
COMPUTABILITY AND COMPLEXITY 24

RADOMNESS

AMIR YEHUDAYOFF
DIKU

1. The basics

Remark. Computational complexity studies the resources that are needed to achieve
computational tasks. On a high-level, computational devices have costs (like time,
memory size, energy, randomness, training data, etc.), and computational tasks
have complexities (the minimum cost that is needed to achieve it). We now move
to focussing on randomness.

Remark. What is “randomness”? We shall use the language of mathematics. In
mathematics, randomness corresponds to a probability space. We shall work only
with finite spaces.

Remark. What is randomness good for? It can help to hide things. It can help in
algorithm-design. It can help to avoid “worst-case” choices.

Remark. How do we generate randomness? We can toss coins; this requires some
device or person. We can use some internal “noise” in computers. We can use
physical phenomena, like radioactive decay. We are not going to discuss any of
these “engineering” problems.

Remark. We shall introduce randomness into the Turing machine model as fol-
lows. A probabilistic Turing machine (PTM) M has three tapes: input tape, working
tape, and randomness tape. There are two types of inputs to the machine. The usual
x and a random string R. The string R will consist of i.i.d. uniform bits (but this
could be chanced according to context).

Definition 1. For T : N→ N, a language L ⊆ {0, 1}∗ is in BPTIME(T (n)) if there
is a PTM M so that for all x ∈ {0, 1}n,

Pr[M(x,R) = 1] ≥ 2

3
⇐⇒ x ∈ L

where

• R is uniformly distributed in {0, 1}O(T (n)).
• TIME(M,x,R) ≤ O(T (n)) for all R.

Remark. As we shall see later on, the 2
3 is not important.

Definition 2. The class of bounded-error probabilistic polynomial time language is

BPP =
⋃
k∈N

BPTIME(nk).

1

2 DIKU

Remark.
P ⊆ BPP.

The question

is P = BPP?

is central and open. It asks whether we can always efficiently de-randomize compu-
tations.

2. An example: polynomial identity testing (PIT)

Remark. If A,B ∈ {0, 1}n, how much time does it take to check if A = B or not?
Can randomness help to reduce the running time?

Remark. Polynomials are an example where randomness can help. This property
is very important; for example, for error correction.

Remark. We work with n variables x1, . . . , xn over the field of rational numbers
(it could also be other fields). A monomial is an expression of the form

xe11 x
e2
2 . . . xenn

where ei is a non-negative integer and by convention x0 = 1. The degree of this
monomial is

∑
i∈[n] ei. We shall denote this monomial by xe where e = (e1, . . . , en).

A polynomial is a (finite) linear combination of monomials

p(x) =
∑
e

αex
e

where αe ∈ Q. That number αe is called the coefficient of xe in p. The degree of p
is the maximum degree of a monomial that appears in p.

Example 3. The degree of x1 + x1x2 − x1x32 is four.

We would like to check if two polynomials p, q are equal or not.
Over the rationals, there are two ways to think about this equality.
First, as formal sums. Second, as functions Qn → Q. (Over other
field, the two notions may not be the same.)

Remark. Let’s say we have black-box access to p, q. That is, we can choose a ∈ Qn
as we wish and ask “is p(a) = q(a)?”

How many questions of this form we need to perform?

The answer depends on the degrees. If both degrees are at most d, then naively we
need something like dn questions, which is a lot. Randomness allows to reduce the
number of questions! This relies on the fact that polynomials have few roots.

Lemma 4. A univariate polynomial p of degree d has at most d roots.

Remark. We shall not prove (do you know how to prove?).

COCO 24 RANDOMNESS 3

Lemma 5 (DeMillo–Lipton–Schwartz–Zippel). If p(x) is a non-zero polynomial in
n variables of degree d and S ⊆ Q is non-empty, then

Pr[p(R) = 0] ≤ d

|S|
where R = (R1, . . . , Rn) is uniformly distributed in Sn.

Remark. The lemma shows that with just one random question (from a large
collection of questions) we can check if p = q or not.

Proof. The proof is by induction on n. The base case n = 1 holds because univariate
polynomial of degree d has at most d roots. The induction step is performed as
follows. Write

p(x) =

d∑
i=0

pi(x1, . . . , xn−1)xin

where each pi is in n− 1 variables of degree at most d− i. Because p is non-zero,
there is some i so that pi is non-zero. Let i∗ be the maximum i so that pi is
non-zero. By induction,

Pr[pi∗(R′) = 0] ≤ d− i
|S|

where R′ = (R1, . . . , Rn−1). By the n = 1 case,

Pr[p(R) = 0|R′, pi∗(R′) ≤ 0] ≤ i∗
|S|

.

Overall,

Pr[p(R) = 0] = Pr[p(R) = 0, pi∗(R′) = 0] + Pr[p(R) = 0, pi∗(R′) 6= 0]

≤ Pr[pi∗(R) = 0] + Pr[p(R) = 0|pi∗(R′) 6= 0]

≤ d− i∗
|S|

+
i∗
|S|

=
d

|S|
. �

3. Representing polynomials

Remark. Polynomials are extremely useful in many areas (mathematics, CS, sci-
ence,...).

Example 6. Two central examples are over the n×n matrix of variables X = (xi,j):

detn(X) =
∑
π∈Sn

sign(π)

n∏
i=1

xi,π(i)

and

permn(X) =
∑
π∈Sn

n∏
i=1

xi,π(i)

where Sn is the (group of) permutations on [n]. The determinant is important in
linear algebra and geometry (so in graphics, signal analysis, etc.). The permanent
is important—it is the ultimate counting problem.

Remark. We would like to represent polynomials efficiently. This leads to a new
type of complexity theory: algebraic complexity.

4 DIKU

Definition 7. An algebraic circuit is a DAG with in-degrees either zero or two.
In-degree zero nodes are labelled by variables or field elements. In-degree two nodes
are labelled by + or ×. Circuits compute polynomials in the obvious way. The size
of a circuit is the number of nodes in it.

Definition 8. The circuit complexity of p is the minimum size of a circuit com-
puting p.

Remark. Again, devices have costs and tasks have complexities.

Remark. The circuit size of the detn is at most O(n3) using Gaussian elimination.
It is in fact at most O(n2.5) which is much harder to see. The exact exponent is not
known and the problem is important. (There is a long and interesting discussion
here...)

Remark. The circuit complexity of permn is not known and it is one of the most
important problems in theory of CS. But it is known that if there is an efficient way
to compute permn then P = NP and much more. (There is a long and interesting
discussion here...)

Remark. Circuits have a different cost which captures the ability to perform the
computation in parallel. The depth of the circuit is the length of the longest (di-
rected) path in the graph.

Remark. Algebraic circuits have a very nice property: they can be balanced. If an
algebraic circuit of size s computes a polynomial of degree d then there is circuit
of size poly(n, s, d) and small depth O(log2(sd)). A similar result is not believed to
hold for Boolean circuits.

Example 9. Here is a nice example of how PIT is related to other algorithmic
problems, and how randomness could help. Let G be a bipartite graph where each
color class is of size n. The problem we want to solve is

“does G contain a perfect matching?”

There is a polynomial time algorithm for doing so. But it is not clear how to
use randomness, or how can randomness be helpful for this problem. It turns out
randomness is useful in allowing to solve the problem in “short parallel time with
few processors”.

Given an input graph G, define the n× n matrix of variables X:

Xi,j =

{
xi,j (i, j) ∈ E(G)

0 (i, j) 6∈ E(G)

COCO 24 RANDOMNESS 5

Denote by p(X) the determinant of X. The polynomial p has degree n in at most
n2 variables. A basic observation is that

G has a perfect matching (PM) ⇐⇒ det(X) 6= 0.

If we set S = [3n], and choose each Ri,j i.i.d. uniform in S then

Pr[p(R) = 0] ≤ 1

3
.

In other words, the algorithm

if p(R) = 0 output “no PM” and if p(R) 6= 0 output “yes PM”

succeeds with probability at least 2
3 . As described above, p(R) can be computed in

poly(n)-time and O(log2(n))-depth. This is an efficient algorithms that can be run
in short parallel time.

4. Back to PIT

Remark. Instead of working with polynomials as black-boxes, we wish to work with
explicit representation of them as algebraic circuits.

Given two algebraic circuits C,C ′ over the integers Z, we want to
check if C = C ′ in the sense that the polynomials they compute
are the same.

Remark. We think of the input length as the size s of the circuits.

Claim 10. If C has size s then its output has degree at most 2s.

Remark. Using the previous approach (based on the DSZL lemma) would require
computations with 2s bits, which is too expensive. Again, randomness comes to the
rescue. The idea is to perform the computation modulo some random large prime
k.

The algorithm

(1) Let S be the set of integers between 0 and 10 · 2s.
(2) Choose R = (R1, . . . , Rn) uniformly in Sn.
(3) Choose a prime k ≤ N := 24s uniformly at random.
(4) If C(R) mod k = C ′(R) mod k, output “equal” and otherwise output

“not equal”.

Running time. The running time is now polynomial in s, because all computa-
tions are modulo k.

Equality case. If C = C ′ the algorithm always outputs the correct answer.

Inequality case. If C 6= C ′ then analyze the chance of failure as follows. Let

y = C(R)− C(R′).

We know that

Pr[y = 0] ≤ 2s

|S|
=

1

10
.

6 DIKU

The integer y is at most (10 · 2s)2s and so when we decompose it to a product of
primes, there are at most log((10 ·2s)2s) ≤ 23s prime factors. The number of primes
at most N is at least

Ω
(N

logN

)
=
(24s

s

)
.

(This was conjectured by Gauss and by Legendre, and proved by Hadamard and
by de la Vallee Poussin). So,

Pr[y mod k = 0] ≤ O
(23s

24s/s

)
≤ 1

10

for large s. Overall, by the union bound,

Pr[error] ≤ 2

10
.

�

Remark. It is not trivial to sample a random prime efficiently, but it can be done.

Remark. We see how ideas from various areas of mathematics are deeply related
to algorithm design.

5. More classes

The PIT algorithm we say has “one sided” error. Namely, if C = C ′ the output
is always correct and if C 6= C ′ the output is correct with probability at least 2

3 .
This is a stronger guarantee than BPP requires. This type of guarantee is also
natural and important, and there is a special term for it. It is called “randomized
polynomial time” and denoted by RP.

Remark. There are other natural classes for randomized computations but we shall
not go over all of them in this course.

6. Error reductions

Given a PTM M for a language L and input x, we can think of M(x) as random
variable that is typically equal to L(x):

Pr[M(x) = L(x)] ≥ 2

3
.

How can we increase the chance of success?

Run M a few times.

If y1, . . . , yT is the outcomes of the T independent runs of M on x
then MAJ(y1, . . . , yT) is much more likely to be L(x).

Theorem 11 (concentration of measure). If Z1, . . . , Zn are i.i.d. variables taking
values in [0, 1] with expectation µ = EZ1, then for all t ≥ 0,

Pr
[∣∣∣(1

n

∑
i∈[n]

Zi

)
− µ

∣∣∣ > t
]
≤ 2e−2t

2n.

Remark. There are many inequalities of this from (by Chernoff, Hoeffding, Azuma,
Bernstein, and more). They are important in many areas.

Remark. This shows that in BPP the failure probability can be between 2−poly(n)

and 1
2 −

1
poly(n) and the meaning of BPP will stay the same.

COCO 24 RANDOMNESS 7

Remark. There are several way to prove concentration bounds. Some use the
“moment method” or “Fourier transform”. Others are more “algorithmic”.

7. De-randomization conclusions

Remark. De-randomization is a method for “efficiently simulating” a randomized
algorithm by a deterministic one. There are many ingenuous ways to de-randomize
algorithms, and there are still many basic related open problems. Here we shall see
two examples.

Theorem 12 (Adleman). BPP ⊆ P/poly. In other words, for every L ∈ BPP and
n ∈ N, there is a Boolean circuit computing

{0, 1}n 3 x 7→ L(x) ∈ {0, 1}.

Sketch. The idea is that

(1) (as we said) we can assume that the error is smaller than 2−n, and
(2) there are only 2n inputs.

So, we can apply the union bound. (The details are left as an exercise.) �

Theorem 13 (Sipser-Gacs).
BPP ⊆ Σ2.

Because BPP is closed under complements, we can deduce

BPP ⊆ Σ2 ∩Π2.

Sketch. We have a PTM P (x,R) that decides x ∈ L. The randomness R is in
{0, 1}m for m = poly(n). In fact, we can assume

x ∈ L⇒ Pr[M(x,R) = 1] ≥ 1

2

and

x 6∈ L⇒ Pr[M(x,R) = 1] <
1

2m+ 1
.

(See that you understand the latter condition when x 6∈ L.) We should construct a
poly-time TM M so that for all inputs x,

x ∈ L ⇐⇒ ∃a∀bM(x, a, b) = 1.

What are a and b?

Fix x ∈ {0, 1}n. Consider the subset of strings that lead M to accept

Sx = {R : M(x,R) = 1}.
The size of Sx tells us if x ∈ L or not. If |Sx| is large, we should accept, and
otherwise we should reject.

How can we do that?

Here is the main idea. For every u ∈ {0, 1}m, let

u+ Sx = {u+ s : s ∈ Sx}
where addition is in {0, 1}m (entry-wise modulo two).

Claim 14. If |Sx| ≥ 1
2 · 2

m then there are t ≤ m+ 1 vectors u1, . . . , ut so that⋃
i∈[t]

(ui + Sx) = {0, 1}m.

8 DIKU

Remark. If u is uniformly at random, then u+Sx is a random subset of fractional
size ≥ 1

2 . It is not distributed uniformly at random, but each element is in it with
probability at least a half.

Proof idea. Taking O(log 2m) = O(m) sets allows to cover the whole universe. With
one set, we cover 1

2 . With two sets, we cover 1 − 1
4 . With threes sets, we cover

1− 1
8 . And so forth, until we cover more than 1−2m of the domain (at which point

we are done). �

The witness a is now
a = (u1, . . . , ut).

And b allows to check if indeed⋃
i∈[t]

(ui + Sx) = {0, 1}m.

Namely, b is an element in {0, 1}m and

M(x, a, b) = 1
[
∃i ∈ [t] P (x, b+ ui) = 1

]
.

We see that
x ∈ L⇒ ∃a∀b M(x, a, b) = 1.

What about the “no case”?

When x 6∈ L, as we already justified:

|Sx| <
1

t
2m

so that for all u1, . . . , ut, ∣∣∣ ⋃
i∈[t]

(u+ Sx)
∣∣∣ < t · |Sx| < 2m;

here we used the property of M for x 6∈ L. Stated differently,

x 6∈ L⇒ ∀a∃b M(x, a, b) = 0.

�

	1. The basics
	2. An example: polynomial identity testing (PIT)
	3. Representing polynomials
	4. Back to PIT
	The algorithm
	Running time
	Equality case
	Inequality case

	5. More classes
	6. Error reductions
	7. De-randomization conclusions

