vi)|

in order to prove Property 1.
Towards this goal, observe that by construction it holds that every vertex in

Vi−1 \ V0 has at least one neighbor in ker(Vi−1). It follows that for the vertex set
U∗ = ker(Vi−1) ∪ Ui all new boundary vertices in ∂G(U∗) \ ∂G(ker(Vi−1)) are either
from V0 or from the boundary ∂G\Vi−1(Ui) of Ui that lies outside of Vi−1. Therefore,
we have

(A.4) ∂G(U∗) \ V0 = ∂G
(
ker(Vi−1) ∪ Ui

)
\ V0 ⊆

(
∂G(ker(Vi−1)) \ V0

) .
∪ ∂G\Vi−1(Ui) .
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Since we have chosen Ui so that it does not satisfy the expansion condition we know
that

(A.5)
∣∣∂G\Vi−1(Ui)

∣∣ ≤ |Ui|
and by the inductive hypothesis for Property 1 it holds that

(A.6)
∣∣∂G(ker(Vi−1)) \ V0

∣∣ ≤ |ker(Vi−1)| .

Combining (A.2) with (A.4)–(A.6) we conclude that

(A.7)
∣∣∂G(U ′) \ V0

∣∣ ≤ ∣∣∂G(ker(Vi−1) ∪ Ui) \ V0

∣∣
≤
∣∣(∂G(ker(Vi−1)) \ V0

)∣∣+
∣∣∂G\Vi−1(Ui)

∣∣ ≤ |ker(Vi−1)|+ |Ui| ≤ |ker(Vi)| ,

where the last inequality holds since ker(Vi−1) and Ui are disjoint subsets of ker(Vi).
This completes the inductive step for Property 1.

To show Property 2, let us first assume that |ker(Vi)| ≤ r. Then by the expansion
properties of G together with Property 1 applied to the set U ′ = ker(Vi) we have

(A.8) 2|ker(Vi)| ≤
∣∣∂G(ker(Vi))

∣∣ ≤ |V0|+ |ker(Vi)| ,

from which it follows that

(A.9) |ker(Vi)| ≤ |V0| .

If instead |ker(Vi)| > r, then by the inductive hypothesis we know that |ker(Vi−1)| ≤
|V0| ≤ r/2 and by construction we have |Ui| ≤ r/2. Therefore, there must exist
a vertex set U ′ of size r satisfying the condition ker(Vi−1) ∪ Ui ⊆ U ′ ⊆ ker(Vi) in
Property 1. From the expansion properties of G we conclude that |∂(U ′)| ≥ 2r,
which is a contradiction because for sets U ′ satisfying the conditions in Property 1
we derived (A.7), which implies that |∂(U ′)| ≤ |V0| + |ker(Vi−1)| + |Ui| ≤ 3r/2. The
claim follows by the induction principle.

Lemma 4.5 (restated). Fix constants ε, δ > 0 and d0 ≥ 2 such that δ+ 1
d0
< ε/2.

Then there exists an n0 ∈ N+ such that for all n, d, and r satisfying n ≥ n0, d0 ≤
d ≤ n1/2−ε, and r ≤ n1/2 there are bnδdc × n (r, d, 2)-boundary expanders.

Proof. Let U and V be two disjoint sets of vertices of size |U | = N =
⌊
nδd
⌋

and
|V | = n. For every u ∈ U we choose d times a neighbor v ∈ V uniformly at random
with repetitions. This gives us a bipartite graph G = (U

.
∪V,E) of left-degree at most

d. In what follows, we show that G is almost surely an (r, d, 2)-boundary expander as
n→∞.

First, note that for every set U ′ ⊆ U all neighbors v ∈ N (U ′) \ ∂(U ′) not in the
boundary of U ′ have at least two neighbors in U ′. Since there are at most d|U ′| −
|∂(U ′)| edges between U ′ and N (U ′)\∂(U ′), it follows that |N (U ′)\∂(U ′)| ≤ (d|U ′|−
|∂(U ′)|)/2 and hence

(A.10) |N (U ′)| =
∣∣N (U ′) ∩ ∂(U ′)

∣∣+
∣∣N (U ′) \ ∂(U ′)

∣∣
≤ |∂(U ′)|+ d|U ′| − |∂(U ′)|

2
=
d|U ′|+ |∂(U ′)|

2
.

If G is not an (r, d, 2)-boundary expander, then there is a set U ′ of size ` ≤ r that has a
boundary ∂(U ′) of size at most 2` and from (A.10) it follows that |N (U ′)| ≤ (1+d/2)`.
By a union bound argument we obtain

Pr[G is not an (r, d, 2)-boundary expander](A.11a)
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≤
r∑
`=1

∑
U ′⊆[N ]; |U ′|=`

Pr
[
|∂(U ′)| ≤ 2`

]
(A.11b)

≤
r∑
`=1

(
N

`

)
Pr
[
|N (U ′)| ≤ (1 + d/2)` for some fixed |U ′| = `

]
(A.11c)

≤
r∑
`=1

(
N

`

)(
n

(1 + d/2)`

)(
(1 + d/2)`

n

)d`
(A.11d)

≤
r∑
`=1

N `

(
en

(1 + d/2)`

)(1+d/2)`

((1 + d/2)`)
d`
n−d`(A.11e)

=

r∑
`=1

N `(en)(1+d/2)` ((1 + d/2)`)
(d/2−1)`

n−d`(A.11f)

≤
r∑
`=1

nδd`(en)(1+d/2)` ((1 + d/2)`)
(d/2−1)`

n−d`(A.11g)

=

r∑
`=1

nδd`n
log e
logn (1+d/2)`n

1
logn log

(
(d/2+1)`

)
(d/2−1)`n(−d/2+1)`(A.11h)

≤
r∑
`=1

n

(
log e
lognd+ 1

logn log(dr)(d/2−1)−d/2+1+δd
)
`(A.11i)

=

r∑
`=1

n

(
log e
logn+ 1

logn log(dr)(1/2−1/d)−1/2+1/d+δ
)
d` ,(A.11j)

where to get from line (A.11d) to (A.11e) we used that
(
n
k

)
≤
(
en
k

)k
for the Euler

number e, from (A.11g) to (A.11h) we used that nlog a/ logn = a, and from (A.11h)
to (A.11i) that d ≥ d0 ≥ 2 and ` ≤ r. In order to show that (A.11j) is bounded away
from 1, it suffices to demonstrate that the expression

(A.12)
log e

log n
+

1

log n
log(dr)(1/2− 1/d)− 1/2 + 1/d+ δ

is negative and bounded away from zero. Set λ = ε/2 − 1/d0 − δ > 0 and choose
n0 = 32/λ. By the upper bounds on r and d it follows that

log e/ log n+ log(dr)(1/2− 1/d)/ log n− 1/2 + 1/d+ δ(A.13a)

≤ log e/ log n+ (1/2) log(n
1
2−εn

1
2 )/ log n− 1/2 + 1/d+ δ(A.13b)

= log e/ log n− ε/2 + 1/d+ δ(A.13c)

≤ log e/ log n− ε/2 + 1/d0 + δ(A.13d)

= log e/ log n− λ(A.13e)

≤− λ/2 ,(A.13f)

where the last inequality holds since n ≥ n0 > e2/λ. It follows that the probability
that G is not an (r, d, 2)-boundary expander is bounded by

r∑
`=1

n

(
−λ/2

)
d` ≤

r∑
`=1

n

(
−λ/2

)
d`

0 ≤
∞∑
`=1

(
1
3

)d` ≤ 1
2 ,(A.14)

which establishes the lemma.
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