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Abstract. We give an overview of the VeriPB tool, which can be used
to make certifying solvers for combinatorial optimisation problems.

The VeriPB tool4 provides an easy way of making combinatorial search algo-
rithms certifying. Certifying solvers, which output a proof of correctness along-
side a claimed solution, are now standard in the Boolean satisfiability (SAT)
community, but have not seen much uptake elsewhere. The key problem with
the SAT approach to proof logging is that their chosen proof formats, CNF and
DRAT [13], make it extremely impractical to describe the more sophisticated
reasoning used in constraint programming propagators [4] and in other com-
binatorial search algorithms [6, 7]. In contrast, the psuedo-Boolean models and
cutting planes proof system used by VeriPB makes it easy to justify combina-
torial arguments. This tool demonstration gives a solver author’s perspective of
using VeriPB to make an algorithm implementation trustworthy.

When a solver claims than an instance of an NP-complete problem is un-
satisfiable, it is hard to be confident that the solver is correct. Similarly, for
optimisation problems, it is hard to be sure that a claimed solution is indeed
optimal, and for enumeration problems, it is hard to be sure that no solutions
have been missed. The VeriPB tool handles all of these scenarios through proof
logging, which is a particular form of certifying [9]. The key steps involved are:

– The problem is expressed as a pseudo-Boolean (PB) problem instance, en-
coded in the standard OPB file format [10]. This can either be done by
the solver, or in the case of solver competitions, can be provided by the
competition organiser. A PB instance is simply an integer linear program
where all the variables have domain {0, 1}; conveniently, CNF clauses can
be represented directly as PB constraints.

– As it executes, the solver outputs a machine-readable proof log which records
the steps it took to reach its solution. This proof log consists of reverse
unit propagation (RUP) steps [4, 5] which record every time the solver back-
tracks, together with additional manual constraint derivations using cutting
planes proof system rules [2] to justify any complex constraint propagation

4 https://github.com/StephanGocht/VeriPB
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or bounds; these manual derivations are used to ensure that all inferences
performed by the solver can be reflected inside the verifier just through using
unit propagation. For satisfiable, enumeration, and optimisation instances,
this log also records solutions or new incumbents as they are found.

– A proof verifier such as VeriPB takes the OPB file and the proof log, and
checks whether the proof is valid. A proof verifier is a very simple piece of
software when compared to a typical solver, and so it is much easier to trust.
In particular, the proof verifier can only carry out very simple inference steps
and only as directed, and does not perform any search.

From the point of view of end users and solver authors, this approach has a
number of advantages compared to full formal verification [3], and compared to
earlier proof logging approaches [11–13], which together mean we now believe it
is practical to pursue proof logging as the new “socially acceptable standard”
for solver implementers.

Firstly, proof logs can be stored, and audited at a later date. It is even
reasonably simple to implement an independent verifier, because the verifier
does not need to understand constraint propagation or bounds. For example,
because all-different reasoning can be justified compactly using cutting planes
steps, the verifier can verify Hall set reasoning [4], without knowing what a Hall
set is or how all-different propagation works. Similarly, the wide variety of bound
and inference functions used in modern subgraph-finding algorithms [6, 7] can
all be verified without the verifier having any knowledge of graphs.

Secondly, this form of proof logging is simple to implement inside solvers.
For all of the examples we have tried so far [4, 6, 7], it has taken much less time
(between a factor of two and a factor of many hundreds) to implement proof
logging in an existing solver than it took to implement the solver itself. This
remained true even for non-experts. The key to this is RUP [4]: for search, the
solver needs only output the trail every time it backtracks. Meanwhile, most con-
straint propagation steps do not require explicit proof derivations: RUP ensures
that any inference steps which follow by integer bounds consistency [1] from the
provided PB model (which for clausal constraints, is the same as unit propaga-
tion in SAT, but in general is more powerful) are handled implicitly. For more
complex propagators or bounds functions, their behaviour must be justified, but
this can be done without needing to consider the trail; furthermore, it is often
easy to reuse justification templates between different algorithms and solvers.

Thirdly, the process is at least reasonably efficient. A particular goal has
been to ensure that proof logs are, in some sense, not longer than the amount
of work carried out by a solver. The cutting planes proof system appears to be
particularly suitable here, being able to express a wide range of combinatorial
arguments [4, 6, 7]. This would not be the case if we used, for example, the
resolution proof system, which would require an exponential blowup for justifying
Hall set reasoning [8, 11].

Fourthly, the process certifies solutions, rather than proving a solver correct.
This is a mixed blessing. It does not guarantee that a solver will never produce an
incorrect answer, but it does ensure that if an incorrect answer is ever produced
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(or if a correct answer is produced using unsound reasoning), then it can be
detected. This holds even if the error was due to a compiler bug or a hardware
fault, or due to the solver relying upon an algorithm whose purported proof of
correctness turned out to be spurious.

And finally, we have found that proof logging can help with solver develop-
ment, catching bugs early during the implementation process that conventional
testing had missed. VeriPB includes a number of features to help with this, such
as the ability to trace proof logs as they are executed, the ability to assert that
derived constraints imply expected consequences, and the ability to instruct the
verifier to accept certain facts on faith, to enable incremental development.
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